Properties

Label 2541.2.l
Level 2541
Weight 2
Character orbit l
Rep. character \(\chi_{2541}(725,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 544
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.l (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 231 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 752 608 144
Cusp forms 656 544 112
Eisenstein series 96 64 32

Trace form

\( 544q + 2q^{3} - 252q^{4} + 6q^{9} + O(q^{10}) \) \( 544q + 2q^{3} - 252q^{4} + 6q^{9} - 16q^{12} + 12q^{15} - 196q^{16} + 232q^{25} - 4q^{27} - 144q^{34} - 8q^{36} + 4q^{37} - 136q^{42} - 24q^{45} + 184q^{48} + 12q^{49} - 32q^{58} + 8q^{60} + 104q^{64} - 32q^{67} + 28q^{69} + 108q^{70} + 14q^{75} - 180q^{78} + 6q^{81} + 20q^{82} - 112q^{91} - 40q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database