Properties

Label 2541.2.j
Level 2541
Weight 2
Character orbit j
Rep. character \(\chi_{2541}(148,\cdot)\)
Character field \(\Q(\zeta_{5})\)
Dimension 432
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.j (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 1504 432 1072
Cusp forms 1312 432 880
Eisenstein series 192 0 192

Trace form

\( 432q - 4q^{2} - 112q^{4} - 4q^{7} + 8q^{8} - 108q^{9} + O(q^{10}) \) \( 432q - 4q^{2} - 112q^{4} - 4q^{7} + 8q^{8} - 108q^{9} - 16q^{10} - 16q^{12} + 4q^{13} + 6q^{14} - 8q^{15} - 76q^{16} - 8q^{17} + 6q^{18} - 8q^{19} + 60q^{20} + 16q^{21} + 48q^{23} - 84q^{25} + 44q^{26} - 2q^{28} - 16q^{29} + 8q^{30} - 28q^{31} - 88q^{32} - 56q^{34} - 112q^{36} + 28q^{37} - 12q^{38} - 32q^{39} - 4q^{40} - 8q^{41} + 48q^{43} + 6q^{46} + 16q^{48} - 108q^{49} + 64q^{50} - 24q^{51} + 68q^{52} + 52q^{53} - 36q^{56} + 8q^{57} - 62q^{58} + 4q^{59} + 24q^{60} - 32q^{62} - 4q^{63} - 96q^{64} - 40q^{65} - 80q^{67} - 88q^{68} + 12q^{69} - 32q^{70} - 12q^{71} - 2q^{72} - 8q^{73} + 28q^{74} + 32q^{75} + 16q^{76} + 56q^{78} - 36q^{79} - 216q^{80} - 108q^{81} - 44q^{82} + 88q^{83} - 12q^{84} + 12q^{85} - 150q^{86} - 40q^{87} + 160q^{89} + 24q^{90} - 74q^{92} + 20q^{93} + 20q^{94} + 128q^{95} + 60q^{96} - 52q^{97} - 4q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database