Properties

Label 2541.2.i
Level 2541
Weight 2
Character orbit i
Rep. character \(\chi_{2541}(1453,\cdot)\)
Character field \(\Q(\zeta_{3})\)
Dimension 290
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 752 290 462
Cusp forms 656 290 366
Eisenstein series 96 0 96

Trace form

\( 290q + 2q^{2} - q^{3} - 142q^{4} - 2q^{5} - 4q^{6} + 3q^{7} - 24q^{8} - 145q^{9} + O(q^{10}) \) \( 290q + 2q^{2} - q^{3} - 142q^{4} - 2q^{5} - 4q^{6} + 3q^{7} - 24q^{8} - 145q^{9} + 8q^{10} - 2q^{12} - 14q^{13} - 14q^{14} + 4q^{15} - 144q^{16} + 2q^{18} + 7q^{19} + 56q^{20} + 4q^{21} - 8q^{23} - 151q^{25} + 22q^{26} + 2q^{27} - 8q^{29} + 12q^{30} - 13q^{31} + 36q^{32} - 46q^{35} + 284q^{36} + q^{37} - 10q^{38} - q^{39} + 12q^{40} + 52q^{41} - 10q^{42} + 2q^{43} - 2q^{45} + 32q^{46} + 18q^{47} - 8q^{48} - 37q^{49} - 60q^{50} - 8q^{51} + 10q^{52} - 28q^{53} + 2q^{54} - 24q^{56} - 14q^{57} + 12q^{58} + 12q^{59} + 16q^{60} + 2q^{61} + 52q^{62} - 3q^{63} + 256q^{64} - 42q^{65} + 5q^{67} - 36q^{68} + 32q^{69} - 16q^{70} + 28q^{71} + 12q^{72} + 27q^{73} - 42q^{74} - 15q^{75} - 124q^{76} - 20q^{78} - 15q^{79} + 8q^{80} - 145q^{81} - 20q^{82} + 20q^{83} + 50q^{84} - 8q^{85} + 38q^{86} + 16q^{87} + 32q^{89} - 16q^{90} + 111q^{91} - 80q^{92} + 43q^{93} + 40q^{94} - 18q^{95} + 12q^{96} + 76q^{97} - 16q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database