Properties

Label 2541.2.g
Level 2541
Weight 2
Character orbit g
Rep. character \(\chi_{2541}(1814,\cdot)\)
Character field \(\Q\)
Dimension 216
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 33 \)
Character field: \(\Q\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 376 216 160
Cusp forms 328 216 112
Eisenstein series 48 0 48

Trace form

\( 216q + 8q^{3} + 216q^{4} - 12q^{9} + O(q^{10}) \) \( 216q + 8q^{3} + 216q^{4} - 12q^{9} + 28q^{12} + 16q^{15} + 248q^{16} - 240q^{25} + 8q^{27} + 32q^{31} + 8q^{34} + 4q^{36} + 8q^{37} + 12q^{45} + 68q^{48} - 216q^{49} - 56q^{58} - 20q^{60} + 304q^{64} + 16q^{67} - 64q^{69} + 32q^{70} - 68q^{75} + 28q^{78} - 4q^{81} - 16q^{82} - 24q^{91} - 40q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database