Properties

Label 2541.2.e
Level 2541
Weight 2
Character orbit e
Rep. character \(\chi_{2541}(1574,\cdot)\)
Character field \(\Q\)
Dimension 272
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 21 \)
Character field: \(\Q\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 376 308 68
Cusp forms 328 272 56
Eisenstein series 48 36 12

Trace form

\( 272q - 248q^{4} + 8q^{7} + 8q^{9} + O(q^{10}) \) \( 272q - 248q^{4} + 8q^{7} + 8q^{9} + 20q^{15} + 200q^{16} + 12q^{18} + 10q^{21} + 184q^{25} - 12q^{28} + 4q^{30} - 44q^{36} + 32q^{37} - 16q^{39} - 20q^{42} + 40q^{43} + 16q^{46} + 8q^{51} + 4q^{57} + 24q^{58} - 132q^{60} - 6q^{63} - 104q^{64} - 96q^{67} + 12q^{70} - 24q^{72} + 20q^{78} - 56q^{79} - 24q^{81} - 100q^{84} + 8q^{85} + 36q^{91} + 28q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database