# Properties

 Label 2541.2.ci Level 2541 Weight 2 Character orbit ci Rep. character $$\chi_{2541}(5,\cdot)$$ Character field $$\Q(\zeta_{330})$$ Dimension 27840 Sturm bound 704

# Related objects

## Defining parameters

 Level: $$N$$ = $$2541 = 3 \cdot 7 \cdot 11^{2}$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 2541.ci (of order $$330$$ and degree $$80$$) Character conductor: $$\operatorname{cond}(\chi)$$ = $$2541$$ Character field: $$\Q(\zeta_{330})$$ Sturm bound: $$704$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2541, [\chi])$$.

Total New Old
Modular forms 28480 28480 0
Cusp forms 27840 27840 0
Eisenstein series 640 640 0

## Trace form

 $$27840q - 90q^{3} + 262q^{4} - 160q^{7} - 36q^{9} + O(q^{10})$$ $$27840q - 90q^{3} + 262q^{4} - 160q^{7} - 36q^{9} - 270q^{10} - 120q^{12} - 162q^{15} - 426q^{16} - 13q^{18} - 246q^{19} - 49q^{21} - 284q^{22} - 180q^{24} - 390q^{25} - 150q^{28} + 37q^{30} - 228q^{31} - 192q^{33} - 212q^{36} - 74q^{37} - 86q^{39} - 198q^{40} - 17q^{42} - 256q^{43} - 156q^{45} - 34q^{46} - 200q^{49} + 7q^{51} - 36q^{52} - 432q^{54} - 178q^{57} - 104q^{58} - 136q^{60} - 246q^{61} - 84q^{63} - 720q^{64} - 168q^{66} - 104q^{67} - 124q^{70} - 151q^{72} - 294q^{73} - 195q^{75} - 126q^{78} - 162q^{79} - 72q^{81} - 342q^{82} - 154q^{84} - 368q^{85} - 333q^{87} - 170q^{88} - 56q^{91} - 37q^{93} - 360q^{94} - 45q^{96} + 122q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2541, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database