Properties

Label 2541.2.cg
Level 2541
Weight 2
Character orbit cg
Rep. character \(\chi_{2541}(2,\cdot)\)
Character field \(\Q(\zeta_{330})\)
Dimension 27840
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.cg (of order \(330\) and degree \(80\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 2541 \)
Character field: \(\Q(\zeta_{330})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 28480 28480 0
Cusp forms 27840 27840 0
Eisenstein series 640 640 0

Trace form

\( 27840q - 30q^{3} - 426q^{4} - 112q^{6} - 156q^{7} - 24q^{9} + O(q^{10}) \) \( 27840q - 30q^{3} - 426q^{4} - 112q^{6} - 156q^{7} - 24q^{9} - 66q^{10} - 94q^{12} - 312q^{13} - 166q^{15} - 442q^{16} + 5q^{18} - 78q^{19} - 121q^{21} - 364q^{22} - 52q^{24} + 250q^{25} - 138q^{27} - 186q^{28} - 75q^{30} - 88q^{31} + 30q^{33} - 224q^{34} - 196q^{36} - 74q^{37} + 34q^{39} + 10q^{40} - 99q^{42} - 352q^{43} + 90q^{45} - 38q^{46} - 216q^{48} - 200q^{49} - 21q^{51} - 12q^{52} + 88q^{54} - 400q^{55} - 302q^{57} - 60q^{58} - 30q^{60} - 38q^{61} - 280q^{63} - 16q^{64} - 88q^{66} - 40q^{67} - 188q^{69} - 220q^{70} - 187q^{72} - 18q^{73} - 99q^{75} - 352q^{76} - 2q^{78} - 42q^{79} - 48q^{81} - 66q^{82} - 246q^{84} - 248q^{85} - 77q^{87} - 174q^{88} - 404q^{90} - 24q^{91} - 97q^{93} + 100q^{94} - 113q^{96} - 384q^{97} - 58q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database