Properties

Label 2541.2.ce
Level 2541
Weight 2
Character orbit ce
Rep. character \(\chi_{2541}(4,\cdot)\)
Character field \(\Q(\zeta_{165})\)
Dimension 14080
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.ce (of order \(165\) and degree \(80\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 847 \)
Character field: \(\Q(\zeta_{165})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 28480 14080 14400
Cusp forms 27840 14080 13760
Eisenstein series 640 0 640

Trace form

\( 14080q - 4q^{2} - 180q^{4} + 4q^{5} + 8q^{6} + 2q^{7} - 16q^{8} + 1760q^{9} + O(q^{10}) \) \( 14080q - 4q^{2} - 180q^{4} + 4q^{5} + 8q^{6} + 2q^{7} - 16q^{8} + 1760q^{9} + 14q^{10} - 20q^{11} + 16q^{13} + 48q^{14} + 12q^{15} - 168q^{16} + 6q^{18} - 8q^{19} - 32q^{20} - 36q^{22} + 52q^{23} - 30q^{24} - 148q^{25} + 8q^{26} + 38q^{28} + 56q^{29} - 8q^{30} - 6q^{31} - 8q^{32} + 6q^{33} + 48q^{34} - 36q^{35} + 360q^{36} - 38q^{37} + 8q^{38} + 222q^{40} + 48q^{41} - 6q^{42} + 8q^{43} + 48q^{44} + 4q^{45} + 38q^{46} + 40q^{47} - 158q^{49} + 56q^{50} - 12q^{51} - 78q^{52} - 84q^{53} + 16q^{54} + 56q^{55} + 24q^{56} + 16q^{57} + 18q^{58} - 16q^{59} + 12q^{60} + 18q^{61} - 96q^{62} + 14q^{63} + 336q^{64} - 16q^{65} + 12q^{66} + 64q^{67} + 56q^{68} - 16q^{69} - 66q^{70} - 96q^{71} - 2q^{72} + 6q^{73} - 4q^{74} - 8q^{76} - 4q^{77} - 24q^{78} - 38q^{79} + 72q^{80} + 1760q^{81} - 128q^{83} + 12q^{84} - 348q^{85} + 26q^{86} + 100q^{87} + 16q^{88} - 144q^{89} + 52q^{90} + 74q^{91} + 140q^{92} + 36q^{93} + 404q^{94} + 10q^{95} - 136q^{96} + 124q^{97} + 240q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database