Properties

Label 2541.2.cc
Level 2541
Weight 2
Character orbit cc
Rep. character \(\chi_{2541}(8,\cdot)\)
Character field \(\Q(\zeta_{110})\)
Dimension 10560
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.cc (of order \(110\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 363 \)
Character field: \(\Q(\zeta_{110})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 14240 10560 3680
Cusp forms 13920 10560 3360
Eisenstein series 320 0 320

Trace form

\( 10560q - 4q^{3} + 264q^{4} + 10q^{6} + 18q^{9} + O(q^{10}) \) \( 10560q - 4q^{3} + 264q^{4} + 10q^{6} + 18q^{9} + 54q^{12} - 44q^{13} + 28q^{15} + 272q^{16} + 10q^{18} + 60q^{19} + 44q^{22} - 206q^{24} - 264q^{25} + 8q^{27} + 40q^{28} - 60q^{30} - 72q^{31} + 44q^{33} - 8q^{34} - 10q^{36} - 4q^{37} + 10q^{39} + 24q^{45} + 40q^{46} - 28q^{48} - 264q^{49} + 96q^{51} + 216q^{52} + 148q^{55} - 124q^{57} - 48q^{58} + 44q^{60} - 40q^{61} + 456q^{64} - 140q^{66} + 8q^{67} - 36q^{69} + 36q^{70} - 150q^{72} - 84q^{73} - 2q^{75} + 396q^{76} - 12q^{78} + 40q^{79} - 10q^{81} - 72q^{82} - 40q^{84} - 72q^{85} + 552q^{88} + 76q^{90} - 168q^{91} + 22q^{93} - 160q^{96} + 76q^{97} + 94q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database