Properties

Label 2541.2.ca
Level 2541
Weight 2
Character orbit ca
Rep. character \(\chi_{2541}(20,\cdot)\)
Character field \(\Q(\zeta_{110})\)
Dimension 13920
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.ca (of order \(110\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 2541 \)
Character field: \(\Q(\zeta_{110})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 14240 14240 0
Cusp forms 13920 13920 0
Eisenstein series 320 320 0

Trace form

\( 13920q - 508q^{4} - 86q^{7} - 54q^{9} + O(q^{10}) \) \( 13920q - 508q^{4} - 86q^{7} - 54q^{9} + 204q^{16} - 134q^{18} - 77q^{21} - 52q^{22} + 180q^{25} - 96q^{28} - 178q^{30} + 14q^{36} - 172q^{37} - 88q^{39} + 29q^{42} - 176q^{43} - 212q^{46} - 154q^{49} - 148q^{51} - 68q^{57} + 8q^{58} - 110q^{60} - 66q^{63} - 300q^{64} - 112q^{67} - 206q^{70} - 350q^{72} - 18q^{78} - 108q^{79} - 126q^{81} - 47q^{84} - 316q^{85} - 64q^{88} - 130q^{91} - 284q^{93} - 356q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database