Properties

Label 2541.2.c
Level 2541
Weight 2
Character orbit c
Rep. character \(\chi_{2541}(1693,\cdot)\)
Character field \(\Q\)
Dimension 144
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 77 \)
Character field: \(\Q\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 376 144 232
Cusp forms 328 144 184
Eisenstein series 48 0 48

Trace form

\( 144q - 148q^{4} - 144q^{9} + O(q^{10}) \) \( 144q - 148q^{4} - 144q^{9} + 8q^{15} + 180q^{16} - 24q^{23} - 136q^{25} + 148q^{36} - 16q^{37} - 8q^{42} - 8q^{49} - 16q^{53} + 32q^{56} + 16q^{58} - 48q^{60} - 292q^{64} + 40q^{67} - 20q^{70} + 80q^{71} + 144q^{81} - 48q^{86} - 60q^{91} + 128q^{92} - 32q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database