# Properties

 Label 2541.2.bv Level 2541 Weight 2 Character orbit bv Rep. character $$\chi_{2541}(32,\cdot)$$ Character field $$\Q(\zeta_{66})$$ Dimension 6960 Sturm bound 704

# Related objects

## Defining parameters

 Level: $$N$$ = $$2541 = 3 \cdot 7 \cdot 11^{2}$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 2541.bv (of order $$66$$ and degree $$20$$) Character conductor: $$\operatorname{cond}(\chi)$$ = $$2541$$ Character field: $$\Q(\zeta_{66})$$ Sturm bound: $$704$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2541, [\chi])$$.

Total New Old
Modular forms 7120 7120 0
Cusp forms 6960 6960 0
Eisenstein series 160 160 0

## Trace form

 $$6960q - 20q^{3} + 326q^{4} - 88q^{6} - 44q^{7} - 16q^{9} + O(q^{10})$$ $$6960q - 20q^{3} + 326q^{4} - 88q^{6} - 44q^{7} - 16q^{9} - 44q^{10} + 49q^{12} - 88q^{13} - 54q^{15} + 342q^{16} - 55q^{18} - 22q^{19} + 11q^{21} + 24q^{22} + 22q^{24} - 330q^{25} - 92q^{27} - 44q^{28} + 55q^{30} - 22q^{31} - 55q^{33} - 136q^{34} - 4q^{36} - 26q^{37} - 44q^{39} - 141q^{42} - 88q^{43} - 135q^{45} - 22q^{46} + 86q^{48} + 40q^{49} + 11q^{51} - 88q^{52} - 143q^{54} + 22q^{57} - 110q^{58} + 70q^{60} - 22q^{61} + 110q^{63} - 544q^{64} - 2q^{66} - 50q^{67} - 82q^{69} + 40q^{70} + 77q^{72} - 22q^{73} + 9q^{75} - 88q^{76} - 178q^{78} + 22q^{79} - 32q^{81} - 34q^{82} + 11q^{84} - 352q^{85} + 22q^{87} - 6q^{88} + 154q^{90} - 116q^{91} + 32q^{93} - 77q^{96} - 16q^{97} - 222q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2541, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database