Properties

Label 2541.2.br
Level 2541
Weight 2
Character orbit br
Rep. character \(\chi_{2541}(10,\cdot)\)
Character field \(\Q(\zeta_{66})\)
Dimension 3520
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.br (of order \(66\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 847 \)
Character field: \(\Q(\zeta_{66})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 7120 3520 3600
Cusp forms 6960 3520 3440
Eisenstein series 160 0 160

Trace form

\( 3520q - 172q^{4} + 12q^{5} + 1760q^{9} + O(q^{10}) \) \( 3520q - 172q^{4} + 12q^{5} + 1760q^{9} - 66q^{10} + 20q^{11} - 28q^{14} - 8q^{15} + 172q^{16} - 96q^{22} + 20q^{23} - 160q^{25} + 24q^{26} + 12q^{31} + 18q^{33} - 344q^{36} - 30q^{37} - 24q^{38} + 16q^{42} + 6q^{44} + 12q^{45} - 12q^{47} + 128q^{49} + 198q^{52} + 92q^{53} + 24q^{56} + 26q^{58} - 12q^{60} + 216q^{64} + 36q^{66} + 64q^{67} - 32q^{70} - 40q^{71} + 24q^{78} + 44q^{79} - 120q^{80} - 1760q^{81} + 24q^{82} - 176q^{85} - 56q^{86} + 20q^{88} + 216q^{89} + 70q^{91} + 456q^{92} - 24q^{93} + 396q^{96} + 40q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database