Properties

Label 2541.2.bo
Level 2541
Weight 2
Character orbit bo
Rep. character \(\chi_{2541}(67,\cdot)\)
Character field \(\Q(\zeta_{33})\)
Dimension 3520
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.bo (of order \(33\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 847 \)
Character field: \(\Q(\zeta_{33})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 7120 3520 3600
Cusp forms 6960 3520 3440
Eisenstein series 160 0 160

Trace form

\( 3520q + 4q^{2} + 180q^{4} - 4q^{5} - 8q^{6} + 8q^{7} - 24q^{8} - 1760q^{9} + O(q^{10}) \) \( 3520q + 4q^{2} + 180q^{4} - 4q^{5} - 8q^{6} + 8q^{7} - 24q^{8} - 1760q^{9} + 26q^{10} + 20q^{11} - 16q^{13} - 28q^{14} + 8q^{15} + 188q^{16} + 4q^{18} + 8q^{19} + 32q^{20} + 96q^{22} - 52q^{23} + 168q^{25} - 8q^{26} - 8q^{28} - 16q^{29} + 8q^{30} - 4q^{31} + 28q^{32} - 6q^{33} - 48q^{34} - 44q^{35} - 360q^{36} + 78q^{37} - 8q^{38} - 252q^{40} + 72q^{41} + 16q^{42} - 8q^{43} - 18q^{44} - 4q^{45} + 32q^{46} + 20q^{47} + 48q^{49} - 56q^{50} - 8q^{51} + 78q^{52} + 124q^{53} + 4q^{54} + 24q^{55} - 24q^{56} - 16q^{57} - 18q^{58} + 16q^{59} - 12q^{60} + 12q^{61} + 16q^{62} - 4q^{63} - 296q^{64} - 44q^{65} - 12q^{66} - 64q^{67} - 36q^{68} + 16q^{69} + 16q^{70} - 24q^{71} + 12q^{72} + 24q^{73} - 36q^{74} - 392q^{76} + 4q^{77} + 24q^{78} + 28q^{79} + 48q^{80} - 1760q^{81} - 40q^{82} + 8q^{83} + 48q^{84} + 168q^{85} + 64q^{86} + 20q^{87} - 56q^{88} + 144q^{89} - 52q^{90} - 54q^{91} - 520q^{92} + 24q^{93} - 324q^{94} - 20q^{95} + 136q^{96} - 4q^{97} - 20q^{98} - 40q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database