Properties

Label 2541.2.bk
Level 2541
Weight 2
Character orbit bk
Rep. character \(\chi_{2541}(269,\cdot)\)
Character field \(\Q(\zeta_{30})\)
Dimension 2176
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.bk (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 231 \)
Character field: \(\Q(\zeta_{30})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 3008 2432 576
Cusp forms 2624 2176 448
Eisenstein series 384 256 128

Trace form

\( 2176q + 9q^{3} - 250q^{4} + 16q^{7} - 3q^{9} + O(q^{10}) \) \( 2176q + 9q^{3} - 250q^{4} + 16q^{7} - 3q^{9} + 60q^{10} - 108q^{12} + 36q^{15} + 222q^{16} - 13q^{18} + 18q^{19} + 6q^{21} + 51q^{24} + 238q^{25} + 26q^{28} + 15q^{30} + 36q^{31} + 12q^{36} + 6q^{37} - 9q^{39} + 94q^{42} + 96q^{43} - 144q^{45} + 54q^{46} + 48q^{49} + 29q^{51} + 30q^{52} + 96q^{54} - 68q^{57} + 56q^{58} - 85q^{60} + 18q^{61} + 26q^{63} + 288q^{64} - 160q^{67} + 76q^{70} - 19q^{72} - 30q^{73} - 63q^{75} - 332q^{78} - 30q^{79} - 23q^{81} - 30q^{82} - 99q^{84} + 248q^{85} - 102q^{87} + 80q^{91} - 42q^{93} - 162q^{94} + 87q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(231, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database