Properties

Label 2541.2.bf
Level 2541
Weight 2
Character orbit bf
Rep. character \(\chi_{2541}(76,\cdot)\)
Character field \(\Q(\zeta_{22})\)
Dimension 1760
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.bf (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 847 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 3560 1760 1800
Cusp forms 3480 1760 1720
Eisenstein series 80 0 80

Trace form

\( 1760q + 172q^{4} - 1760q^{9} + O(q^{10}) \) \( 1760q + 172q^{4} - 1760q^{9} + 28q^{11} + 28q^{14} + 8q^{15} - 172q^{16} - 24q^{22} - 68q^{23} + 184q^{25} - 172q^{36} - 132q^{37} - 16q^{42} + 54q^{44} + 52q^{49} + 232q^{53} + 48q^{56} - 14q^{58} - 24q^{60} + 72q^{64} - 64q^{67} - 52q^{70} + 16q^{71} - 24q^{78} + 88q^{79} + 1760q^{81} - 88q^{85} - 16q^{86} - 44q^{88} - 82q^{91} - 312q^{92} + 24q^{93} - 28q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database