# Properties

 Label 2541.2.bb Level 2541 Weight 2 Character orbit bb Rep. character $$\chi_{2541}(197,\cdot)$$ Character field $$\Q(\zeta_{22})$$ Dimension 2640 Sturm bound 704

# Related objects

## Defining parameters

 Level: $$N$$ = $$2541 = 3 \cdot 7 \cdot 11^{2}$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 2541.bb (of order $$22$$ and degree $$10$$) Character conductor: $$\operatorname{cond}(\chi)$$ = $$363$$ Character field: $$\Q(\zeta_{22})$$ Sturm bound: $$704$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2541, [\chi])$$.

Total New Old
Modular forms 3560 2640 920
Cusp forms 3480 2640 840
Eisenstein series 80 0 80

## Trace form

 $$2640q + 4q^{3} - 264q^{4} - 8q^{9} + O(q^{10})$$ $$2640q + 4q^{3} - 264q^{4} - 8q^{9} - 54q^{12} + 44q^{13} - 18q^{15} - 232q^{16} - 44q^{22} + 176q^{24} + 264q^{25} - 8q^{27} + 52q^{31} - 14q^{33} + 8q^{34} + 20q^{36} - 16q^{37} - 24q^{45} + 28q^{48} + 264q^{49} - 66q^{51} - 176q^{52} - 148q^{55} + 154q^{57} - 32q^{58} - 44q^{60} - 376q^{64} + 10q^{66} - 8q^{67} - 44q^{69} - 36q^{70} + 44q^{73} - 68q^{75} - 396q^{76} + 12q^{78} + 72q^{82} + 132q^{85} - 352q^{88} - 176q^{90} + 108q^{91} - 12q^{93} + 24q^{97} + 6q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2541, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Decomposition of $$S_{2}^{\mathrm{old}}(2541, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(2541, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(363, [\chi])$$$$^{\oplus 2}$$

## Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database