Properties

Label 2541.2.bb
Level 2541
Weight 2
Character orbit bb
Rep. character \(\chi_{2541}(197,\cdot)\)
Character field \(\Q(\zeta_{22})\)
Dimension 2640
Sturm bound 704

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.bb (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 363 \)
Character field: \(\Q(\zeta_{22})\)
Sturm bound: \(704\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2541, [\chi])\).

Total New Old
Modular forms 3560 2640 920
Cusp forms 3480 2640 840
Eisenstein series 80 0 80

Trace form

\( 2640q + 4q^{3} - 264q^{4} - 8q^{9} + O(q^{10}) \) \( 2640q + 4q^{3} - 264q^{4} - 8q^{9} - 54q^{12} + 44q^{13} - 18q^{15} - 232q^{16} - 44q^{22} + 176q^{24} + 264q^{25} - 8q^{27} + 52q^{31} - 14q^{33} + 8q^{34} + 20q^{36} - 16q^{37} - 24q^{45} + 28q^{48} + 264q^{49} - 66q^{51} - 176q^{52} - 148q^{55} + 154q^{57} - 32q^{58} - 44q^{60} - 376q^{64} + 10q^{66} - 8q^{67} - 44q^{69} - 36q^{70} + 44q^{73} - 68q^{75} - 396q^{76} + 12q^{78} + 72q^{82} + 132q^{85} - 352q^{88} - 176q^{90} + 108q^{91} - 12q^{93} + 24q^{97} + 6q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2541, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2541, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2541, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database