# Properties

 Label 2541.2.a.y Level $2541$ Weight $2$ Character orbit 2541.a Self dual yes Analytic conductor $20.290$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2541 = 3 \cdot 7 \cdot 11^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2541.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$20.2899871536$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{5})$$ Defining polynomial: $$x^{2} - x - 1$$ x^2 - x - 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{5})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{2} - q^{3} + (\beta - 1) q^{4} + ( - 2 \beta + 1) q^{5} - \beta q^{6} + q^{7} + ( - 2 \beta + 1) q^{8} + q^{9} +O(q^{10})$$ q + b * q^2 - q^3 + (b - 1) * q^4 + (-2*b + 1) * q^5 - b * q^6 + q^7 + (-2*b + 1) * q^8 + q^9 $$q + \beta q^{2} - q^{3} + (\beta - 1) q^{4} + ( - 2 \beta + 1) q^{5} - \beta q^{6} + q^{7} + ( - 2 \beta + 1) q^{8} + q^{9} + ( - \beta - 2) q^{10} + ( - \beta + 1) q^{12} + (2 \beta - 3) q^{13} + \beta q^{14} + (2 \beta - 1) q^{15} - 3 \beta q^{16} + 2 q^{17} + \beta q^{18} + ( - 4 \beta + 5) q^{19} + (\beta - 3) q^{20} - q^{21} - 2 q^{23} + (2 \beta - 1) q^{24} + ( - \beta + 2) q^{26} - q^{27} + (\beta - 1) q^{28} + 5 q^{29} + (\beta + 2) q^{30} + (4 \beta + 4) q^{31} + (\beta - 5) q^{32} + 2 \beta q^{34} + ( - 2 \beta + 1) q^{35} + (\beta - 1) q^{36} + ( - 4 \beta + 5) q^{37} + (\beta - 4) q^{38} + ( - 2 \beta + 3) q^{39} + 5 q^{40} + (4 \beta - 4) q^{41} - \beta q^{42} + ( - 4 \beta - 2) q^{43} + ( - 2 \beta + 1) q^{45} - 2 \beta q^{46} + (4 \beta + 3) q^{47} + 3 \beta q^{48} + q^{49} - 2 q^{51} + ( - 3 \beta + 5) q^{52} + 4 \beta q^{53} - \beta q^{54} + ( - 2 \beta + 1) q^{56} + (4 \beta - 5) q^{57} + 5 \beta q^{58} + (8 \beta - 5) q^{59} + ( - \beta + 3) q^{60} + (4 \beta + 6) q^{61} + (8 \beta + 4) q^{62} + q^{63} + (2 \beta + 1) q^{64} + (4 \beta - 7) q^{65} + (10 \beta - 7) q^{67} + (2 \beta - 2) q^{68} + 2 q^{69} + ( - \beta - 2) q^{70} + ( - 4 \beta + 4) q^{71} + ( - 2 \beta + 1) q^{72} + ( - 6 \beta - 1) q^{73} + (\beta - 4) q^{74} + (5 \beta - 9) q^{76} + (\beta - 2) q^{78} + ( - 4 \beta + 6) q^{79} + (3 \beta + 6) q^{80} + q^{81} + 4 q^{82} + ( - 4 \beta + 14) q^{83} + ( - \beta + 1) q^{84} + ( - 4 \beta + 2) q^{85} + ( - 6 \beta - 4) q^{86} - 5 q^{87} + ( - 4 \beta + 6) q^{89} + ( - \beta - 2) q^{90} + (2 \beta - 3) q^{91} + ( - 2 \beta + 2) q^{92} + ( - 4 \beta - 4) q^{93} + (7 \beta + 4) q^{94} + ( - 6 \beta + 13) q^{95} + ( - \beta + 5) q^{96} + (12 \beta - 10) q^{97} + \beta q^{98} +O(q^{100})$$ q + b * q^2 - q^3 + (b - 1) * q^4 + (-2*b + 1) * q^5 - b * q^6 + q^7 + (-2*b + 1) * q^8 + q^9 + (-b - 2) * q^10 + (-b + 1) * q^12 + (2*b - 3) * q^13 + b * q^14 + (2*b - 1) * q^15 - 3*b * q^16 + 2 * q^17 + b * q^18 + (-4*b + 5) * q^19 + (b - 3) * q^20 - q^21 - 2 * q^23 + (2*b - 1) * q^24 + (-b + 2) * q^26 - q^27 + (b - 1) * q^28 + 5 * q^29 + (b + 2) * q^30 + (4*b + 4) * q^31 + (b - 5) * q^32 + 2*b * q^34 + (-2*b + 1) * q^35 + (b - 1) * q^36 + (-4*b + 5) * q^37 + (b - 4) * q^38 + (-2*b + 3) * q^39 + 5 * q^40 + (4*b - 4) * q^41 - b * q^42 + (-4*b - 2) * q^43 + (-2*b + 1) * q^45 - 2*b * q^46 + (4*b + 3) * q^47 + 3*b * q^48 + q^49 - 2 * q^51 + (-3*b + 5) * q^52 + 4*b * q^53 - b * q^54 + (-2*b + 1) * q^56 + (4*b - 5) * q^57 + 5*b * q^58 + (8*b - 5) * q^59 + (-b + 3) * q^60 + (4*b + 6) * q^61 + (8*b + 4) * q^62 + q^63 + (2*b + 1) * q^64 + (4*b - 7) * q^65 + (10*b - 7) * q^67 + (2*b - 2) * q^68 + 2 * q^69 + (-b - 2) * q^70 + (-4*b + 4) * q^71 + (-2*b + 1) * q^72 + (-6*b - 1) * q^73 + (b - 4) * q^74 + (5*b - 9) * q^76 + (b - 2) * q^78 + (-4*b + 6) * q^79 + (3*b + 6) * q^80 + q^81 + 4 * q^82 + (-4*b + 14) * q^83 + (-b + 1) * q^84 + (-4*b + 2) * q^85 + (-6*b - 4) * q^86 - 5 * q^87 + (-4*b + 6) * q^89 + (-b - 2) * q^90 + (2*b - 3) * q^91 + (-2*b + 2) * q^92 + (-4*b - 4) * q^93 + (7*b + 4) * q^94 + (-6*b + 13) * q^95 + (-b + 5) * q^96 + (12*b - 10) * q^97 + b * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{2} - 2 q^{3} - q^{4} - q^{6} + 2 q^{7} + 2 q^{9}+O(q^{10})$$ 2 * q + q^2 - 2 * q^3 - q^4 - q^6 + 2 * q^7 + 2 * q^9 $$2 q + q^{2} - 2 q^{3} - q^{4} - q^{6} + 2 q^{7} + 2 q^{9} - 5 q^{10} + q^{12} - 4 q^{13} + q^{14} - 3 q^{16} + 4 q^{17} + q^{18} + 6 q^{19} - 5 q^{20} - 2 q^{21} - 4 q^{23} + 3 q^{26} - 2 q^{27} - q^{28} + 10 q^{29} + 5 q^{30} + 12 q^{31} - 9 q^{32} + 2 q^{34} - q^{36} + 6 q^{37} - 7 q^{38} + 4 q^{39} + 10 q^{40} - 4 q^{41} - q^{42} - 8 q^{43} - 2 q^{46} + 10 q^{47} + 3 q^{48} + 2 q^{49} - 4 q^{51} + 7 q^{52} + 4 q^{53} - q^{54} - 6 q^{57} + 5 q^{58} - 2 q^{59} + 5 q^{60} + 16 q^{61} + 16 q^{62} + 2 q^{63} + 4 q^{64} - 10 q^{65} - 4 q^{67} - 2 q^{68} + 4 q^{69} - 5 q^{70} + 4 q^{71} - 8 q^{73} - 7 q^{74} - 13 q^{76} - 3 q^{78} + 8 q^{79} + 15 q^{80} + 2 q^{81} + 8 q^{82} + 24 q^{83} + q^{84} - 14 q^{86} - 10 q^{87} + 8 q^{89} - 5 q^{90} - 4 q^{91} + 2 q^{92} - 12 q^{93} + 15 q^{94} + 20 q^{95} + 9 q^{96} - 8 q^{97} + q^{98}+O(q^{100})$$ 2 * q + q^2 - 2 * q^3 - q^4 - q^6 + 2 * q^7 + 2 * q^9 - 5 * q^10 + q^12 - 4 * q^13 + q^14 - 3 * q^16 + 4 * q^17 + q^18 + 6 * q^19 - 5 * q^20 - 2 * q^21 - 4 * q^23 + 3 * q^26 - 2 * q^27 - q^28 + 10 * q^29 + 5 * q^30 + 12 * q^31 - 9 * q^32 + 2 * q^34 - q^36 + 6 * q^37 - 7 * q^38 + 4 * q^39 + 10 * q^40 - 4 * q^41 - q^42 - 8 * q^43 - 2 * q^46 + 10 * q^47 + 3 * q^48 + 2 * q^49 - 4 * q^51 + 7 * q^52 + 4 * q^53 - q^54 - 6 * q^57 + 5 * q^58 - 2 * q^59 + 5 * q^60 + 16 * q^61 + 16 * q^62 + 2 * q^63 + 4 * q^64 - 10 * q^65 - 4 * q^67 - 2 * q^68 + 4 * q^69 - 5 * q^70 + 4 * q^71 - 8 * q^73 - 7 * q^74 - 13 * q^76 - 3 * q^78 + 8 * q^79 + 15 * q^80 + 2 * q^81 + 8 * q^82 + 24 * q^83 + q^84 - 14 * q^86 - 10 * q^87 + 8 * q^89 - 5 * q^90 - 4 * q^91 + 2 * q^92 - 12 * q^93 + 15 * q^94 + 20 * q^95 + 9 * q^96 - 8 * q^97 + q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.618034 1.61803
−0.618034 −1.00000 −1.61803 2.23607 0.618034 1.00000 2.23607 1.00000 −1.38197
1.2 1.61803 −1.00000 0.618034 −2.23607 −1.61803 1.00000 −2.23607 1.00000 −3.61803
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$1$$
$$7$$ $$-1$$
$$11$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2541.2.a.y yes 2
3.b odd 2 1 7623.2.a.y 2
11.b odd 2 1 2541.2.a.q 2
33.d even 2 1 7623.2.a.bn 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2541.2.a.q 2 11.b odd 2 1
2541.2.a.y yes 2 1.a even 1 1 trivial
7623.2.a.y 2 3.b odd 2 1
7623.2.a.bn 2 33.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2541))$$:

 $$T_{2}^{2} - T_{2} - 1$$ T2^2 - T2 - 1 $$T_{5}^{2} - 5$$ T5^2 - 5 $$T_{13}^{2} + 4T_{13} - 1$$ T13^2 + 4*T13 - 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - T - 1$$
$3$ $$(T + 1)^{2}$$
$5$ $$T^{2} - 5$$
$7$ $$(T - 1)^{2}$$
$11$ $$T^{2}$$
$13$ $$T^{2} + 4T - 1$$
$17$ $$(T - 2)^{2}$$
$19$ $$T^{2} - 6T - 11$$
$23$ $$(T + 2)^{2}$$
$29$ $$(T - 5)^{2}$$
$31$ $$T^{2} - 12T + 16$$
$37$ $$T^{2} - 6T - 11$$
$41$ $$T^{2} + 4T - 16$$
$43$ $$T^{2} + 8T - 4$$
$47$ $$T^{2} - 10T + 5$$
$53$ $$T^{2} - 4T - 16$$
$59$ $$T^{2} + 2T - 79$$
$61$ $$T^{2} - 16T + 44$$
$67$ $$T^{2} + 4T - 121$$
$71$ $$T^{2} - 4T - 16$$
$73$ $$T^{2} + 8T - 29$$
$79$ $$T^{2} - 8T - 4$$
$83$ $$T^{2} - 24T + 124$$
$89$ $$T^{2} - 8T - 4$$
$97$ $$T^{2} + 8T - 164$$