Properties

Label 2541.2.a.bj.1.3
Level $2541$
Weight $2$
Character 2541.1
Self dual yes
Analytic conductor $20.290$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2541,2,Mod(1,2541)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2541, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2541.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2541.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2899871536\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.34292\) of defining polynomial
Character \(\chi\) \(=\) 2541.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.34292 q^{2} +1.00000 q^{3} +3.48929 q^{4} -0.146365 q^{5} +2.34292 q^{6} +1.00000 q^{7} +3.48929 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+2.34292 q^{2} +1.00000 q^{3} +3.48929 q^{4} -0.146365 q^{5} +2.34292 q^{6} +1.00000 q^{7} +3.48929 q^{8} +1.00000 q^{9} -0.342923 q^{10} +3.48929 q^{12} +4.34292 q^{13} +2.34292 q^{14} -0.146365 q^{15} +1.19656 q^{16} -0.146365 q^{17} +2.34292 q^{18} -1.83221 q^{19} -0.510711 q^{20} +1.00000 q^{21} +8.81079 q^{23} +3.48929 q^{24} -4.97858 q^{25} +10.1751 q^{26} +1.00000 q^{27} +3.48929 q^{28} +4.34292 q^{29} -0.342923 q^{30} +0.292731 q^{31} -4.17513 q^{32} -0.342923 q^{34} -0.146365 q^{35} +3.48929 q^{36} -3.48929 q^{37} -4.29273 q^{38} +4.34292 q^{39} -0.510711 q^{40} +2.80344 q^{41} +2.34292 q^{42} -7.86098 q^{43} -0.146365 q^{45} +20.6430 q^{46} -0.949808 q^{47} +1.19656 q^{48} +1.00000 q^{49} -11.6644 q^{50} -0.146365 q^{51} +15.1537 q^{52} -4.51071 q^{53} +2.34292 q^{54} +3.48929 q^{56} -1.83221 q^{57} +10.1751 q^{58} +8.02877 q^{59} -0.510711 q^{60} +5.43910 q^{61} +0.685846 q^{62} +1.00000 q^{63} -12.1751 q^{64} -0.635654 q^{65} -7.76060 q^{67} -0.510711 q^{68} +8.81079 q^{69} -0.342923 q^{70} -3.53948 q^{71} +3.48929 q^{72} +16.1825 q^{73} -8.17513 q^{74} -4.97858 q^{75} -6.39312 q^{76} +10.1751 q^{78} +13.0790 q^{79} -0.175135 q^{80} +1.00000 q^{81} +6.56825 q^{82} -12.9070 q^{83} +3.48929 q^{84} +0.0214229 q^{85} -18.4177 q^{86} +4.34292 q^{87} -9.81079 q^{89} -0.342923 q^{90} +4.34292 q^{91} +30.7434 q^{92} +0.292731 q^{93} -2.22533 q^{94} +0.268173 q^{95} -4.17513 q^{96} -17.4219 q^{97} +2.34292 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 3 q^{3} + 3 q^{4} + q^{5} + q^{6} + 3 q^{7} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + q^{2} + 3 q^{3} + 3 q^{4} + q^{5} + q^{6} + 3 q^{7} + 3 q^{8} + 3 q^{9} + 5 q^{10} + 3 q^{12} + 7 q^{13} + q^{14} + q^{15} - q^{16} + q^{17} + q^{18} + 8 q^{19} - 9 q^{20} + 3 q^{21} - 2 q^{23} + 3 q^{24} + 11 q^{26} + 3 q^{27} + 3 q^{28} + 7 q^{29} + 5 q^{30} - 2 q^{31} + 7 q^{32} + 5 q^{34} + q^{35} + 3 q^{36} - 3 q^{37} - 10 q^{38} + 7 q^{39} - 9 q^{40} + 13 q^{41} + q^{42} + 8 q^{43} + q^{45} + 20 q^{46} - 6 q^{47} - q^{48} + 3 q^{49} - 8 q^{50} + q^{51} + 11 q^{52} - 21 q^{53} + q^{54} + 3 q^{56} + 8 q^{57} + 11 q^{58} + 6 q^{59} - 9 q^{60} + 12 q^{61} - 10 q^{62} + 3 q^{63} - 17 q^{64} + 7 q^{65} + 2 q^{67} - 9 q^{68} - 2 q^{69} + 5 q^{70} + 3 q^{72} - 4 q^{73} - 5 q^{74} - 10 q^{76} + 11 q^{78} + 18 q^{79} + 19 q^{80} + 3 q^{81} - 9 q^{82} - 12 q^{83} + 3 q^{84} + 15 q^{85} - 36 q^{86} + 7 q^{87} - q^{89} + 5 q^{90} + 7 q^{91} + 44 q^{92} - 2 q^{93} + 16 q^{94} + 8 q^{95} + 7 q^{96} - 25 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.34292 1.65670 0.828348 0.560213i \(-0.189281\pi\)
0.828348 + 0.560213i \(0.189281\pi\)
\(3\) 1.00000 0.577350
\(4\) 3.48929 1.74464
\(5\) −0.146365 −0.0654566 −0.0327283 0.999464i \(-0.510420\pi\)
−0.0327283 + 0.999464i \(0.510420\pi\)
\(6\) 2.34292 0.956494
\(7\) 1.00000 0.377964
\(8\) 3.48929 1.23365
\(9\) 1.00000 0.333333
\(10\) −0.342923 −0.108442
\(11\) 0 0
\(12\) 3.48929 1.00727
\(13\) 4.34292 1.20451 0.602255 0.798304i \(-0.294269\pi\)
0.602255 + 0.798304i \(0.294269\pi\)
\(14\) 2.34292 0.626173
\(15\) −0.146365 −0.0377914
\(16\) 1.19656 0.299139
\(17\) −0.146365 −0.0354988 −0.0177494 0.999842i \(-0.505650\pi\)
−0.0177494 + 0.999842i \(0.505650\pi\)
\(18\) 2.34292 0.552232
\(19\) −1.83221 −0.420338 −0.210169 0.977665i \(-0.567401\pi\)
−0.210169 + 0.977665i \(0.567401\pi\)
\(20\) −0.510711 −0.114199
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 8.81079 1.83718 0.918588 0.395216i \(-0.129330\pi\)
0.918588 + 0.395216i \(0.129330\pi\)
\(24\) 3.48929 0.712248
\(25\) −4.97858 −0.995715
\(26\) 10.1751 1.99551
\(27\) 1.00000 0.192450
\(28\) 3.48929 0.659414
\(29\) 4.34292 0.806461 0.403230 0.915099i \(-0.367887\pi\)
0.403230 + 0.915099i \(0.367887\pi\)
\(30\) −0.342923 −0.0626089
\(31\) 0.292731 0.0525760 0.0262880 0.999654i \(-0.491631\pi\)
0.0262880 + 0.999654i \(0.491631\pi\)
\(32\) −4.17513 −0.738067
\(33\) 0 0
\(34\) −0.342923 −0.0588108
\(35\) −0.146365 −0.0247403
\(36\) 3.48929 0.581548
\(37\) −3.48929 −0.573636 −0.286818 0.957985i \(-0.592597\pi\)
−0.286818 + 0.957985i \(0.592597\pi\)
\(38\) −4.29273 −0.696373
\(39\) 4.34292 0.695424
\(40\) −0.510711 −0.0807506
\(41\) 2.80344 0.437824 0.218912 0.975745i \(-0.429749\pi\)
0.218912 + 0.975745i \(0.429749\pi\)
\(42\) 2.34292 0.361521
\(43\) −7.86098 −1.19879 −0.599394 0.800454i \(-0.704592\pi\)
−0.599394 + 0.800454i \(0.704592\pi\)
\(44\) 0 0
\(45\) −0.146365 −0.0218189
\(46\) 20.6430 3.04364
\(47\) −0.949808 −0.138544 −0.0692719 0.997598i \(-0.522068\pi\)
−0.0692719 + 0.997598i \(0.522068\pi\)
\(48\) 1.19656 0.172708
\(49\) 1.00000 0.142857
\(50\) −11.6644 −1.64960
\(51\) −0.146365 −0.0204953
\(52\) 15.1537 2.10144
\(53\) −4.51071 −0.619594 −0.309797 0.950803i \(-0.600261\pi\)
−0.309797 + 0.950803i \(0.600261\pi\)
\(54\) 2.34292 0.318831
\(55\) 0 0
\(56\) 3.48929 0.466276
\(57\) −1.83221 −0.242682
\(58\) 10.1751 1.33606
\(59\) 8.02877 1.04526 0.522628 0.852561i \(-0.324952\pi\)
0.522628 + 0.852561i \(0.324952\pi\)
\(60\) −0.510711 −0.0659326
\(61\) 5.43910 0.696405 0.348202 0.937419i \(-0.386792\pi\)
0.348202 + 0.937419i \(0.386792\pi\)
\(62\) 0.685846 0.0871026
\(63\) 1.00000 0.125988
\(64\) −12.1751 −1.52189
\(65\) −0.635654 −0.0788432
\(66\) 0 0
\(67\) −7.76060 −0.948108 −0.474054 0.880496i \(-0.657210\pi\)
−0.474054 + 0.880496i \(0.657210\pi\)
\(68\) −0.510711 −0.0619329
\(69\) 8.81079 1.06069
\(70\) −0.342923 −0.0409871
\(71\) −3.53948 −0.420059 −0.210030 0.977695i \(-0.567356\pi\)
−0.210030 + 0.977695i \(0.567356\pi\)
\(72\) 3.48929 0.411217
\(73\) 16.1825 1.89402 0.947008 0.321210i \(-0.104089\pi\)
0.947008 + 0.321210i \(0.104089\pi\)
\(74\) −8.17513 −0.950340
\(75\) −4.97858 −0.574877
\(76\) −6.39312 −0.733341
\(77\) 0 0
\(78\) 10.1751 1.15211
\(79\) 13.0790 1.47150 0.735749 0.677254i \(-0.236830\pi\)
0.735749 + 0.677254i \(0.236830\pi\)
\(80\) −0.175135 −0.0195807
\(81\) 1.00000 0.111111
\(82\) 6.56825 0.725342
\(83\) −12.9070 −1.41672 −0.708362 0.705850i \(-0.750565\pi\)
−0.708362 + 0.705850i \(0.750565\pi\)
\(84\) 3.48929 0.380713
\(85\) 0.0214229 0.00232364
\(86\) −18.4177 −1.98603
\(87\) 4.34292 0.465610
\(88\) 0 0
\(89\) −9.81079 −1.03994 −0.519971 0.854184i \(-0.674057\pi\)
−0.519971 + 0.854184i \(0.674057\pi\)
\(90\) −0.342923 −0.0361473
\(91\) 4.34292 0.455262
\(92\) 30.7434 3.20522
\(93\) 0.292731 0.0303548
\(94\) −2.22533 −0.229525
\(95\) 0.268173 0.0275139
\(96\) −4.17513 −0.426123
\(97\) −17.4219 −1.76892 −0.884462 0.466612i \(-0.845474\pi\)
−0.884462 + 0.466612i \(0.845474\pi\)
\(98\) 2.34292 0.236671
\(99\) 0 0
\(100\) −17.3717 −1.73717
\(101\) −15.6357 −1.55581 −0.777903 0.628385i \(-0.783716\pi\)
−0.777903 + 0.628385i \(0.783716\pi\)
\(102\) −0.342923 −0.0339544
\(103\) 4.16779 0.410664 0.205332 0.978692i \(-0.434173\pi\)
0.205332 + 0.978692i \(0.434173\pi\)
\(104\) 15.1537 1.48594
\(105\) −0.146365 −0.0142838
\(106\) −10.5682 −1.02648
\(107\) −5.49663 −0.531380 −0.265690 0.964059i \(-0.585600\pi\)
−0.265690 + 0.964059i \(0.585600\pi\)
\(108\) 3.48929 0.335757
\(109\) 5.87819 0.563029 0.281514 0.959557i \(-0.409163\pi\)
0.281514 + 0.959557i \(0.409163\pi\)
\(110\) 0 0
\(111\) −3.48929 −0.331189
\(112\) 1.19656 0.113064
\(113\) −3.88240 −0.365226 −0.182613 0.983185i \(-0.558456\pi\)
−0.182613 + 0.983185i \(0.558456\pi\)
\(114\) −4.29273 −0.402051
\(115\) −1.28960 −0.120255
\(116\) 15.1537 1.40699
\(117\) 4.34292 0.401503
\(118\) 18.8108 1.73167
\(119\) −0.146365 −0.0134173
\(120\) −0.510711 −0.0466214
\(121\) 0 0
\(122\) 12.7434 1.15373
\(123\) 2.80344 0.252778
\(124\) 1.02142 0.0917265
\(125\) 1.46052 0.130633
\(126\) 2.34292 0.208724
\(127\) −17.6686 −1.56784 −0.783919 0.620863i \(-0.786782\pi\)
−0.783919 + 0.620863i \(0.786782\pi\)
\(128\) −20.1751 −1.78325
\(129\) −7.86098 −0.692121
\(130\) −1.48929 −0.130619
\(131\) 18.0288 1.57518 0.787590 0.616199i \(-0.211328\pi\)
0.787590 + 0.616199i \(0.211328\pi\)
\(132\) 0 0
\(133\) −1.83221 −0.158873
\(134\) −18.1825 −1.57073
\(135\) −0.146365 −0.0125971
\(136\) −0.510711 −0.0437931
\(137\) −21.5542 −1.84150 −0.920749 0.390156i \(-0.872421\pi\)
−0.920749 + 0.390156i \(0.872421\pi\)
\(138\) 20.6430 1.75725
\(139\) 13.5395 1.14840 0.574202 0.818714i \(-0.305312\pi\)
0.574202 + 0.818714i \(0.305312\pi\)
\(140\) −0.510711 −0.0431630
\(141\) −0.949808 −0.0799883
\(142\) −8.29273 −0.695911
\(143\) 0 0
\(144\) 1.19656 0.0997131
\(145\) −0.635654 −0.0527882
\(146\) 37.9143 3.13781
\(147\) 1.00000 0.0824786
\(148\) −12.1751 −1.00079
\(149\) 10.3001 0.843815 0.421908 0.906639i \(-0.361361\pi\)
0.421908 + 0.906639i \(0.361361\pi\)
\(150\) −11.6644 −0.952396
\(151\) 1.31836 0.107287 0.0536435 0.998560i \(-0.482917\pi\)
0.0536435 + 0.998560i \(0.482917\pi\)
\(152\) −6.39312 −0.518550
\(153\) −0.146365 −0.0118329
\(154\) 0 0
\(155\) −0.0428457 −0.00344145
\(156\) 15.1537 1.21327
\(157\) 9.85677 0.786656 0.393328 0.919398i \(-0.371324\pi\)
0.393328 + 0.919398i \(0.371324\pi\)
\(158\) 30.6430 2.43783
\(159\) −4.51071 −0.357723
\(160\) 0.611096 0.0483114
\(161\) 8.81079 0.694387
\(162\) 2.34292 0.184077
\(163\) −0.292731 −0.0229285 −0.0114642 0.999934i \(-0.503649\pi\)
−0.0114642 + 0.999934i \(0.503649\pi\)
\(164\) 9.78202 0.763847
\(165\) 0 0
\(166\) −30.2400 −2.34708
\(167\) −15.7360 −1.21769 −0.608846 0.793289i \(-0.708367\pi\)
−0.608846 + 0.793289i \(0.708367\pi\)
\(168\) 3.48929 0.269204
\(169\) 5.86098 0.450845
\(170\) 0.0501921 0.00384956
\(171\) −1.83221 −0.140113
\(172\) −27.4292 −2.09146
\(173\) −17.7360 −1.34845 −0.674223 0.738528i \(-0.735521\pi\)
−0.674223 + 0.738528i \(0.735521\pi\)
\(174\) 10.1751 0.771375
\(175\) −4.97858 −0.376345
\(176\) 0 0
\(177\) 8.02877 0.603479
\(178\) −22.9859 −1.72287
\(179\) −23.2285 −1.73618 −0.868088 0.496410i \(-0.834651\pi\)
−0.868088 + 0.496410i \(0.834651\pi\)
\(180\) −0.510711 −0.0380662
\(181\) 25.1109 1.86648 0.933238 0.359259i \(-0.116970\pi\)
0.933238 + 0.359259i \(0.116970\pi\)
\(182\) 10.1751 0.754231
\(183\) 5.43910 0.402070
\(184\) 30.7434 2.26643
\(185\) 0.510711 0.0375483
\(186\) 0.685846 0.0502887
\(187\) 0 0
\(188\) −3.31415 −0.241710
\(189\) 1.00000 0.0727393
\(190\) 0.628308 0.0455822
\(191\) −17.8898 −1.29446 −0.647228 0.762296i \(-0.724072\pi\)
−0.647228 + 0.762296i \(0.724072\pi\)
\(192\) −12.1751 −0.878665
\(193\) −10.3288 −0.743487 −0.371743 0.928336i \(-0.621240\pi\)
−0.371743 + 0.928336i \(0.621240\pi\)
\(194\) −40.8181 −2.93057
\(195\) −0.635654 −0.0455201
\(196\) 3.48929 0.249235
\(197\) 14.8610 1.05880 0.529401 0.848372i \(-0.322417\pi\)
0.529401 + 0.848372i \(0.322417\pi\)
\(198\) 0 0
\(199\) 0.0674041 0.00477815 0.00238908 0.999997i \(-0.499240\pi\)
0.00238908 + 0.999997i \(0.499240\pi\)
\(200\) −17.3717 −1.22836
\(201\) −7.76060 −0.547390
\(202\) −36.6331 −2.57750
\(203\) 4.34292 0.304813
\(204\) −0.510711 −0.0357570
\(205\) −0.410327 −0.0286585
\(206\) 9.76481 0.680346
\(207\) 8.81079 0.612392
\(208\) 5.19656 0.360316
\(209\) 0 0
\(210\) −0.342923 −0.0236639
\(211\) −13.1323 −0.904064 −0.452032 0.892002i \(-0.649301\pi\)
−0.452032 + 0.892002i \(0.649301\pi\)
\(212\) −15.7392 −1.08097
\(213\) −3.53948 −0.242521
\(214\) −12.8782 −0.880335
\(215\) 1.15058 0.0784687
\(216\) 3.48929 0.237416
\(217\) 0.292731 0.0198719
\(218\) 13.7722 0.932768
\(219\) 16.1825 1.09351
\(220\) 0 0
\(221\) −0.635654 −0.0427587
\(222\) −8.17513 −0.548679
\(223\) 5.37169 0.359715 0.179858 0.983693i \(-0.442436\pi\)
0.179858 + 0.983693i \(0.442436\pi\)
\(224\) −4.17513 −0.278963
\(225\) −4.97858 −0.331905
\(226\) −9.09617 −0.605068
\(227\) −6.85785 −0.455171 −0.227586 0.973758i \(-0.573083\pi\)
−0.227586 + 0.973758i \(0.573083\pi\)
\(228\) −6.39312 −0.423394
\(229\) −8.76060 −0.578917 −0.289458 0.957191i \(-0.593475\pi\)
−0.289458 + 0.957191i \(0.593475\pi\)
\(230\) −3.02142 −0.199227
\(231\) 0 0
\(232\) 15.1537 0.994890
\(233\) 1.36435 0.0893813 0.0446906 0.999001i \(-0.485770\pi\)
0.0446906 + 0.999001i \(0.485770\pi\)
\(234\) 10.1751 0.665169
\(235\) 0.139019 0.00906861
\(236\) 28.0147 1.82360
\(237\) 13.0790 0.849570
\(238\) −0.342923 −0.0222284
\(239\) 4.97858 0.322037 0.161019 0.986951i \(-0.448522\pi\)
0.161019 + 0.986951i \(0.448522\pi\)
\(240\) −0.175135 −0.0113049
\(241\) 14.1678 0.912627 0.456314 0.889819i \(-0.349169\pi\)
0.456314 + 0.889819i \(0.349169\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 18.9786 1.21498
\(245\) −0.146365 −0.00935095
\(246\) 6.56825 0.418776
\(247\) −7.95715 −0.506302
\(248\) 1.02142 0.0648604
\(249\) −12.9070 −0.817945
\(250\) 3.42188 0.216419
\(251\) −2.82908 −0.178570 −0.0892848 0.996006i \(-0.528458\pi\)
−0.0892848 + 0.996006i \(0.528458\pi\)
\(252\) 3.48929 0.219805
\(253\) 0 0
\(254\) −41.3963 −2.59743
\(255\) 0.0214229 0.00134155
\(256\) −22.9185 −1.43241
\(257\) −22.9901 −1.43409 −0.717043 0.697029i \(-0.754505\pi\)
−0.717043 + 0.697029i \(0.754505\pi\)
\(258\) −18.4177 −1.14663
\(259\) −3.48929 −0.216814
\(260\) −2.21798 −0.137553
\(261\) 4.34292 0.268820
\(262\) 42.2400 2.60960
\(263\) 3.63986 0.224444 0.112222 0.993683i \(-0.464203\pi\)
0.112222 + 0.993683i \(0.464203\pi\)
\(264\) 0 0
\(265\) 0.660212 0.0405565
\(266\) −4.29273 −0.263204
\(267\) −9.81079 −0.600411
\(268\) −27.0790 −1.65411
\(269\) −7.54683 −0.460138 −0.230069 0.973174i \(-0.573895\pi\)
−0.230069 + 0.973174i \(0.573895\pi\)
\(270\) −0.342923 −0.0208696
\(271\) 23.6644 1.43751 0.718756 0.695263i \(-0.244712\pi\)
0.718756 + 0.695263i \(0.244712\pi\)
\(272\) −0.175135 −0.0106191
\(273\) 4.34292 0.262846
\(274\) −50.4998 −3.05080
\(275\) 0 0
\(276\) 30.7434 1.85053
\(277\) 31.8929 1.91626 0.958129 0.286337i \(-0.0924378\pi\)
0.958129 + 0.286337i \(0.0924378\pi\)
\(278\) 31.7220 1.90256
\(279\) 0.292731 0.0175253
\(280\) −0.510711 −0.0305208
\(281\) −30.5082 −1.81997 −0.909983 0.414645i \(-0.863906\pi\)
−0.909983 + 0.414645i \(0.863906\pi\)
\(282\) −2.22533 −0.132516
\(283\) 22.6430 1.34599 0.672993 0.739649i \(-0.265008\pi\)
0.672993 + 0.739649i \(0.265008\pi\)
\(284\) −12.3503 −0.732854
\(285\) 0.268173 0.0158852
\(286\) 0 0
\(287\) 2.80344 0.165482
\(288\) −4.17513 −0.246022
\(289\) −16.9786 −0.998740
\(290\) −1.48929 −0.0874540
\(291\) −17.4219 −1.02129
\(292\) 56.4653 3.30438
\(293\) −1.81079 −0.105787 −0.0528937 0.998600i \(-0.516844\pi\)
−0.0528937 + 0.998600i \(0.516844\pi\)
\(294\) 2.34292 0.136642
\(295\) −1.17513 −0.0684190
\(296\) −12.1751 −0.707665
\(297\) 0 0
\(298\) 24.1323 1.39795
\(299\) 38.2646 2.21290
\(300\) −17.3717 −1.00296
\(301\) −7.86098 −0.453099
\(302\) 3.08883 0.177742
\(303\) −15.6357 −0.898245
\(304\) −2.19235 −0.125740
\(305\) −0.796096 −0.0455843
\(306\) −0.342923 −0.0196036
\(307\) 29.8469 1.70345 0.851726 0.523987i \(-0.175556\pi\)
0.851726 + 0.523987i \(0.175556\pi\)
\(308\) 0 0
\(309\) 4.16779 0.237097
\(310\) −0.100384 −0.00570144
\(311\) −5.09304 −0.288800 −0.144400 0.989519i \(-0.546125\pi\)
−0.144400 + 0.989519i \(0.546125\pi\)
\(312\) 15.1537 0.857910
\(313\) −22.0319 −1.24532 −0.622658 0.782494i \(-0.713947\pi\)
−0.622658 + 0.782494i \(0.713947\pi\)
\(314\) 23.0937 1.30325
\(315\) −0.146365 −0.00824676
\(316\) 45.6363 2.56724
\(317\) −7.08883 −0.398148 −0.199074 0.979984i \(-0.563793\pi\)
−0.199074 + 0.979984i \(0.563793\pi\)
\(318\) −10.5682 −0.592638
\(319\) 0 0
\(320\) 1.78202 0.0996179
\(321\) −5.49663 −0.306792
\(322\) 20.6430 1.15039
\(323\) 0.268173 0.0149215
\(324\) 3.48929 0.193849
\(325\) −21.6216 −1.19935
\(326\) −0.685846 −0.0379855
\(327\) 5.87819 0.325065
\(328\) 9.78202 0.540122
\(329\) −0.949808 −0.0523646
\(330\) 0 0
\(331\) −34.6044 −1.90203 −0.951014 0.309148i \(-0.899956\pi\)
−0.951014 + 0.309148i \(0.899956\pi\)
\(332\) −45.0361 −2.47168
\(333\) −3.48929 −0.191212
\(334\) −36.8683 −2.01735
\(335\) 1.13588 0.0620599
\(336\) 1.19656 0.0652776
\(337\) −12.5254 −0.682302 −0.341151 0.940008i \(-0.610817\pi\)
−0.341151 + 0.940008i \(0.610817\pi\)
\(338\) 13.7318 0.746913
\(339\) −3.88240 −0.210863
\(340\) 0.0747505 0.00405392
\(341\) 0 0
\(342\) −4.29273 −0.232124
\(343\) 1.00000 0.0539949
\(344\) −27.4292 −1.47889
\(345\) −1.28960 −0.0694295
\(346\) −41.5542 −2.23397
\(347\) 27.6461 1.48412 0.742061 0.670332i \(-0.233848\pi\)
0.742061 + 0.670332i \(0.233848\pi\)
\(348\) 15.1537 0.812324
\(349\) −11.2969 −0.604711 −0.302356 0.953195i \(-0.597773\pi\)
−0.302356 + 0.953195i \(0.597773\pi\)
\(350\) −11.6644 −0.623490
\(351\) 4.34292 0.231808
\(352\) 0 0
\(353\) 16.8034 0.894357 0.447178 0.894445i \(-0.352429\pi\)
0.447178 + 0.894445i \(0.352429\pi\)
\(354\) 18.8108 0.999782
\(355\) 0.518058 0.0274957
\(356\) −34.2327 −1.81433
\(357\) −0.146365 −0.00774648
\(358\) −54.4225 −2.87632
\(359\) 29.0607 1.53376 0.766882 0.641788i \(-0.221807\pi\)
0.766882 + 0.641788i \(0.221807\pi\)
\(360\) −0.510711 −0.0269169
\(361\) −15.6430 −0.823316
\(362\) 58.8328 3.09218
\(363\) 0 0
\(364\) 15.1537 0.794270
\(365\) −2.36856 −0.123976
\(366\) 12.7434 0.666107
\(367\) 17.6974 0.923797 0.461898 0.886933i \(-0.347168\pi\)
0.461898 + 0.886933i \(0.347168\pi\)
\(368\) 10.5426 0.549572
\(369\) 2.80344 0.145941
\(370\) 1.19656 0.0622061
\(371\) −4.51071 −0.234184
\(372\) 1.02142 0.0529583
\(373\) −12.7820 −0.661828 −0.330914 0.943661i \(-0.607357\pi\)
−0.330914 + 0.943661i \(0.607357\pi\)
\(374\) 0 0
\(375\) 1.46052 0.0754209
\(376\) −3.31415 −0.170914
\(377\) 18.8610 0.971390
\(378\) 2.34292 0.120507
\(379\) −19.6258 −1.00811 −0.504055 0.863672i \(-0.668159\pi\)
−0.504055 + 0.863672i \(0.668159\pi\)
\(380\) 0.935731 0.0480020
\(381\) −17.6686 −0.905192
\(382\) −41.9143 −2.14452
\(383\) 29.5500 1.50993 0.754966 0.655764i \(-0.227653\pi\)
0.754966 + 0.655764i \(0.227653\pi\)
\(384\) −20.1751 −1.02956
\(385\) 0 0
\(386\) −24.1997 −1.23173
\(387\) −7.86098 −0.399596
\(388\) −60.7900 −3.08614
\(389\) −13.0962 −0.664002 −0.332001 0.943279i \(-0.607724\pi\)
−0.332001 + 0.943279i \(0.607724\pi\)
\(390\) −1.48929 −0.0754131
\(391\) −1.28960 −0.0652176
\(392\) 3.48929 0.176236
\(393\) 18.0288 0.909431
\(394\) 34.8181 1.75411
\(395\) −1.91431 −0.0963193
\(396\) 0 0
\(397\) 24.4679 1.22801 0.614003 0.789303i \(-0.289558\pi\)
0.614003 + 0.789303i \(0.289558\pi\)
\(398\) 0.157923 0.00791595
\(399\) −1.83221 −0.0917253
\(400\) −5.95715 −0.297858
\(401\) 24.1751 1.20725 0.603624 0.797269i \(-0.293723\pi\)
0.603624 + 0.797269i \(0.293723\pi\)
\(402\) −18.1825 −0.906860
\(403\) 1.27131 0.0633284
\(404\) −54.5573 −2.71433
\(405\) −0.146365 −0.00727296
\(406\) 10.1751 0.504983
\(407\) 0 0
\(408\) −0.510711 −0.0252840
\(409\) 5.22112 0.258168 0.129084 0.991634i \(-0.458796\pi\)
0.129084 + 0.991634i \(0.458796\pi\)
\(410\) −0.961365 −0.0474784
\(411\) −21.5542 −1.06319
\(412\) 14.5426 0.716463
\(413\) 8.02877 0.395070
\(414\) 20.6430 1.01455
\(415\) 1.88913 0.0927339
\(416\) −18.1323 −0.889009
\(417\) 13.5395 0.663031
\(418\) 0 0
\(419\) −22.6718 −1.10759 −0.553794 0.832654i \(-0.686821\pi\)
−0.553794 + 0.832654i \(0.686821\pi\)
\(420\) −0.510711 −0.0249202
\(421\) −2.41454 −0.117677 −0.0588387 0.998268i \(-0.518740\pi\)
−0.0588387 + 0.998268i \(0.518740\pi\)
\(422\) −30.7679 −1.49776
\(423\) −0.949808 −0.0461812
\(424\) −15.7392 −0.764362
\(425\) 0.728692 0.0353467
\(426\) −8.29273 −0.401784
\(427\) 5.43910 0.263216
\(428\) −19.1793 −0.927069
\(429\) 0 0
\(430\) 2.69571 0.129999
\(431\) −1.35700 −0.0653644 −0.0326822 0.999466i \(-0.510405\pi\)
−0.0326822 + 0.999466i \(0.510405\pi\)
\(432\) 1.19656 0.0575694
\(433\) 20.6503 0.992392 0.496196 0.868210i \(-0.334730\pi\)
0.496196 + 0.868210i \(0.334730\pi\)
\(434\) 0.685846 0.0329217
\(435\) −0.635654 −0.0304773
\(436\) 20.5107 0.982285
\(437\) −16.1432 −0.772235
\(438\) 37.9143 1.81162
\(439\) −20.3074 −0.969220 −0.484610 0.874730i \(-0.661039\pi\)
−0.484610 + 0.874730i \(0.661039\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −1.48929 −0.0708382
\(443\) −9.81752 −0.466444 −0.233222 0.972423i \(-0.574927\pi\)
−0.233222 + 0.972423i \(0.574927\pi\)
\(444\) −12.1751 −0.577806
\(445\) 1.43596 0.0680711
\(446\) 12.5855 0.595939
\(447\) 10.3001 0.487177
\(448\) −12.1751 −0.575221
\(449\) 10.0748 0.475457 0.237728 0.971332i \(-0.423597\pi\)
0.237728 + 0.971332i \(0.423597\pi\)
\(450\) −11.6644 −0.549866
\(451\) 0 0
\(452\) −13.5468 −0.637189
\(453\) 1.31836 0.0619422
\(454\) −16.0674 −0.754081
\(455\) −0.635654 −0.0297999
\(456\) −6.39312 −0.299385
\(457\) 14.6791 0.686660 0.343330 0.939215i \(-0.388445\pi\)
0.343330 + 0.939215i \(0.388445\pi\)
\(458\) −20.5254 −0.959089
\(459\) −0.146365 −0.00683176
\(460\) −4.49977 −0.209803
\(461\) 27.1396 1.26402 0.632009 0.774961i \(-0.282230\pi\)
0.632009 + 0.774961i \(0.282230\pi\)
\(462\) 0 0
\(463\) 23.2369 1.07991 0.539955 0.841694i \(-0.318441\pi\)
0.539955 + 0.841694i \(0.318441\pi\)
\(464\) 5.19656 0.241244
\(465\) −0.0428457 −0.00198692
\(466\) 3.19656 0.148078
\(467\) 23.8568 1.10396 0.551980 0.833857i \(-0.313873\pi\)
0.551980 + 0.833857i \(0.313873\pi\)
\(468\) 15.1537 0.700481
\(469\) −7.76060 −0.358351
\(470\) 0.325711 0.0150239
\(471\) 9.85677 0.454176
\(472\) 28.0147 1.28948
\(473\) 0 0
\(474\) 30.6430 1.40748
\(475\) 9.12181 0.418537
\(476\) −0.510711 −0.0234084
\(477\) −4.51071 −0.206531
\(478\) 11.6644 0.533518
\(479\) −17.2081 −0.786259 −0.393129 0.919483i \(-0.628608\pi\)
−0.393129 + 0.919483i \(0.628608\pi\)
\(480\) 0.611096 0.0278926
\(481\) −15.1537 −0.690950
\(482\) 33.1940 1.51195
\(483\) 8.81079 0.400905
\(484\) 0 0
\(485\) 2.54996 0.115788
\(486\) 2.34292 0.106277
\(487\) −3.16044 −0.143213 −0.0716066 0.997433i \(-0.522813\pi\)
−0.0716066 + 0.997433i \(0.522813\pi\)
\(488\) 18.9786 0.859120
\(489\) −0.292731 −0.0132378
\(490\) −0.342923 −0.0154917
\(491\) 4.22533 0.190686 0.0953432 0.995444i \(-0.469605\pi\)
0.0953432 + 0.995444i \(0.469605\pi\)
\(492\) 9.78202 0.441007
\(493\) −0.635654 −0.0286284
\(494\) −18.6430 −0.838788
\(495\) 0 0
\(496\) 0.350269 0.0157276
\(497\) −3.53948 −0.158767
\(498\) −30.2400 −1.35509
\(499\) 30.5615 1.36812 0.684061 0.729425i \(-0.260212\pi\)
0.684061 + 0.729425i \(0.260212\pi\)
\(500\) 5.09617 0.227908
\(501\) −15.7360 −0.703034
\(502\) −6.62831 −0.295836
\(503\) −0.513847 −0.0229113 −0.0114557 0.999934i \(-0.503647\pi\)
−0.0114557 + 0.999934i \(0.503647\pi\)
\(504\) 3.48929 0.155425
\(505\) 2.28852 0.101838
\(506\) 0 0
\(507\) 5.86098 0.260295
\(508\) −61.6510 −2.73532
\(509\) 24.9217 1.10463 0.552316 0.833635i \(-0.313744\pi\)
0.552316 + 0.833635i \(0.313744\pi\)
\(510\) 0.0501921 0.00222254
\(511\) 16.1825 0.715871
\(512\) −13.3461 −0.589818
\(513\) −1.83221 −0.0808941
\(514\) −53.8641 −2.37584
\(515\) −0.610020 −0.0268807
\(516\) −27.4292 −1.20750
\(517\) 0 0
\(518\) −8.17513 −0.359195
\(519\) −17.7360 −0.778526
\(520\) −2.21798 −0.0972649
\(521\) −31.8855 −1.39693 −0.698465 0.715644i \(-0.746133\pi\)
−0.698465 + 0.715644i \(0.746133\pi\)
\(522\) 10.1751 0.445354
\(523\) 5.34713 0.233814 0.116907 0.993143i \(-0.462702\pi\)
0.116907 + 0.993143i \(0.462702\pi\)
\(524\) 62.9076 2.74813
\(525\) −4.97858 −0.217283
\(526\) 8.52792 0.371835
\(527\) −0.0428457 −0.00186639
\(528\) 0 0
\(529\) 54.6300 2.37522
\(530\) 1.54683 0.0671899
\(531\) 8.02877 0.348419
\(532\) −6.39312 −0.277177
\(533\) 12.1751 0.527364
\(534\) −22.9859 −0.994698
\(535\) 0.804518 0.0347823
\(536\) −27.0790 −1.16963
\(537\) −23.2285 −1.00238
\(538\) −17.6816 −0.762309
\(539\) 0 0
\(540\) −0.510711 −0.0219775
\(541\) 27.8610 1.19784 0.598919 0.800810i \(-0.295597\pi\)
0.598919 + 0.800810i \(0.295597\pi\)
\(542\) 55.4439 2.38152
\(543\) 25.1109 1.07761
\(544\) 0.611096 0.0262005
\(545\) −0.860365 −0.0368540
\(546\) 10.1751 0.435456
\(547\) −30.7005 −1.31266 −0.656330 0.754474i \(-0.727892\pi\)
−0.656330 + 0.754474i \(0.727892\pi\)
\(548\) −75.2087 −3.21276
\(549\) 5.43910 0.232135
\(550\) 0 0
\(551\) −7.95715 −0.338986
\(552\) 30.7434 1.30853
\(553\) 13.0790 0.556174
\(554\) 74.7226 3.17466
\(555\) 0.510711 0.0216785
\(556\) 47.2432 2.00356
\(557\) 16.7434 0.709440 0.354720 0.934973i \(-0.384576\pi\)
0.354720 + 0.934973i \(0.384576\pi\)
\(558\) 0.685846 0.0290342
\(559\) −34.1396 −1.44395
\(560\) −0.175135 −0.00740079
\(561\) 0 0
\(562\) −71.4783 −3.01513
\(563\) −27.6932 −1.16713 −0.583564 0.812067i \(-0.698342\pi\)
−0.583564 + 0.812067i \(0.698342\pi\)
\(564\) −3.31415 −0.139551
\(565\) 0.568250 0.0239065
\(566\) 53.0508 2.22989
\(567\) 1.00000 0.0419961
\(568\) −12.3503 −0.518206
\(569\) −11.6827 −0.489765 −0.244882 0.969553i \(-0.578749\pi\)
−0.244882 + 0.969553i \(0.578749\pi\)
\(570\) 0.628308 0.0263169
\(571\) −24.1151 −1.00918 −0.504592 0.863358i \(-0.668357\pi\)
−0.504592 + 0.863358i \(0.668357\pi\)
\(572\) 0 0
\(573\) −17.8898 −0.747355
\(574\) 6.56825 0.274153
\(575\) −43.8652 −1.82930
\(576\) −12.1751 −0.507297
\(577\) 44.2572 1.84245 0.921226 0.389027i \(-0.127189\pi\)
0.921226 + 0.389027i \(0.127189\pi\)
\(578\) −39.7795 −1.65461
\(579\) −10.3288 −0.429252
\(580\) −2.21798 −0.0920966
\(581\) −12.9070 −0.535471
\(582\) −40.8181 −1.69197
\(583\) 0 0
\(584\) 56.4653 2.33655
\(585\) −0.635654 −0.0262811
\(586\) −4.24254 −0.175258
\(587\) 8.42188 0.347608 0.173804 0.984780i \(-0.444394\pi\)
0.173804 + 0.984780i \(0.444394\pi\)
\(588\) 3.48929 0.143896
\(589\) −0.536345 −0.0220997
\(590\) −2.75325 −0.113350
\(591\) 14.8610 0.611299
\(592\) −4.17513 −0.171597
\(593\) 1.94560 0.0798961 0.0399480 0.999202i \(-0.487281\pi\)
0.0399480 + 0.999202i \(0.487281\pi\)
\(594\) 0 0
\(595\) 0.0214229 0.000878251 0
\(596\) 35.9399 1.47216
\(597\) 0.0674041 0.00275867
\(598\) 89.6510 3.66610
\(599\) 31.0361 1.26810 0.634051 0.773292i \(-0.281391\pi\)
0.634051 + 0.773292i \(0.281391\pi\)
\(600\) −17.3717 −0.709196
\(601\) −5.80031 −0.236599 −0.118300 0.992978i \(-0.537744\pi\)
−0.118300 + 0.992978i \(0.537744\pi\)
\(602\) −18.4177 −0.750648
\(603\) −7.76060 −0.316036
\(604\) 4.60015 0.187178
\(605\) 0 0
\(606\) −36.6331 −1.48812
\(607\) 2.57560 0.104540 0.0522701 0.998633i \(-0.483354\pi\)
0.0522701 + 0.998633i \(0.483354\pi\)
\(608\) 7.64973 0.310238
\(609\) 4.34292 0.175984
\(610\) −1.86519 −0.0755194
\(611\) −4.12494 −0.166877
\(612\) −0.510711 −0.0206443
\(613\) 15.8353 0.639584 0.319792 0.947488i \(-0.396387\pi\)
0.319792 + 0.947488i \(0.396387\pi\)
\(614\) 69.9290 2.82210
\(615\) −0.410327 −0.0165460
\(616\) 0 0
\(617\) −1.72448 −0.0694250 −0.0347125 0.999397i \(-0.511052\pi\)
−0.0347125 + 0.999397i \(0.511052\pi\)
\(618\) 9.76481 0.392798
\(619\) −17.3288 −0.696505 −0.348253 0.937401i \(-0.613225\pi\)
−0.348253 + 0.937401i \(0.613225\pi\)
\(620\) −0.149501 −0.00600411
\(621\) 8.81079 0.353565
\(622\) −11.9326 −0.478454
\(623\) −9.81079 −0.393061
\(624\) 5.19656 0.208029
\(625\) 24.6791 0.987165
\(626\) −51.6191 −2.06311
\(627\) 0 0
\(628\) 34.3931 1.37243
\(629\) 0.510711 0.0203634
\(630\) −0.342923 −0.0136624
\(631\) 6.54683 0.260625 0.130313 0.991473i \(-0.458402\pi\)
0.130313 + 0.991473i \(0.458402\pi\)
\(632\) 45.6363 1.81531
\(633\) −13.1323 −0.521962
\(634\) −16.6086 −0.659611
\(635\) 2.58608 0.102625
\(636\) −15.7392 −0.624099
\(637\) 4.34292 0.172073
\(638\) 0 0
\(639\) −3.53948 −0.140020
\(640\) 2.95294 0.116725
\(641\) 16.0930 0.635637 0.317818 0.948152i \(-0.397050\pi\)
0.317818 + 0.948152i \(0.397050\pi\)
\(642\) −12.8782 −0.508262
\(643\) −3.21377 −0.126739 −0.0633694 0.997990i \(-0.520185\pi\)
−0.0633694 + 0.997990i \(0.520185\pi\)
\(644\) 30.7434 1.21146
\(645\) 1.15058 0.0453039
\(646\) 0.628308 0.0247204
\(647\) −37.8083 −1.48640 −0.743198 0.669071i \(-0.766692\pi\)
−0.743198 + 0.669071i \(0.766692\pi\)
\(648\) 3.48929 0.137072
\(649\) 0 0
\(650\) −50.6577 −1.98696
\(651\) 0.292731 0.0114730
\(652\) −1.02142 −0.0400020
\(653\) −13.9754 −0.546901 −0.273451 0.961886i \(-0.588165\pi\)
−0.273451 + 0.961886i \(0.588165\pi\)
\(654\) 13.7722 0.538534
\(655\) −2.63879 −0.103106
\(656\) 3.35448 0.130970
\(657\) 16.1825 0.631339
\(658\) −2.22533 −0.0867523
\(659\) 8.31729 0.323996 0.161998 0.986791i \(-0.448206\pi\)
0.161998 + 0.986791i \(0.448206\pi\)
\(660\) 0 0
\(661\) −38.2474 −1.48765 −0.743825 0.668374i \(-0.766990\pi\)
−0.743825 + 0.668374i \(0.766990\pi\)
\(662\) −81.0754 −3.15108
\(663\) −0.635654 −0.0246868
\(664\) −45.0361 −1.74774
\(665\) 0.268173 0.0103993
\(666\) −8.17513 −0.316780
\(667\) 38.2646 1.48161
\(668\) −54.9076 −2.12444
\(669\) 5.37169 0.207682
\(670\) 2.66129 0.102815
\(671\) 0 0
\(672\) −4.17513 −0.161059
\(673\) −7.86098 −0.303019 −0.151509 0.988456i \(-0.548413\pi\)
−0.151509 + 0.988456i \(0.548413\pi\)
\(674\) −29.3461 −1.13037
\(675\) −4.97858 −0.191626
\(676\) 20.4507 0.786564
\(677\) −31.9603 −1.22833 −0.614167 0.789176i \(-0.710508\pi\)
−0.614167 + 0.789176i \(0.710508\pi\)
\(678\) −9.09617 −0.349336
\(679\) −17.4219 −0.668591
\(680\) 0.0747505 0.00286655
\(681\) −6.85785 −0.262793
\(682\) 0 0
\(683\) 35.1856 1.34634 0.673170 0.739488i \(-0.264932\pi\)
0.673170 + 0.739488i \(0.264932\pi\)
\(684\) −6.39312 −0.244447
\(685\) 3.15479 0.120538
\(686\) 2.34292 0.0894532
\(687\) −8.76060 −0.334238
\(688\) −9.40612 −0.358605
\(689\) −19.5897 −0.746307
\(690\) −3.02142 −0.115024
\(691\) 2.05754 0.0782725 0.0391362 0.999234i \(-0.487539\pi\)
0.0391362 + 0.999234i \(0.487539\pi\)
\(692\) −61.8862 −2.35256
\(693\) 0 0
\(694\) 64.7728 2.45874
\(695\) −1.98171 −0.0751706
\(696\) 15.1537 0.574400
\(697\) −0.410327 −0.0155423
\(698\) −26.4679 −1.00182
\(699\) 1.36435 0.0516043
\(700\) −17.3717 −0.656588
\(701\) −11.1207 −0.420024 −0.210012 0.977699i \(-0.567350\pi\)
−0.210012 + 0.977699i \(0.567350\pi\)
\(702\) 10.1751 0.384036
\(703\) 6.39312 0.241121
\(704\) 0 0
\(705\) 0.139019 0.00523576
\(706\) 39.3692 1.48168
\(707\) −15.6357 −0.588039
\(708\) 28.0147 1.05286
\(709\) 26.6901 1.00237 0.501183 0.865341i \(-0.332898\pi\)
0.501183 + 0.865341i \(0.332898\pi\)
\(710\) 1.21377 0.0455520
\(711\) 13.0790 0.490499
\(712\) −34.2327 −1.28292
\(713\) 2.57919 0.0965915
\(714\) −0.342923 −0.0128336
\(715\) 0 0
\(716\) −81.0508 −3.02901
\(717\) 4.97858 0.185928
\(718\) 68.0869 2.54098
\(719\) 19.8996 0.742130 0.371065 0.928607i \(-0.378993\pi\)
0.371065 + 0.928607i \(0.378993\pi\)
\(720\) −0.175135 −0.00652689
\(721\) 4.16779 0.155217
\(722\) −36.6503 −1.36398
\(723\) 14.1678 0.526906
\(724\) 87.6191 3.25634
\(725\) −21.6216 −0.803005
\(726\) 0 0
\(727\) 17.3618 0.643915 0.321957 0.946754i \(-0.395659\pi\)
0.321957 + 0.946754i \(0.395659\pi\)
\(728\) 15.1537 0.561634
\(729\) 1.00000 0.0370370
\(730\) −5.54935 −0.205391
\(731\) 1.15058 0.0425556
\(732\) 18.9786 0.701468
\(733\) 33.3790 1.23288 0.616441 0.787401i \(-0.288574\pi\)
0.616441 + 0.787401i \(0.288574\pi\)
\(734\) 41.4637 1.53045
\(735\) −0.146365 −0.00539877
\(736\) −36.7862 −1.35596
\(737\) 0 0
\(738\) 6.56825 0.241781
\(739\) 15.2369 0.560498 0.280249 0.959927i \(-0.409583\pi\)
0.280249 + 0.959927i \(0.409583\pi\)
\(740\) 1.78202 0.0655083
\(741\) −7.95715 −0.292313
\(742\) −10.5682 −0.387973
\(743\) −23.3387 −0.856214 −0.428107 0.903728i \(-0.640819\pi\)
−0.428107 + 0.903728i \(0.640819\pi\)
\(744\) 1.02142 0.0374472
\(745\) −1.50758 −0.0552333
\(746\) −29.9473 −1.09645
\(747\) −12.9070 −0.472241
\(748\) 0 0
\(749\) −5.49663 −0.200843
\(750\) 3.42188 0.124950
\(751\) 29.6174 1.08075 0.540377 0.841423i \(-0.318282\pi\)
0.540377 + 0.841423i \(0.318282\pi\)
\(752\) −1.13650 −0.0414439
\(753\) −2.82908 −0.103097
\(754\) 44.1898 1.60930
\(755\) −0.192963 −0.00702265
\(756\) 3.48929 0.126904
\(757\) −25.4360 −0.924486 −0.462243 0.886753i \(-0.652955\pi\)
−0.462243 + 0.886753i \(0.652955\pi\)
\(758\) −45.9817 −1.67013
\(759\) 0 0
\(760\) 0.935731 0.0339425
\(761\) 44.9473 1.62934 0.814669 0.579926i \(-0.196919\pi\)
0.814669 + 0.579926i \(0.196919\pi\)
\(762\) −41.3963 −1.49963
\(763\) 5.87819 0.212805
\(764\) −62.4225 −2.25837
\(765\) 0.0214229 0.000774545 0
\(766\) 69.2333 2.50150
\(767\) 34.8683 1.25902
\(768\) −22.9185 −0.827001
\(769\) −32.6749 −1.17829 −0.589144 0.808028i \(-0.700535\pi\)
−0.589144 + 0.808028i \(0.700535\pi\)
\(770\) 0 0
\(771\) −22.9901 −0.827969
\(772\) −36.0403 −1.29712
\(773\) −49.6222 −1.78479 −0.892393 0.451259i \(-0.850975\pi\)
−0.892393 + 0.451259i \(0.850975\pi\)
\(774\) −18.4177 −0.662010
\(775\) −1.45738 −0.0523508
\(776\) −60.7900 −2.18223
\(777\) −3.48929 −0.125178
\(778\) −30.6833 −1.10005
\(779\) −5.13650 −0.184034
\(780\) −2.21798 −0.0794164
\(781\) 0 0
\(782\) −3.02142 −0.108046
\(783\) 4.34292 0.155203
\(784\) 1.19656 0.0427342
\(785\) −1.44269 −0.0514918
\(786\) 42.2400 1.50665
\(787\) 40.2583 1.43505 0.717527 0.696531i \(-0.245274\pi\)
0.717527 + 0.696531i \(0.245274\pi\)
\(788\) 51.8543 1.84723
\(789\) 3.63986 0.129583
\(790\) −4.48508 −0.159572
\(791\) −3.88240 −0.138042
\(792\) 0 0
\(793\) 23.6216 0.838827
\(794\) 57.3263 2.03444
\(795\) 0.660212 0.0234153
\(796\) 0.235192 0.00833618
\(797\) 17.4862 0.619391 0.309696 0.950836i \(-0.399773\pi\)
0.309696 + 0.950836i \(0.399773\pi\)
\(798\) −4.29273 −0.151961
\(799\) 0.139019 0.00491814
\(800\) 20.7862 0.734904
\(801\) −9.81079 −0.346647
\(802\) 56.6405 2.00004
\(803\) 0 0
\(804\) −27.0790 −0.955001
\(805\) −1.28960 −0.0454523
\(806\) 2.97858 0.104916
\(807\) −7.54683 −0.265661
\(808\) −54.5573 −1.91932
\(809\) 25.9473 0.912258 0.456129 0.889914i \(-0.349236\pi\)
0.456129 + 0.889914i \(0.349236\pi\)
\(810\) −0.342923 −0.0120491
\(811\) −18.2829 −0.641998 −0.320999 0.947079i \(-0.604019\pi\)
−0.320999 + 0.947079i \(0.604019\pi\)
\(812\) 15.1537 0.531791
\(813\) 23.6644 0.829948
\(814\) 0 0
\(815\) 0.0428457 0.00150082
\(816\) −0.175135 −0.00613094
\(817\) 14.4030 0.503897
\(818\) 12.2327 0.427705
\(819\) 4.34292 0.151754
\(820\) −1.43175 −0.0499989
\(821\) −25.3288 −0.883983 −0.441991 0.897019i \(-0.645728\pi\)
−0.441991 + 0.897019i \(0.645728\pi\)
\(822\) −50.4998 −1.76138
\(823\) 39.2713 1.36891 0.684456 0.729054i \(-0.260040\pi\)
0.684456 + 0.729054i \(0.260040\pi\)
\(824\) 14.5426 0.506616
\(825\) 0 0
\(826\) 18.8108 0.654511
\(827\) −27.4047 −0.952954 −0.476477 0.879187i \(-0.658086\pi\)
−0.476477 + 0.879187i \(0.658086\pi\)
\(828\) 30.7434 1.06841
\(829\) 38.5155 1.33770 0.668850 0.743397i \(-0.266787\pi\)
0.668850 + 0.743397i \(0.266787\pi\)
\(830\) 4.42610 0.153632
\(831\) 31.8929 1.10635
\(832\) −52.8757 −1.83313
\(833\) −0.146365 −0.00507126
\(834\) 31.7220 1.09844
\(835\) 2.30321 0.0797060
\(836\) 0 0
\(837\) 0.292731 0.0101183
\(838\) −53.1182 −1.83494
\(839\) −17.7276 −0.612025 −0.306013 0.952027i \(-0.598995\pi\)
−0.306013 + 0.952027i \(0.598995\pi\)
\(840\) −0.510711 −0.0176212
\(841\) −10.1390 −0.349621
\(842\) −5.65708 −0.194956
\(843\) −30.5082 −1.05076
\(844\) −45.8223 −1.57727
\(845\) −0.857845 −0.0295108
\(846\) −2.22533 −0.0765083
\(847\) 0 0
\(848\) −5.39733 −0.185345
\(849\) 22.6430 0.777106
\(850\) 1.70727 0.0585588
\(851\) −30.7434 −1.05387
\(852\) −12.3503 −0.423113
\(853\) 15.3032 0.523972 0.261986 0.965072i \(-0.415623\pi\)
0.261986 + 0.965072i \(0.415623\pi\)
\(854\) 12.7434 0.436070
\(855\) 0.268173 0.00917131
\(856\) −19.1793 −0.655537
\(857\) 10.7722 0.367970 0.183985 0.982929i \(-0.441100\pi\)
0.183985 + 0.982929i \(0.441100\pi\)
\(858\) 0 0
\(859\) 47.2516 1.61220 0.806101 0.591777i \(-0.201574\pi\)
0.806101 + 0.591777i \(0.201574\pi\)
\(860\) 4.01469 0.136900
\(861\) 2.80344 0.0955411
\(862\) −3.17935 −0.108289
\(863\) −34.0294 −1.15837 −0.579187 0.815195i \(-0.696630\pi\)
−0.579187 + 0.815195i \(0.696630\pi\)
\(864\) −4.17513 −0.142041
\(865\) 2.59594 0.0882647
\(866\) 48.3822 1.64409
\(867\) −16.9786 −0.576623
\(868\) 1.02142 0.0346694
\(869\) 0 0
\(870\) −1.48929 −0.0504916
\(871\) −33.7037 −1.14201
\(872\) 20.5107 0.694580
\(873\) −17.4219 −0.589641
\(874\) −37.8223 −1.27936
\(875\) 1.46052 0.0493746
\(876\) 56.4653 1.90779
\(877\) −3.25410 −0.109883 −0.0549415 0.998490i \(-0.517497\pi\)
−0.0549415 + 0.998490i \(0.517497\pi\)
\(878\) −47.5787 −1.60570
\(879\) −1.81079 −0.0610764
\(880\) 0 0
\(881\) −13.3545 −0.449924 −0.224962 0.974368i \(-0.572226\pi\)
−0.224962 + 0.974368i \(0.572226\pi\)
\(882\) 2.34292 0.0788903
\(883\) −25.4741 −0.857273 −0.428636 0.903477i \(-0.641006\pi\)
−0.428636 + 0.903477i \(0.641006\pi\)
\(884\) −2.21798 −0.0745988
\(885\) −1.17513 −0.0395017
\(886\) −23.0017 −0.772757
\(887\) 21.6932 0.728386 0.364193 0.931323i \(-0.381345\pi\)
0.364193 + 0.931323i \(0.381345\pi\)
\(888\) −12.1751 −0.408571
\(889\) −17.6686 −0.592587
\(890\) 3.36435 0.112773
\(891\) 0 0
\(892\) 18.7434 0.627575
\(893\) 1.74025 0.0582352
\(894\) 24.1323 0.807104
\(895\) 3.39985 0.113644
\(896\) −20.1751 −0.674004
\(897\) 38.2646 1.27762
\(898\) 23.6044 0.787688
\(899\) 1.27131 0.0424005
\(900\) −17.3717 −0.579056
\(901\) 0.660212 0.0219949
\(902\) 0 0
\(903\) −7.86098 −0.261597
\(904\) −13.5468 −0.450561
\(905\) −3.67536 −0.122173
\(906\) 3.08883 0.102619
\(907\) 1.21377 0.0403026 0.0201513 0.999797i \(-0.493585\pi\)
0.0201513 + 0.999797i \(0.493585\pi\)
\(908\) −23.9290 −0.794112
\(909\) −15.6357 −0.518602
\(910\) −1.48929 −0.0493694
\(911\) 57.0080 1.88876 0.944379 0.328859i \(-0.106664\pi\)
0.944379 + 0.328859i \(0.106664\pi\)
\(912\) −2.19235 −0.0725959
\(913\) 0 0
\(914\) 34.3920 1.13759
\(915\) −0.796096 −0.0263181
\(916\) −30.5682 −1.01000
\(917\) 18.0288 0.595362
\(918\) −0.342923 −0.0113181
\(919\) 6.45065 0.212787 0.106394 0.994324i \(-0.466070\pi\)
0.106394 + 0.994324i \(0.466070\pi\)
\(920\) −4.49977 −0.148353
\(921\) 29.8469 0.983489
\(922\) 63.5861 2.09410
\(923\) −15.3717 −0.505965
\(924\) 0 0
\(925\) 17.3717 0.571178
\(926\) 54.4422 1.78908
\(927\) 4.16779 0.136888
\(928\) −18.1323 −0.595222
\(929\) 2.74652 0.0901104 0.0450552 0.998984i \(-0.485654\pi\)
0.0450552 + 0.998984i \(0.485654\pi\)
\(930\) −0.100384 −0.00329173
\(931\) −1.83221 −0.0600483
\(932\) 4.76060 0.155939
\(933\) −5.09304 −0.166739
\(934\) 55.8946 1.82893
\(935\) 0 0
\(936\) 15.1537 0.495315
\(937\) 25.8923 0.845864 0.422932 0.906162i \(-0.361001\pi\)
0.422932 + 0.906162i \(0.361001\pi\)
\(938\) −18.1825 −0.593679
\(939\) −22.0319 −0.718984
\(940\) 0.485078 0.0158215
\(941\) −9.01890 −0.294008 −0.147004 0.989136i \(-0.546963\pi\)
−0.147004 + 0.989136i \(0.546963\pi\)
\(942\) 23.0937 0.752432
\(943\) 24.7005 0.804360
\(944\) 9.60688 0.312677
\(945\) −0.146365 −0.00476127
\(946\) 0 0
\(947\) 39.2003 1.27384 0.636919 0.770930i \(-0.280208\pi\)
0.636919 + 0.770930i \(0.280208\pi\)
\(948\) 45.6363 1.48220
\(949\) 70.2793 2.28136
\(950\) 21.3717 0.693389
\(951\) −7.08883 −0.229871
\(952\) −0.510711 −0.0165523
\(953\) −55.4464 −1.79609 −0.898043 0.439907i \(-0.855011\pi\)
−0.898043 + 0.439907i \(0.855011\pi\)
\(954\) −10.5682 −0.342160
\(955\) 2.61844 0.0847308
\(956\) 17.3717 0.561841
\(957\) 0 0
\(958\) −40.3173 −1.30259
\(959\) −21.5542 −0.696021
\(960\) 1.78202 0.0575144
\(961\) −30.9143 −0.997236
\(962\) −35.5040 −1.14469
\(963\) −5.49663 −0.177127
\(964\) 49.4355 1.59221
\(965\) 1.51179 0.0486661
\(966\) 20.6430 0.664178
\(967\) 23.9467 0.770073 0.385037 0.922901i \(-0.374189\pi\)
0.385037 + 0.922901i \(0.374189\pi\)
\(968\) 0 0
\(969\) 0.268173 0.00861494
\(970\) 5.97437 0.191825
\(971\) −6.42188 −0.206088 −0.103044 0.994677i \(-0.532858\pi\)
−0.103044 + 0.994677i \(0.532858\pi\)
\(972\) 3.48929 0.111919
\(973\) 13.5395 0.434056
\(974\) −7.40467 −0.237261
\(975\) −21.6216 −0.692445
\(976\) 6.50819 0.208322
\(977\) 38.5584 1.23359 0.616796 0.787123i \(-0.288430\pi\)
0.616796 + 0.787123i \(0.288430\pi\)
\(978\) −0.685846 −0.0219309
\(979\) 0 0
\(980\) −0.510711 −0.0163141
\(981\) 5.87819 0.187676
\(982\) 9.89962 0.315909
\(983\) 21.6069 0.689153 0.344576 0.938758i \(-0.388023\pi\)
0.344576 + 0.938758i \(0.388023\pi\)
\(984\) 9.78202 0.311839
\(985\) −2.17513 −0.0693056
\(986\) −1.48929 −0.0474286
\(987\) −0.949808 −0.0302327
\(988\) −27.7648 −0.883316
\(989\) −69.2614 −2.20239
\(990\) 0 0
\(991\) 34.4507 1.09436 0.547181 0.837015i \(-0.315701\pi\)
0.547181 + 0.837015i \(0.315701\pi\)
\(992\) −1.22219 −0.0388046
\(993\) −34.6044 −1.09814
\(994\) −8.29273 −0.263029
\(995\) −0.00986564 −0.000312762 0
\(996\) −45.0361 −1.42702
\(997\) −7.76733 −0.245994 −0.122997 0.992407i \(-0.539251\pi\)
−0.122997 + 0.992407i \(0.539251\pi\)
\(998\) 71.6033 2.26656
\(999\) −3.48929 −0.110396
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2541.2.a.bj.1.3 yes 3
3.2 odd 2 7623.2.a.ca.1.1 3
11.10 odd 2 2541.2.a.bh.1.1 3
33.32 even 2 7623.2.a.cc.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2541.2.a.bh.1.1 3 11.10 odd 2
2541.2.a.bj.1.3 yes 3 1.1 even 1 trivial
7623.2.a.ca.1.1 3 3.2 odd 2
7623.2.a.cc.1.3 3 33.32 even 2