Properties

Label 2541.2.a.bi
Level $2541$
Weight $2$
Character orbit 2541.a
Self dual yes
Analytic conductor $20.290$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2541,2,Mod(1,2541)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2541, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2541.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2541.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,6,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2899871536\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 2) q^{4} + ( - \beta_{2} + \beta_1) q^{5} + \beta_1 q^{6} + q^{7} + ( - 2 \beta_1 - 1) q^{8} + q^{9} + ( - \beta_{2} + 2 \beta_1 - 3) q^{10} + ( - \beta_{2} - 2) q^{12}+ \cdots - \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 6 q^{4} + 3 q^{7} - 3 q^{8} + 3 q^{9} - 9 q^{10} - 6 q^{12} + 12 q^{16} - 12 q^{19} - 21 q^{20} - 3 q^{21} - 6 q^{23} + 3 q^{24} + 15 q^{25} + 9 q^{26} - 3 q^{27} + 6 q^{28} - 12 q^{29}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.52892
−0.167449
−2.36147
−2.52892 −1.00000 4.39543 0.133492 2.52892 1.00000 −6.05784 1.00000 −0.337590
1.2 0.167449 −1.00000 −1.97196 3.80451 −0.167449 1.00000 −0.665102 1.00000 0.637062
1.3 2.36147 −1.00000 3.57653 −3.93800 −2.36147 1.00000 3.72294 1.00000 −9.29947
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2541.2.a.bi 3
3.b odd 2 1 7623.2.a.cb 3
11.b odd 2 1 231.2.a.d 3
33.d even 2 1 693.2.a.m 3
44.c even 2 1 3696.2.a.bp 3
55.d odd 2 1 5775.2.a.bw 3
77.b even 2 1 1617.2.a.s 3
231.h odd 2 1 4851.2.a.bp 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.2.a.d 3 11.b odd 2 1
693.2.a.m 3 33.d even 2 1
1617.2.a.s 3 77.b even 2 1
2541.2.a.bi 3 1.a even 1 1 trivial
3696.2.a.bp 3 44.c even 2 1
4851.2.a.bp 3 231.h odd 2 1
5775.2.a.bw 3 55.d odd 2 1
7623.2.a.cb 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2541))\):

\( T_{2}^{3} - 6T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{3} - 15T_{5} + 2 \) Copy content Toggle raw display
\( T_{13}^{3} - 15T_{13} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 6T + 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 15T + 2 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 15T - 2 \) Copy content Toggle raw display
$17$ \( T^{3} - 24T - 8 \) Copy content Toggle raw display
$19$ \( T^{3} + 12 T^{2} + \cdots - 36 \) Copy content Toggle raw display
$23$ \( T^{3} + 6 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$29$ \( T^{3} + 12 T^{2} + \cdots + 6 \) Copy content Toggle raw display
$31$ \( T^{3} + 6 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$37$ \( T^{3} - 75T - 246 \) Copy content Toggle raw display
$41$ \( T^{3} + 6 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$43$ \( T^{3} + 6 T^{2} + \cdots - 48 \) Copy content Toggle raw display
$47$ \( T^{3} + 24 T^{2} + \cdots + 328 \) Copy content Toggle raw display
$53$ \( T^{3} - 48T - 120 \) Copy content Toggle raw display
$59$ \( T^{3} + 24 T^{2} + \cdots - 716 \) Copy content Toggle raw display
$61$ \( (T + 6)^{3} \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$71$ \( T^{3} - 12 T^{2} + \cdots + 384 \) Copy content Toggle raw display
$73$ \( T^{3} + 24 T^{2} + \cdots + 394 \) Copy content Toggle raw display
$79$ \( T^{3} + 12 T^{2} + \cdots - 256 \) Copy content Toggle raw display
$83$ \( T^{3} - 18 T^{2} + \cdots - 48 \) Copy content Toggle raw display
$89$ \( T^{3} - 18 T^{2} + \cdots + 1896 \) Copy content Toggle raw display
$97$ \( T^{3} - 24 T^{2} + \cdots - 8 \) Copy content Toggle raw display
show more
show less