Properties

Label 2541.2.a.bd
Level 2541
Weight 2
Character orbit 2541.a
Self dual yes
Analytic conductor 20.290
Analytic rank 0
Dimension 2
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2541 = 3 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2541.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(20.2899871536\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} - q^{4} + ( 2 - 3 \beta ) q^{5} - q^{6} - q^{7} -3 q^{8} + q^{9} +O(q^{10})\) \( q + q^{2} - q^{3} - q^{4} + ( 2 - 3 \beta ) q^{5} - q^{6} - q^{7} -3 q^{8} + q^{9} + ( 2 - 3 \beta ) q^{10} + q^{12} + ( -2 + 2 \beta ) q^{13} - q^{14} + ( -2 + 3 \beta ) q^{15} - q^{16} + ( -3 - 3 \beta ) q^{17} + q^{18} + ( -1 - \beta ) q^{19} + ( -2 + 3 \beta ) q^{20} + q^{21} + ( 5 - 5 \beta ) q^{23} + 3 q^{24} + ( 8 - 3 \beta ) q^{25} + ( -2 + 2 \beta ) q^{26} - q^{27} + q^{28} + 2 q^{29} + ( -2 + 3 \beta ) q^{30} + ( 4 - 7 \beta ) q^{31} + 5 q^{32} + ( -3 - 3 \beta ) q^{34} + ( -2 + 3 \beta ) q^{35} - q^{36} + ( -4 - 5 \beta ) q^{37} + ( -1 - \beta ) q^{38} + ( 2 - 2 \beta ) q^{39} + ( -6 + 9 \beta ) q^{40} + ( 6 + 3 \beta ) q^{41} + q^{42} + ( -2 + 2 \beta ) q^{43} + ( 2 - 3 \beta ) q^{45} + ( 5 - 5 \beta ) q^{46} + 2 q^{47} + q^{48} + q^{49} + ( 8 - 3 \beta ) q^{50} + ( 3 + 3 \beta ) q^{51} + ( 2 - 2 \beta ) q^{52} + ( -4 + 10 \beta ) q^{53} - q^{54} + 3 q^{56} + ( 1 + \beta ) q^{57} + 2 q^{58} + ( 10 - 2 \beta ) q^{59} + ( 2 - 3 \beta ) q^{60} + ( 4 - 8 \beta ) q^{61} + ( 4 - 7 \beta ) q^{62} - q^{63} + 7 q^{64} + ( -10 + 4 \beta ) q^{65} + 8 q^{67} + ( 3 + 3 \beta ) q^{68} + ( -5 + 5 \beta ) q^{69} + ( -2 + 3 \beta ) q^{70} + ( -4 + 8 \beta ) q^{71} -3 q^{72} + ( 2 + 2 \beta ) q^{73} + ( -4 - 5 \beta ) q^{74} + ( -8 + 3 \beta ) q^{75} + ( 1 + \beta ) q^{76} + ( 2 - 2 \beta ) q^{78} + 14 q^{79} + ( -2 + 3 \beta ) q^{80} + q^{81} + ( 6 + 3 \beta ) q^{82} + ( 10 - 8 \beta ) q^{83} - q^{84} + ( 3 + 12 \beta ) q^{85} + ( -2 + 2 \beta ) q^{86} -2 q^{87} + ( -7 + 5 \beta ) q^{89} + ( 2 - 3 \beta ) q^{90} + ( 2 - 2 \beta ) q^{91} + ( -5 + 5 \beta ) q^{92} + ( -4 + 7 \beta ) q^{93} + 2 q^{94} + ( 1 + 4 \beta ) q^{95} -5 q^{96} + ( -10 + 4 \beta ) q^{97} + q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} - 2q^{3} - 2q^{4} + q^{5} - 2q^{6} - 2q^{7} - 6q^{8} + 2q^{9} + O(q^{10}) \) \( 2q + 2q^{2} - 2q^{3} - 2q^{4} + q^{5} - 2q^{6} - 2q^{7} - 6q^{8} + 2q^{9} + q^{10} + 2q^{12} - 2q^{13} - 2q^{14} - q^{15} - 2q^{16} - 9q^{17} + 2q^{18} - 3q^{19} - q^{20} + 2q^{21} + 5q^{23} + 6q^{24} + 13q^{25} - 2q^{26} - 2q^{27} + 2q^{28} + 4q^{29} - q^{30} + q^{31} + 10q^{32} - 9q^{34} - q^{35} - 2q^{36} - 13q^{37} - 3q^{38} + 2q^{39} - 3q^{40} + 15q^{41} + 2q^{42} - 2q^{43} + q^{45} + 5q^{46} + 4q^{47} + 2q^{48} + 2q^{49} + 13q^{50} + 9q^{51} + 2q^{52} + 2q^{53} - 2q^{54} + 6q^{56} + 3q^{57} + 4q^{58} + 18q^{59} + q^{60} + q^{62} - 2q^{63} + 14q^{64} - 16q^{65} + 16q^{67} + 9q^{68} - 5q^{69} - q^{70} - 6q^{72} + 6q^{73} - 13q^{74} - 13q^{75} + 3q^{76} + 2q^{78} + 28q^{79} - q^{80} + 2q^{81} + 15q^{82} + 12q^{83} - 2q^{84} + 18q^{85} - 2q^{86} - 4q^{87} - 9q^{89} + q^{90} + 2q^{91} - 5q^{92} - q^{93} + 4q^{94} + 6q^{95} - 10q^{96} - 16q^{97} + 2q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
1.00000 −1.00000 −1.00000 −2.85410 −1.00000 −1.00000 −3.00000 1.00000 −2.85410
1.2 1.00000 −1.00000 −1.00000 3.85410 −1.00000 −1.00000 −3.00000 1.00000 3.85410
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2541.2.a.bd 2
3.b odd 2 1 7623.2.a.w 2
11.b odd 2 1 2541.2.a.n 2
11.d odd 10 2 231.2.j.c 4
33.d even 2 1 7623.2.a.bu 2
33.f even 10 2 693.2.m.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.2.j.c 4 11.d odd 10 2
693.2.m.c 4 33.f even 10 2
2541.2.a.n 2 11.b odd 2 1
2541.2.a.bd 2 1.a even 1 1 trivial
7623.2.a.w 2 3.b odd 2 1
7623.2.a.bu 2 33.d even 2 1

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(7\) \(1\)
\(11\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2541))\):

\( T_{2} - 1 \)
\( T_{5}^{2} - T_{5} - 11 \)
\( T_{13}^{2} + 2 T_{13} - 4 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T + 2 T^{2} )^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( 1 - T - T^{2} - 5 T^{3} + 25 T^{4} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( \)
$13$ \( 1 + 2 T + 22 T^{2} + 26 T^{3} + 169 T^{4} \)
$17$ \( 1 + 9 T + 43 T^{2} + 153 T^{3} + 289 T^{4} \)
$19$ \( 1 + 3 T + 39 T^{2} + 57 T^{3} + 361 T^{4} \)
$23$ \( 1 - 5 T + 21 T^{2} - 115 T^{3} + 529 T^{4} \)
$29$ \( ( 1 - 2 T + 29 T^{2} )^{2} \)
$31$ \( 1 - T + T^{2} - 31 T^{3} + 961 T^{4} \)
$37$ \( 1 + 13 T + 85 T^{2} + 481 T^{3} + 1369 T^{4} \)
$41$ \( 1 - 15 T + 127 T^{2} - 615 T^{3} + 1681 T^{4} \)
$43$ \( 1 + 2 T + 82 T^{2} + 86 T^{3} + 1849 T^{4} \)
$47$ \( ( 1 - 2 T + 47 T^{2} )^{2} \)
$53$ \( 1 - 2 T - 18 T^{2} - 106 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 18 T + 194 T^{2} - 1062 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 42 T^{2} + 3721 T^{4} \)
$67$ \( ( 1 - 8 T + 67 T^{2} )^{2} \)
$71$ \( 1 + 62 T^{2} + 5041 T^{4} \)
$73$ \( 1 - 6 T + 150 T^{2} - 438 T^{3} + 5329 T^{4} \)
$79$ \( ( 1 - 14 T + 79 T^{2} )^{2} \)
$83$ \( 1 - 12 T + 122 T^{2} - 996 T^{3} + 6889 T^{4} \)
$89$ \( 1 + 9 T + 167 T^{2} + 801 T^{3} + 7921 T^{4} \)
$97$ \( 1 + 16 T + 238 T^{2} + 1552 T^{3} + 9409 T^{4} \)
show more
show less