Properties

Label 2535.2.da
Level $2535$
Weight $2$
Character orbit 2535.da
Rep. character $\chi_{2535}(67,\cdot)$
Character field $\Q(\zeta_{156})$
Dimension $8736$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.da (of order \(156\) and degree \(48\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 845 \)
Character field: \(\Q(\zeta_{156})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).

Total New Old
Modular forms 17664 8736 8928
Cusp forms 17280 8736 8544
Eisenstein series 384 0 384

Trace form

\( 8736 q - 4 q^{2} + 364 q^{4} - 4 q^{5} + 24 q^{8} - 8 q^{11} + 12 q^{13} - 4 q^{15} + 364 q^{16} - 8 q^{17} + 24 q^{19} + 12 q^{20} + 8 q^{21} + 20 q^{22} - 4 q^{25} + 8 q^{31} - 8 q^{32} + 4 q^{33} - 4 q^{34}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)