Defining parameters
| Level: | \( N \) | \(=\) | \( 2535 = 3 \cdot 5 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2535.da (of order \(156\) and degree \(48\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 845 \) |
| Character field: | \(\Q(\zeta_{156})\) | ||
| Sturm bound: | \(728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 17664 | 8736 | 8928 |
| Cusp forms | 17280 | 8736 | 8544 |
| Eisenstein series | 384 | 0 | 384 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(845, [\chi])\)\(^{\oplus 2}\)