Properties

Label 2535.2.cd
Level $2535$
Weight $2$
Character orbit 2535.cd
Rep. character $\chi_{2535}(86,\cdot)$
Character field $\Q(\zeta_{52})$
Dimension $5856$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.cd (of order \(52\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 507 \)
Character field: \(\Q(\zeta_{52})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).

Total New Old
Modular forms 8832 5856 2976
Cusp forms 8640 5856 2784
Eisenstein series 192 0 192

Trace form

\( 5856 q - 12 q^{6} + 16 q^{7} - 4 q^{15} + 512 q^{16} - 4 q^{18} + 16 q^{19} + 12 q^{21} + 304 q^{24} + 24 q^{27} - 32 q^{28} - 32 q^{31} + 4 q^{33} + 16 q^{34} - 32 q^{37} + 8 q^{39} - 48 q^{42} + 8 q^{45}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)