Properties

Label 2535.2.bl
Level $2535$
Weight $2$
Character orbit 2535.bl
Rep. character $\chi_{2535}(653,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $1152$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.bl (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2535, [\chi])\).

Total New Old
Modular forms 1568 1312 256
Cusp forms 1344 1152 192
Eisenstein series 224 160 64

Trace form

\( 1152 q + 2 q^{3} + 4 q^{6} + 4 q^{7} + 20 q^{10} + 28 q^{12} + 2 q^{15} + 464 q^{16} - 16 q^{18} + 8 q^{21} + 4 q^{22} + 16 q^{25} + 8 q^{27} + 44 q^{28} + 16 q^{30} - 16 q^{31} + 46 q^{33} + 36 q^{36}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2535, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2535, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2535, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)