Properties

Label 2535.2.a.bm.1.6
Level $2535$
Weight $2$
Character 2535.1
Self dual yes
Analytic conductor $20.242$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2535,2,Mod(1,2535)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2535.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2535, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-9,10,-9,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2420769124\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 9x^{7} + 29x^{6} + 17x^{5} - 83x^{4} + 17x^{3} + 70x^{2} - 48x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.701099\) of defining polynomial
Character \(\chi\) \(=\) 2535.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.43598 q^{2} -1.00000 q^{3} +0.0620294 q^{4} -1.00000 q^{5} -1.43598 q^{6} +4.66136 q^{7} -2.78288 q^{8} +1.00000 q^{9} -1.43598 q^{10} -6.18428 q^{11} -0.0620294 q^{12} +6.69361 q^{14} +1.00000 q^{15} -4.12021 q^{16} +4.58791 q^{17} +1.43598 q^{18} +1.10535 q^{19} -0.0620294 q^{20} -4.66136 q^{21} -8.88049 q^{22} +0.468818 q^{23} +2.78288 q^{24} +1.00000 q^{25} -1.00000 q^{27} +0.289142 q^{28} +7.41205 q^{29} +1.43598 q^{30} +1.71209 q^{31} -0.350766 q^{32} +6.18428 q^{33} +6.58813 q^{34} -4.66136 q^{35} +0.0620294 q^{36} +6.88307 q^{37} +1.58726 q^{38} +2.78288 q^{40} +6.47743 q^{41} -6.69361 q^{42} -6.33206 q^{43} -0.383608 q^{44} -1.00000 q^{45} +0.673212 q^{46} -4.57038 q^{47} +4.12021 q^{48} +14.7283 q^{49} +1.43598 q^{50} -4.58791 q^{51} -1.81559 q^{53} -1.43598 q^{54} +6.18428 q^{55} -12.9720 q^{56} -1.10535 q^{57} +10.6435 q^{58} -2.07754 q^{59} +0.0620294 q^{60} -1.70491 q^{61} +2.45852 q^{62} +4.66136 q^{63} +7.73673 q^{64} +8.88049 q^{66} +6.74923 q^{67} +0.284585 q^{68} -0.468818 q^{69} -6.69361 q^{70} +10.3325 q^{71} -2.78288 q^{72} -6.47945 q^{73} +9.88393 q^{74} -1.00000 q^{75} +0.0685643 q^{76} -28.8272 q^{77} +16.4292 q^{79} +4.12021 q^{80} +1.00000 q^{81} +9.30144 q^{82} -3.37171 q^{83} -0.289142 q^{84} -4.58791 q^{85} -9.09269 q^{86} -7.41205 q^{87} +17.2101 q^{88} -9.66236 q^{89} -1.43598 q^{90} +0.0290805 q^{92} -1.71209 q^{93} -6.56295 q^{94} -1.10535 q^{95} +0.350766 q^{96} +19.0665 q^{97} +21.1495 q^{98} -6.18428 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 9 q^{3} + 10 q^{4} - 9 q^{5} + 10 q^{7} - 3 q^{8} + 9 q^{9} - 11 q^{11} - 10 q^{12} + 10 q^{14} + 9 q^{15} + 8 q^{16} + 18 q^{17} - 10 q^{19} - 10 q^{20} - 10 q^{21} + 17 q^{22} - 7 q^{23} + 3 q^{24}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43598 1.01539 0.507694 0.861537i \(-0.330498\pi\)
0.507694 + 0.861537i \(0.330498\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.0620294 0.0310147
\(5\) −1.00000 −0.447214
\(6\) −1.43598 −0.586235
\(7\) 4.66136 1.76183 0.880915 0.473275i \(-0.156928\pi\)
0.880915 + 0.473275i \(0.156928\pi\)
\(8\) −2.78288 −0.983897
\(9\) 1.00000 0.333333
\(10\) −1.43598 −0.454096
\(11\) −6.18428 −1.86463 −0.932316 0.361645i \(-0.882215\pi\)
−0.932316 + 0.361645i \(0.882215\pi\)
\(12\) −0.0620294 −0.0179064
\(13\) 0 0
\(14\) 6.69361 1.78894
\(15\) 1.00000 0.258199
\(16\) −4.12021 −1.03005
\(17\) 4.58791 1.11273 0.556366 0.830937i \(-0.312195\pi\)
0.556366 + 0.830937i \(0.312195\pi\)
\(18\) 1.43598 0.338463
\(19\) 1.10535 0.253585 0.126793 0.991929i \(-0.459532\pi\)
0.126793 + 0.991929i \(0.459532\pi\)
\(20\) −0.0620294 −0.0138702
\(21\) −4.66136 −1.01719
\(22\) −8.88049 −1.89333
\(23\) 0.468818 0.0977553 0.0488777 0.998805i \(-0.484436\pi\)
0.0488777 + 0.998805i \(0.484436\pi\)
\(24\) 2.78288 0.568053
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0.289142 0.0546426
\(29\) 7.41205 1.37638 0.688191 0.725529i \(-0.258405\pi\)
0.688191 + 0.725529i \(0.258405\pi\)
\(30\) 1.43598 0.262172
\(31\) 1.71209 0.307500 0.153750 0.988110i \(-0.450865\pi\)
0.153750 + 0.988110i \(0.450865\pi\)
\(32\) −0.350766 −0.0620073
\(33\) 6.18428 1.07655
\(34\) 6.58813 1.12986
\(35\) −4.66136 −0.787914
\(36\) 0.0620294 0.0103382
\(37\) 6.88307 1.13157 0.565785 0.824553i \(-0.308573\pi\)
0.565785 + 0.824553i \(0.308573\pi\)
\(38\) 1.58726 0.257487
\(39\) 0 0
\(40\) 2.78288 0.440012
\(41\) 6.47743 1.01161 0.505803 0.862649i \(-0.331196\pi\)
0.505803 + 0.862649i \(0.331196\pi\)
\(42\) −6.69361 −1.03285
\(43\) −6.33206 −0.965630 −0.482815 0.875722i \(-0.660386\pi\)
−0.482815 + 0.875722i \(0.660386\pi\)
\(44\) −0.383608 −0.0578310
\(45\) −1.00000 −0.149071
\(46\) 0.673212 0.0992597
\(47\) −4.57038 −0.666658 −0.333329 0.942811i \(-0.608172\pi\)
−0.333329 + 0.942811i \(0.608172\pi\)
\(48\) 4.12021 0.594701
\(49\) 14.7283 2.10404
\(50\) 1.43598 0.203078
\(51\) −4.58791 −0.642436
\(52\) 0 0
\(53\) −1.81559 −0.249390 −0.124695 0.992195i \(-0.539795\pi\)
−0.124695 + 0.992195i \(0.539795\pi\)
\(54\) −1.43598 −0.195412
\(55\) 6.18428 0.833889
\(56\) −12.9720 −1.73346
\(57\) −1.10535 −0.146407
\(58\) 10.6435 1.39756
\(59\) −2.07754 −0.270472 −0.135236 0.990813i \(-0.543179\pi\)
−0.135236 + 0.990813i \(0.543179\pi\)
\(60\) 0.0620294 0.00800796
\(61\) −1.70491 −0.218292 −0.109146 0.994026i \(-0.534812\pi\)
−0.109146 + 0.994026i \(0.534812\pi\)
\(62\) 2.45852 0.312232
\(63\) 4.66136 0.587277
\(64\) 7.73673 0.967091
\(65\) 0 0
\(66\) 8.88049 1.09311
\(67\) 6.74923 0.824550 0.412275 0.911060i \(-0.364734\pi\)
0.412275 + 0.911060i \(0.364734\pi\)
\(68\) 0.284585 0.0345111
\(69\) −0.468818 −0.0564391
\(70\) −6.69361 −0.800039
\(71\) 10.3325 1.22624 0.613118 0.789991i \(-0.289915\pi\)
0.613118 + 0.789991i \(0.289915\pi\)
\(72\) −2.78288 −0.327966
\(73\) −6.47945 −0.758362 −0.379181 0.925323i \(-0.623794\pi\)
−0.379181 + 0.925323i \(0.623794\pi\)
\(74\) 9.88393 1.14898
\(75\) −1.00000 −0.115470
\(76\) 0.0685643 0.00786487
\(77\) −28.8272 −3.28516
\(78\) 0 0
\(79\) 16.4292 1.84843 0.924216 0.381869i \(-0.124719\pi\)
0.924216 + 0.381869i \(0.124719\pi\)
\(80\) 4.12021 0.460654
\(81\) 1.00000 0.111111
\(82\) 9.30144 1.02717
\(83\) −3.37171 −0.370093 −0.185047 0.982730i \(-0.559244\pi\)
−0.185047 + 0.982730i \(0.559244\pi\)
\(84\) −0.289142 −0.0315479
\(85\) −4.58791 −0.497629
\(86\) −9.09269 −0.980490
\(87\) −7.41205 −0.794655
\(88\) 17.2101 1.83461
\(89\) −9.66236 −1.02421 −0.512104 0.858923i \(-0.671134\pi\)
−0.512104 + 0.858923i \(0.671134\pi\)
\(90\) −1.43598 −0.151365
\(91\) 0 0
\(92\) 0.0290805 0.00303185
\(93\) −1.71209 −0.177535
\(94\) −6.56295 −0.676917
\(95\) −1.10535 −0.113407
\(96\) 0.350766 0.0357999
\(97\) 19.0665 1.93591 0.967956 0.251120i \(-0.0807989\pi\)
0.967956 + 0.251120i \(0.0807989\pi\)
\(98\) 21.1495 2.13642
\(99\) −6.18428 −0.621544
\(100\) 0.0620294 0.00620294
\(101\) 15.9374 1.58583 0.792916 0.609331i \(-0.208562\pi\)
0.792916 + 0.609331i \(0.208562\pi\)
\(102\) −6.58813 −0.652322
\(103\) 6.18951 0.609871 0.304935 0.952373i \(-0.401365\pi\)
0.304935 + 0.952373i \(0.401365\pi\)
\(104\) 0 0
\(105\) 4.66136 0.454902
\(106\) −2.60714 −0.253228
\(107\) −2.06493 −0.199625 −0.0998123 0.995006i \(-0.531824\pi\)
−0.0998123 + 0.995006i \(0.531824\pi\)
\(108\) −0.0620294 −0.00596878
\(109\) 15.3189 1.46728 0.733641 0.679537i \(-0.237819\pi\)
0.733641 + 0.679537i \(0.237819\pi\)
\(110\) 8.88049 0.846721
\(111\) −6.88307 −0.653312
\(112\) −19.2058 −1.81478
\(113\) 14.5687 1.37051 0.685256 0.728303i \(-0.259690\pi\)
0.685256 + 0.728303i \(0.259690\pi\)
\(114\) −1.58726 −0.148660
\(115\) −0.468818 −0.0437175
\(116\) 0.459765 0.0426881
\(117\) 0 0
\(118\) −2.98329 −0.274635
\(119\) 21.3859 1.96044
\(120\) −2.78288 −0.254041
\(121\) 27.2454 2.47685
\(122\) −2.44822 −0.221651
\(123\) −6.47743 −0.584050
\(124\) 0.106200 0.00953703
\(125\) −1.00000 −0.0894427
\(126\) 6.69361 0.596314
\(127\) −12.3302 −1.09413 −0.547063 0.837091i \(-0.684254\pi\)
−0.547063 + 0.837091i \(0.684254\pi\)
\(128\) 11.8113 1.04398
\(129\) 6.33206 0.557507
\(130\) 0 0
\(131\) −15.3053 −1.33723 −0.668615 0.743609i \(-0.733112\pi\)
−0.668615 + 0.743609i \(0.733112\pi\)
\(132\) 0.383608 0.0333888
\(133\) 5.15245 0.446774
\(134\) 9.69174 0.837239
\(135\) 1.00000 0.0860663
\(136\) −12.7676 −1.09481
\(137\) −15.1058 −1.29057 −0.645287 0.763940i \(-0.723262\pi\)
−0.645287 + 0.763940i \(0.723262\pi\)
\(138\) −0.673212 −0.0573076
\(139\) 2.63072 0.223135 0.111567 0.993757i \(-0.464413\pi\)
0.111567 + 0.993757i \(0.464413\pi\)
\(140\) −0.289142 −0.0244369
\(141\) 4.57038 0.384895
\(142\) 14.8372 1.24511
\(143\) 0 0
\(144\) −4.12021 −0.343351
\(145\) −7.41205 −0.615537
\(146\) −9.30434 −0.770032
\(147\) −14.7283 −1.21477
\(148\) 0.426953 0.0350953
\(149\) −19.3002 −1.58113 −0.790567 0.612376i \(-0.790214\pi\)
−0.790567 + 0.612376i \(0.790214\pi\)
\(150\) −1.43598 −0.117247
\(151\) 9.60278 0.781463 0.390731 0.920505i \(-0.372222\pi\)
0.390731 + 0.920505i \(0.372222\pi\)
\(152\) −3.07606 −0.249502
\(153\) 4.58791 0.370911
\(154\) −41.3952 −3.33572
\(155\) −1.71209 −0.137518
\(156\) 0 0
\(157\) 17.7352 1.41542 0.707712 0.706501i \(-0.249727\pi\)
0.707712 + 0.706501i \(0.249727\pi\)
\(158\) 23.5920 1.87688
\(159\) 1.81559 0.143985
\(160\) 0.350766 0.0277305
\(161\) 2.18533 0.172228
\(162\) 1.43598 0.112821
\(163\) −19.1373 −1.49895 −0.749473 0.662035i \(-0.769693\pi\)
−0.749473 + 0.662035i \(0.769693\pi\)
\(164\) 0.401791 0.0313746
\(165\) −6.18428 −0.481446
\(166\) −4.84170 −0.375789
\(167\) 7.15778 0.553885 0.276943 0.960886i \(-0.410679\pi\)
0.276943 + 0.960886i \(0.410679\pi\)
\(168\) 12.9720 1.00081
\(169\) 0 0
\(170\) −6.58813 −0.505287
\(171\) 1.10535 0.0845284
\(172\) −0.392774 −0.0299487
\(173\) 5.98501 0.455032 0.227516 0.973774i \(-0.426940\pi\)
0.227516 + 0.973774i \(0.426940\pi\)
\(174\) −10.6435 −0.806884
\(175\) 4.66136 0.352366
\(176\) 25.4806 1.92067
\(177\) 2.07754 0.156157
\(178\) −13.8749 −1.03997
\(179\) −9.17996 −0.686142 −0.343071 0.939309i \(-0.611467\pi\)
−0.343071 + 0.939309i \(0.611467\pi\)
\(180\) −0.0620294 −0.00462340
\(181\) −7.33835 −0.545455 −0.272728 0.962091i \(-0.587926\pi\)
−0.272728 + 0.962091i \(0.587926\pi\)
\(182\) 0 0
\(183\) 1.70491 0.126031
\(184\) −1.30467 −0.0961812
\(185\) −6.88307 −0.506053
\(186\) −2.45852 −0.180267
\(187\) −28.3729 −2.07484
\(188\) −0.283498 −0.0206762
\(189\) −4.66136 −0.339064
\(190\) −1.58726 −0.115152
\(191\) 12.7239 0.920668 0.460334 0.887746i \(-0.347730\pi\)
0.460334 + 0.887746i \(0.347730\pi\)
\(192\) −7.73673 −0.558350
\(193\) 17.0065 1.22416 0.612078 0.790798i \(-0.290334\pi\)
0.612078 + 0.790798i \(0.290334\pi\)
\(194\) 27.3791 1.96570
\(195\) 0 0
\(196\) 0.913588 0.0652563
\(197\) 2.46594 0.175691 0.0878455 0.996134i \(-0.472002\pi\)
0.0878455 + 0.996134i \(0.472002\pi\)
\(198\) −8.88049 −0.631109
\(199\) −6.89365 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(200\) −2.78288 −0.196779
\(201\) −6.74923 −0.476054
\(202\) 22.8857 1.61024
\(203\) 34.5502 2.42495
\(204\) −0.284585 −0.0199250
\(205\) −6.47743 −0.452404
\(206\) 8.88800 0.619256
\(207\) 0.468818 0.0325851
\(208\) 0 0
\(209\) −6.83581 −0.472843
\(210\) 6.69361 0.461903
\(211\) 1.95078 0.134297 0.0671485 0.997743i \(-0.478610\pi\)
0.0671485 + 0.997743i \(0.478610\pi\)
\(212\) −0.112620 −0.00773476
\(213\) −10.3325 −0.707968
\(214\) −2.96520 −0.202697
\(215\) 6.33206 0.431843
\(216\) 2.78288 0.189351
\(217\) 7.98067 0.541763
\(218\) 21.9976 1.48986
\(219\) 6.47945 0.437841
\(220\) 0.383608 0.0258628
\(221\) 0 0
\(222\) −9.88393 −0.663366
\(223\) −13.2382 −0.886496 −0.443248 0.896399i \(-0.646174\pi\)
−0.443248 + 0.896399i \(0.646174\pi\)
\(224\) −1.63505 −0.109246
\(225\) 1.00000 0.0666667
\(226\) 20.9204 1.39160
\(227\) 4.08165 0.270909 0.135454 0.990784i \(-0.456751\pi\)
0.135454 + 0.990784i \(0.456751\pi\)
\(228\) −0.0685643 −0.00454078
\(229\) −23.1885 −1.53234 −0.766171 0.642637i \(-0.777840\pi\)
−0.766171 + 0.642637i \(0.777840\pi\)
\(230\) −0.673212 −0.0443903
\(231\) 28.8272 1.89669
\(232\) −20.6268 −1.35422
\(233\) −0.878514 −0.0575534 −0.0287767 0.999586i \(-0.509161\pi\)
−0.0287767 + 0.999586i \(0.509161\pi\)
\(234\) 0 0
\(235\) 4.57038 0.298138
\(236\) −0.128868 −0.00838862
\(237\) −16.4292 −1.06719
\(238\) 30.7097 1.99061
\(239\) −18.2068 −1.17770 −0.588849 0.808243i \(-0.700419\pi\)
−0.588849 + 0.808243i \(0.700419\pi\)
\(240\) −4.12021 −0.265958
\(241\) −16.4897 −1.06219 −0.531097 0.847311i \(-0.678220\pi\)
−0.531097 + 0.847311i \(0.678220\pi\)
\(242\) 39.1237 2.51497
\(243\) −1.00000 −0.0641500
\(244\) −0.105755 −0.00677026
\(245\) −14.7283 −0.940957
\(246\) −9.30144 −0.593038
\(247\) 0 0
\(248\) −4.76454 −0.302549
\(249\) 3.37171 0.213673
\(250\) −1.43598 −0.0908191
\(251\) 24.2256 1.52911 0.764555 0.644559i \(-0.222959\pi\)
0.764555 + 0.644559i \(0.222959\pi\)
\(252\) 0.289142 0.0182142
\(253\) −2.89931 −0.182278
\(254\) −17.7058 −1.11096
\(255\) 4.58791 0.287306
\(256\) 1.48729 0.0929556
\(257\) 2.13383 0.133105 0.0665524 0.997783i \(-0.478800\pi\)
0.0665524 + 0.997783i \(0.478800\pi\)
\(258\) 9.09269 0.566086
\(259\) 32.0845 1.99363
\(260\) 0 0
\(261\) 7.41205 0.458794
\(262\) −21.9780 −1.35781
\(263\) 4.74578 0.292637 0.146319 0.989238i \(-0.453258\pi\)
0.146319 + 0.989238i \(0.453258\pi\)
\(264\) −17.2101 −1.05921
\(265\) 1.81559 0.111531
\(266\) 7.39879 0.453649
\(267\) 9.66236 0.591327
\(268\) 0.418651 0.0255732
\(269\) 0.699303 0.0426372 0.0213186 0.999773i \(-0.493214\pi\)
0.0213186 + 0.999773i \(0.493214\pi\)
\(270\) 1.43598 0.0873908
\(271\) 12.2889 0.746498 0.373249 0.927731i \(-0.378244\pi\)
0.373249 + 0.927731i \(0.378244\pi\)
\(272\) −18.9032 −1.14617
\(273\) 0 0
\(274\) −21.6916 −1.31044
\(275\) −6.18428 −0.372926
\(276\) −0.0290805 −0.00175044
\(277\) 25.8088 1.55070 0.775351 0.631531i \(-0.217573\pi\)
0.775351 + 0.631531i \(0.217573\pi\)
\(278\) 3.77765 0.226569
\(279\) 1.71209 0.102500
\(280\) 12.9720 0.775226
\(281\) −28.6333 −1.70812 −0.854061 0.520173i \(-0.825867\pi\)
−0.854061 + 0.520173i \(0.825867\pi\)
\(282\) 6.56295 0.390818
\(283\) 23.2312 1.38095 0.690475 0.723356i \(-0.257401\pi\)
0.690475 + 0.723356i \(0.257401\pi\)
\(284\) 0.640916 0.0380314
\(285\) 1.10535 0.0654754
\(286\) 0 0
\(287\) 30.1937 1.78228
\(288\) −0.350766 −0.0206691
\(289\) 4.04892 0.238172
\(290\) −10.6435 −0.625010
\(291\) −19.0665 −1.11770
\(292\) −0.401916 −0.0235204
\(293\) −17.7782 −1.03861 −0.519306 0.854589i \(-0.673809\pi\)
−0.519306 + 0.854589i \(0.673809\pi\)
\(294\) −21.1495 −1.23346
\(295\) 2.07754 0.120959
\(296\) −19.1548 −1.11335
\(297\) 6.18428 0.358849
\(298\) −27.7146 −1.60547
\(299\) 0 0
\(300\) −0.0620294 −0.00358127
\(301\) −29.5160 −1.70127
\(302\) 13.7894 0.793489
\(303\) −15.9374 −0.915580
\(304\) −4.55428 −0.261206
\(305\) 1.70491 0.0976231
\(306\) 6.58813 0.376618
\(307\) −11.3286 −0.646556 −0.323278 0.946304i \(-0.604785\pi\)
−0.323278 + 0.946304i \(0.604785\pi\)
\(308\) −1.78813 −0.101888
\(309\) −6.18951 −0.352109
\(310\) −2.45852 −0.139635
\(311\) −3.64202 −0.206520 −0.103260 0.994654i \(-0.532927\pi\)
−0.103260 + 0.994654i \(0.532927\pi\)
\(312\) 0 0
\(313\) −26.9199 −1.52161 −0.760803 0.648983i \(-0.775194\pi\)
−0.760803 + 0.648983i \(0.775194\pi\)
\(314\) 25.4674 1.43721
\(315\) −4.66136 −0.262638
\(316\) 1.01910 0.0573286
\(317\) −19.0352 −1.06913 −0.534563 0.845129i \(-0.679524\pi\)
−0.534563 + 0.845129i \(0.679524\pi\)
\(318\) 2.60714 0.146201
\(319\) −45.8382 −2.56645
\(320\) −7.73673 −0.432496
\(321\) 2.06493 0.115253
\(322\) 3.13809 0.174879
\(323\) 5.07125 0.282172
\(324\) 0.0620294 0.00344608
\(325\) 0 0
\(326\) −27.4807 −1.52201
\(327\) −15.3189 −0.847136
\(328\) −18.0259 −0.995315
\(329\) −21.3042 −1.17454
\(330\) −8.88049 −0.488855
\(331\) −2.98681 −0.164170 −0.0820849 0.996625i \(-0.526158\pi\)
−0.0820849 + 0.996625i \(0.526158\pi\)
\(332\) −0.209145 −0.0114783
\(333\) 6.88307 0.377190
\(334\) 10.2784 0.562409
\(335\) −6.74923 −0.368750
\(336\) 19.2058 1.04776
\(337\) −16.9655 −0.924168 −0.462084 0.886836i \(-0.652898\pi\)
−0.462084 + 0.886836i \(0.652898\pi\)
\(338\) 0 0
\(339\) −14.5687 −0.791265
\(340\) −0.284585 −0.0154338
\(341\) −10.5880 −0.573375
\(342\) 1.58726 0.0858292
\(343\) 36.0244 1.94514
\(344\) 17.6214 0.950080
\(345\) 0.468818 0.0252403
\(346\) 8.59433 0.462034
\(347\) 6.66624 0.357862 0.178931 0.983862i \(-0.442736\pi\)
0.178931 + 0.983862i \(0.442736\pi\)
\(348\) −0.459765 −0.0246460
\(349\) −9.62703 −0.515323 −0.257661 0.966235i \(-0.582952\pi\)
−0.257661 + 0.966235i \(0.582952\pi\)
\(350\) 6.69361 0.357788
\(351\) 0 0
\(352\) 2.16924 0.115621
\(353\) −28.0374 −1.49228 −0.746141 0.665788i \(-0.768096\pi\)
−0.746141 + 0.665788i \(0.768096\pi\)
\(354\) 2.98329 0.158560
\(355\) −10.3325 −0.548390
\(356\) −0.599351 −0.0317655
\(357\) −21.3859 −1.13186
\(358\) −13.1822 −0.696701
\(359\) 2.02283 0.106761 0.0533804 0.998574i \(-0.483000\pi\)
0.0533804 + 0.998574i \(0.483000\pi\)
\(360\) 2.78288 0.146671
\(361\) −17.7782 −0.935695
\(362\) −10.5377 −0.553849
\(363\) −27.2454 −1.43001
\(364\) 0 0
\(365\) 6.47945 0.339150
\(366\) 2.44822 0.127970
\(367\) −4.70652 −0.245678 −0.122839 0.992427i \(-0.539200\pi\)
−0.122839 + 0.992427i \(0.539200\pi\)
\(368\) −1.93163 −0.100693
\(369\) 6.47743 0.337202
\(370\) −9.88393 −0.513841
\(371\) −8.46310 −0.439382
\(372\) −0.106200 −0.00550621
\(373\) −4.45995 −0.230927 −0.115464 0.993312i \(-0.536835\pi\)
−0.115464 + 0.993312i \(0.536835\pi\)
\(374\) −40.7429 −2.10676
\(375\) 1.00000 0.0516398
\(376\) 12.7188 0.655923
\(377\) 0 0
\(378\) −6.69361 −0.344282
\(379\) 2.06186 0.105910 0.0529552 0.998597i \(-0.483136\pi\)
0.0529552 + 0.998597i \(0.483136\pi\)
\(380\) −0.0685643 −0.00351728
\(381\) 12.3302 0.631694
\(382\) 18.2712 0.934836
\(383\) −15.9663 −0.815839 −0.407919 0.913018i \(-0.633746\pi\)
−0.407919 + 0.913018i \(0.633746\pi\)
\(384\) −11.8113 −0.602743
\(385\) 28.8272 1.46917
\(386\) 24.4210 1.24299
\(387\) −6.33206 −0.321877
\(388\) 1.18269 0.0600418
\(389\) −3.76244 −0.190763 −0.0953816 0.995441i \(-0.530407\pi\)
−0.0953816 + 0.995441i \(0.530407\pi\)
\(390\) 0 0
\(391\) 2.15090 0.108775
\(392\) −40.9871 −2.07016
\(393\) 15.3053 0.772050
\(394\) 3.54103 0.178395
\(395\) −16.4292 −0.826644
\(396\) −0.383608 −0.0192770
\(397\) 29.0906 1.46002 0.730008 0.683438i \(-0.239516\pi\)
0.730008 + 0.683438i \(0.239516\pi\)
\(398\) −9.89912 −0.496198
\(399\) −5.15245 −0.257945
\(400\) −4.12021 −0.206011
\(401\) −20.1071 −1.00410 −0.502051 0.864838i \(-0.667421\pi\)
−0.502051 + 0.864838i \(0.667421\pi\)
\(402\) −9.69174 −0.483380
\(403\) 0 0
\(404\) 0.988588 0.0491841
\(405\) −1.00000 −0.0496904
\(406\) 49.6134 2.46227
\(407\) −42.5669 −2.10996
\(408\) 12.7676 0.632091
\(409\) 10.7801 0.533041 0.266520 0.963829i \(-0.414126\pi\)
0.266520 + 0.963829i \(0.414126\pi\)
\(410\) −9.30144 −0.459366
\(411\) 15.1058 0.745114
\(412\) 0.383932 0.0189150
\(413\) −9.68415 −0.476526
\(414\) 0.673212 0.0330866
\(415\) 3.37171 0.165511
\(416\) 0 0
\(417\) −2.63072 −0.128827
\(418\) −9.81606 −0.480119
\(419\) 5.76876 0.281822 0.140911 0.990022i \(-0.454997\pi\)
0.140911 + 0.990022i \(0.454997\pi\)
\(420\) 0.289142 0.0141087
\(421\) −8.42888 −0.410799 −0.205399 0.978678i \(-0.565849\pi\)
−0.205399 + 0.978678i \(0.565849\pi\)
\(422\) 2.80127 0.136364
\(423\) −4.57038 −0.222219
\(424\) 5.05256 0.245374
\(425\) 4.58791 0.222546
\(426\) −14.8372 −0.718863
\(427\) −7.94723 −0.384593
\(428\) −0.128087 −0.00619130
\(429\) 0 0
\(430\) 9.09269 0.438488
\(431\) 13.7020 0.660000 0.330000 0.943981i \(-0.392951\pi\)
0.330000 + 0.943981i \(0.392951\pi\)
\(432\) 4.12021 0.198234
\(433\) 26.3471 1.26616 0.633081 0.774086i \(-0.281790\pi\)
0.633081 + 0.774086i \(0.281790\pi\)
\(434\) 11.4601 0.550100
\(435\) 7.41205 0.355380
\(436\) 0.950221 0.0455074
\(437\) 0.518209 0.0247893
\(438\) 9.30434 0.444578
\(439\) −10.5841 −0.505154 −0.252577 0.967577i \(-0.581278\pi\)
−0.252577 + 0.967577i \(0.581278\pi\)
\(440\) −17.2101 −0.820461
\(441\) 14.7283 0.701348
\(442\) 0 0
\(443\) −14.5609 −0.691811 −0.345906 0.938269i \(-0.612428\pi\)
−0.345906 + 0.938269i \(0.612428\pi\)
\(444\) −0.426953 −0.0202623
\(445\) 9.66236 0.458040
\(446\) −19.0098 −0.900138
\(447\) 19.3002 0.912868
\(448\) 36.0637 1.70385
\(449\) −1.82046 −0.0859128 −0.0429564 0.999077i \(-0.513678\pi\)
−0.0429564 + 0.999077i \(0.513678\pi\)
\(450\) 1.43598 0.0676926
\(451\) −40.0583 −1.88627
\(452\) 0.903690 0.0425060
\(453\) −9.60278 −0.451178
\(454\) 5.86116 0.275078
\(455\) 0 0
\(456\) 3.07606 0.144050
\(457\) −15.6233 −0.730829 −0.365415 0.930845i \(-0.619073\pi\)
−0.365415 + 0.930845i \(0.619073\pi\)
\(458\) −33.2982 −1.55592
\(459\) −4.58791 −0.214145
\(460\) −0.0290805 −0.00135589
\(461\) 0.672474 0.0313202 0.0156601 0.999877i \(-0.495015\pi\)
0.0156601 + 0.999877i \(0.495015\pi\)
\(462\) 41.3952 1.92588
\(463\) 29.3187 1.36256 0.681279 0.732024i \(-0.261424\pi\)
0.681279 + 0.732024i \(0.261424\pi\)
\(464\) −30.5392 −1.41775
\(465\) 1.71209 0.0793962
\(466\) −1.26153 −0.0584390
\(467\) −12.5039 −0.578611 −0.289305 0.957237i \(-0.593424\pi\)
−0.289305 + 0.957237i \(0.593424\pi\)
\(468\) 0 0
\(469\) 31.4606 1.45272
\(470\) 6.56295 0.302726
\(471\) −17.7352 −0.817196
\(472\) 5.78154 0.266117
\(473\) 39.1592 1.80054
\(474\) −23.5920 −1.08362
\(475\) 1.10535 0.0507170
\(476\) 1.32656 0.0608026
\(477\) −1.81559 −0.0831300
\(478\) −26.1445 −1.19582
\(479\) 31.7959 1.45279 0.726396 0.687277i \(-0.241194\pi\)
0.726396 + 0.687277i \(0.241194\pi\)
\(480\) −0.350766 −0.0160102
\(481\) 0 0
\(482\) −23.6788 −1.07854
\(483\) −2.18533 −0.0994360
\(484\) 1.69002 0.0768189
\(485\) −19.0665 −0.865766
\(486\) −1.43598 −0.0651372
\(487\) 37.9782 1.72096 0.860478 0.509487i \(-0.170165\pi\)
0.860478 + 0.509487i \(0.170165\pi\)
\(488\) 4.74457 0.214777
\(489\) 19.1373 0.865417
\(490\) −21.1495 −0.955437
\(491\) −11.8063 −0.532811 −0.266405 0.963861i \(-0.585836\pi\)
−0.266405 + 0.963861i \(0.585836\pi\)
\(492\) −0.401791 −0.0181142
\(493\) 34.0058 1.53154
\(494\) 0 0
\(495\) 6.18428 0.277963
\(496\) −7.05417 −0.316741
\(497\) 48.1633 2.16042
\(498\) 4.84170 0.216962
\(499\) −39.9647 −1.78906 −0.894532 0.447003i \(-0.852491\pi\)
−0.894532 + 0.447003i \(0.852491\pi\)
\(500\) −0.0620294 −0.00277404
\(501\) −7.15778 −0.319786
\(502\) 34.7875 1.55264
\(503\) −1.68267 −0.0750265 −0.0375133 0.999296i \(-0.511944\pi\)
−0.0375133 + 0.999296i \(0.511944\pi\)
\(504\) −12.9720 −0.577820
\(505\) −15.9374 −0.709205
\(506\) −4.16333 −0.185083
\(507\) 0 0
\(508\) −0.764834 −0.0339340
\(509\) 30.4690 1.35051 0.675257 0.737582i \(-0.264033\pi\)
0.675257 + 0.737582i \(0.264033\pi\)
\(510\) 6.58813 0.291727
\(511\) −30.2031 −1.33610
\(512\) −21.4869 −0.949595
\(513\) −1.10535 −0.0488025
\(514\) 3.06413 0.135153
\(515\) −6.18951 −0.272743
\(516\) 0.392774 0.0172909
\(517\) 28.2645 1.24307
\(518\) 46.0726 2.02431
\(519\) −5.98501 −0.262713
\(520\) 0 0
\(521\) 23.7603 1.04096 0.520480 0.853874i \(-0.325753\pi\)
0.520480 + 0.853874i \(0.325753\pi\)
\(522\) 10.6435 0.465855
\(523\) 23.0685 1.00871 0.504357 0.863495i \(-0.331730\pi\)
0.504357 + 0.863495i \(0.331730\pi\)
\(524\) −0.949378 −0.0414738
\(525\) −4.66136 −0.203439
\(526\) 6.81483 0.297141
\(527\) 7.85491 0.342165
\(528\) −25.4806 −1.10890
\(529\) −22.7802 −0.990444
\(530\) 2.60714 0.113247
\(531\) −2.07754 −0.0901574
\(532\) 0.319603 0.0138566
\(533\) 0 0
\(534\) 13.8749 0.600427
\(535\) 2.06493 0.0892748
\(536\) −18.7823 −0.811272
\(537\) 9.17996 0.396144
\(538\) 1.00418 0.0432934
\(539\) −91.0840 −3.92327
\(540\) 0.0620294 0.00266932
\(541\) 18.6879 0.803456 0.401728 0.915759i \(-0.368410\pi\)
0.401728 + 0.915759i \(0.368410\pi\)
\(542\) 17.6466 0.757986
\(543\) 7.33835 0.314919
\(544\) −1.60928 −0.0689975
\(545\) −15.3189 −0.656189
\(546\) 0 0
\(547\) −8.14172 −0.348115 −0.174057 0.984736i \(-0.555688\pi\)
−0.174057 + 0.984736i \(0.555688\pi\)
\(548\) −0.937003 −0.0400268
\(549\) −1.70491 −0.0727640
\(550\) −8.88049 −0.378665
\(551\) 8.19292 0.349030
\(552\) 1.30467 0.0555302
\(553\) 76.5826 3.25662
\(554\) 37.0609 1.57456
\(555\) 6.88307 0.292170
\(556\) 0.163182 0.00692046
\(557\) 24.4772 1.03713 0.518566 0.855037i \(-0.326466\pi\)
0.518566 + 0.855037i \(0.326466\pi\)
\(558\) 2.45852 0.104077
\(559\) 0 0
\(560\) 19.2058 0.811593
\(561\) 28.3729 1.19791
\(562\) −41.1168 −1.73441
\(563\) 15.5923 0.657136 0.328568 0.944480i \(-0.393434\pi\)
0.328568 + 0.944480i \(0.393434\pi\)
\(564\) 0.283498 0.0119374
\(565\) −14.5687 −0.612911
\(566\) 33.3594 1.40220
\(567\) 4.66136 0.195759
\(568\) −28.7540 −1.20649
\(569\) −5.19758 −0.217894 −0.108947 0.994048i \(-0.534748\pi\)
−0.108947 + 0.994048i \(0.534748\pi\)
\(570\) 1.58726 0.0664830
\(571\) −8.05523 −0.337101 −0.168550 0.985693i \(-0.553909\pi\)
−0.168550 + 0.985693i \(0.553909\pi\)
\(572\) 0 0
\(573\) −12.7239 −0.531548
\(574\) 43.3574 1.80970
\(575\) 0.468818 0.0195511
\(576\) 7.73673 0.322364
\(577\) 3.19865 0.133162 0.0665808 0.997781i \(-0.478791\pi\)
0.0665808 + 0.997781i \(0.478791\pi\)
\(578\) 5.81415 0.241837
\(579\) −17.0065 −0.706767
\(580\) −0.459765 −0.0190907
\(581\) −15.7168 −0.652041
\(582\) −27.3791 −1.13490
\(583\) 11.2281 0.465020
\(584\) 18.0315 0.746150
\(585\) 0 0
\(586\) −25.5290 −1.05459
\(587\) −21.0612 −0.869287 −0.434644 0.900602i \(-0.643126\pi\)
−0.434644 + 0.900602i \(0.643126\pi\)
\(588\) −0.913588 −0.0376758
\(589\) 1.89246 0.0779775
\(590\) 2.98329 0.122820
\(591\) −2.46594 −0.101435
\(592\) −28.3597 −1.16558
\(593\) −23.9997 −0.985548 −0.492774 0.870157i \(-0.664017\pi\)
−0.492774 + 0.870157i \(0.664017\pi\)
\(594\) 8.88049 0.364371
\(595\) −21.3859 −0.876737
\(596\) −1.19718 −0.0490384
\(597\) 6.89365 0.282138
\(598\) 0 0
\(599\) 16.7394 0.683955 0.341977 0.939708i \(-0.388903\pi\)
0.341977 + 0.939708i \(0.388903\pi\)
\(600\) 2.78288 0.113611
\(601\) 34.3133 1.39967 0.699834 0.714305i \(-0.253257\pi\)
0.699834 + 0.714305i \(0.253257\pi\)
\(602\) −42.3843 −1.72746
\(603\) 6.74923 0.274850
\(604\) 0.595655 0.0242368
\(605\) −27.2454 −1.10768
\(606\) −22.8857 −0.929670
\(607\) −13.6092 −0.552382 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(608\) −0.387720 −0.0157241
\(609\) −34.5502 −1.40005
\(610\) 2.44822 0.0991255
\(611\) 0 0
\(612\) 0.284585 0.0115037
\(613\) 21.2349 0.857670 0.428835 0.903383i \(-0.358924\pi\)
0.428835 + 0.903383i \(0.358924\pi\)
\(614\) −16.2676 −0.656506
\(615\) 6.47743 0.261195
\(616\) 80.2227 3.23226
\(617\) −7.22102 −0.290707 −0.145354 0.989380i \(-0.546432\pi\)
−0.145354 + 0.989380i \(0.546432\pi\)
\(618\) −8.88800 −0.357528
\(619\) 6.63029 0.266494 0.133247 0.991083i \(-0.457460\pi\)
0.133247 + 0.991083i \(0.457460\pi\)
\(620\) −0.106200 −0.00426509
\(621\) −0.468818 −0.0188130
\(622\) −5.22985 −0.209698
\(623\) −45.0398 −1.80448
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −38.6564 −1.54502
\(627\) 6.83581 0.272996
\(628\) 1.10011 0.0438990
\(629\) 31.5789 1.25913
\(630\) −6.69361 −0.266680
\(631\) −6.36730 −0.253478 −0.126739 0.991936i \(-0.540451\pi\)
−0.126739 + 0.991936i \(0.540451\pi\)
\(632\) −45.7206 −1.81867
\(633\) −1.95078 −0.0775364
\(634\) −27.3342 −1.08558
\(635\) 12.3302 0.489308
\(636\) 0.112620 0.00446566
\(637\) 0 0
\(638\) −65.8226 −2.60594
\(639\) 10.3325 0.408746
\(640\) −11.8113 −0.466883
\(641\) 22.6045 0.892825 0.446413 0.894827i \(-0.352701\pi\)
0.446413 + 0.894827i \(0.352701\pi\)
\(642\) 2.96520 0.117027
\(643\) −33.9609 −1.33929 −0.669644 0.742682i \(-0.733553\pi\)
−0.669644 + 0.742682i \(0.733553\pi\)
\(644\) 0.135555 0.00534161
\(645\) −6.33206 −0.249324
\(646\) 7.28220 0.286514
\(647\) −20.8248 −0.818709 −0.409354 0.912375i \(-0.634246\pi\)
−0.409354 + 0.912375i \(0.634246\pi\)
\(648\) −2.78288 −0.109322
\(649\) 12.8481 0.504331
\(650\) 0 0
\(651\) −7.98067 −0.312787
\(652\) −1.18707 −0.0464894
\(653\) 24.5455 0.960541 0.480271 0.877120i \(-0.340538\pi\)
0.480271 + 0.877120i \(0.340538\pi\)
\(654\) −21.9976 −0.860173
\(655\) 15.3053 0.598027
\(656\) −26.6884 −1.04201
\(657\) −6.47945 −0.252787
\(658\) −30.5923 −1.19261
\(659\) 12.4224 0.483906 0.241953 0.970288i \(-0.422212\pi\)
0.241953 + 0.970288i \(0.422212\pi\)
\(660\) −0.383608 −0.0149319
\(661\) 29.1593 1.13417 0.567083 0.823661i \(-0.308072\pi\)
0.567083 + 0.823661i \(0.308072\pi\)
\(662\) −4.28899 −0.166696
\(663\) 0 0
\(664\) 9.38307 0.364134
\(665\) −5.15245 −0.199803
\(666\) 9.88393 0.382994
\(667\) 3.47490 0.134549
\(668\) 0.443993 0.0171786
\(669\) 13.2382 0.511819
\(670\) −9.69174 −0.374425
\(671\) 10.5437 0.407034
\(672\) 1.63505 0.0630734
\(673\) −0.223030 −0.00859719 −0.00429860 0.999991i \(-0.501368\pi\)
−0.00429860 + 0.999991i \(0.501368\pi\)
\(674\) −24.3620 −0.938390
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 27.6651 1.06325 0.531627 0.846978i \(-0.321581\pi\)
0.531627 + 0.846978i \(0.321581\pi\)
\(678\) −20.9204 −0.803442
\(679\) 88.8760 3.41075
\(680\) 12.7676 0.489615
\(681\) −4.08165 −0.156409
\(682\) −15.2042 −0.582198
\(683\) 42.5702 1.62890 0.814452 0.580230i \(-0.197037\pi\)
0.814452 + 0.580230i \(0.197037\pi\)
\(684\) 0.0685643 0.00262162
\(685\) 15.1058 0.577162
\(686\) 51.7303 1.97507
\(687\) 23.1885 0.884698
\(688\) 26.0894 0.994649
\(689\) 0 0
\(690\) 0.673212 0.0256287
\(691\) −40.7207 −1.54909 −0.774543 0.632521i \(-0.782020\pi\)
−0.774543 + 0.632521i \(0.782020\pi\)
\(692\) 0.371247 0.0141127
\(693\) −28.8272 −1.09505
\(694\) 9.57256 0.363369
\(695\) −2.63072 −0.0997889
\(696\) 20.6268 0.781859
\(697\) 29.7179 1.12564
\(698\) −13.8242 −0.523253
\(699\) 0.878514 0.0332284
\(700\) 0.289142 0.0109285
\(701\) −0.483385 −0.0182572 −0.00912861 0.999958i \(-0.502906\pi\)
−0.00912861 + 0.999958i \(0.502906\pi\)
\(702\) 0 0
\(703\) 7.60821 0.286949
\(704\) −47.8461 −1.80327
\(705\) −4.57038 −0.172130
\(706\) −40.2611 −1.51525
\(707\) 74.2901 2.79396
\(708\) 0.128868 0.00484317
\(709\) −17.6902 −0.664370 −0.332185 0.943214i \(-0.607786\pi\)
−0.332185 + 0.943214i \(0.607786\pi\)
\(710\) −14.8372 −0.556829
\(711\) 16.4292 0.616144
\(712\) 26.8892 1.00772
\(713\) 0.802658 0.0300598
\(714\) −30.7097 −1.14928
\(715\) 0 0
\(716\) −0.569427 −0.0212805
\(717\) 18.2068 0.679944
\(718\) 2.90473 0.108404
\(719\) 12.5472 0.467931 0.233966 0.972245i \(-0.424830\pi\)
0.233966 + 0.972245i \(0.424830\pi\)
\(720\) 4.12021 0.153551
\(721\) 28.8516 1.07449
\(722\) −25.5291 −0.950094
\(723\) 16.4897 0.613258
\(724\) −0.455193 −0.0169171
\(725\) 7.41205 0.275277
\(726\) −39.1237 −1.45202
\(727\) −5.26794 −0.195377 −0.0976886 0.995217i \(-0.531145\pi\)
−0.0976886 + 0.995217i \(0.531145\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 9.30434 0.344369
\(731\) −29.0509 −1.07449
\(732\) 0.105755 0.00390881
\(733\) 7.76987 0.286987 0.143493 0.989651i \(-0.454166\pi\)
0.143493 + 0.989651i \(0.454166\pi\)
\(734\) −6.75846 −0.249459
\(735\) 14.7283 0.543262
\(736\) −0.164446 −0.00606154
\(737\) −41.7392 −1.53748
\(738\) 9.30144 0.342391
\(739\) −1.96879 −0.0724232 −0.0362116 0.999344i \(-0.511529\pi\)
−0.0362116 + 0.999344i \(0.511529\pi\)
\(740\) −0.426953 −0.0156951
\(741\) 0 0
\(742\) −12.1528 −0.446144
\(743\) −47.3835 −1.73833 −0.869167 0.494520i \(-0.835344\pi\)
−0.869167 + 0.494520i \(0.835344\pi\)
\(744\) 4.76454 0.174676
\(745\) 19.3002 0.707105
\(746\) −6.40438 −0.234481
\(747\) −3.37171 −0.123364
\(748\) −1.75996 −0.0643504
\(749\) −9.62540 −0.351705
\(750\) 1.43598 0.0524345
\(751\) −28.8155 −1.05149 −0.525746 0.850642i \(-0.676214\pi\)
−0.525746 + 0.850642i \(0.676214\pi\)
\(752\) 18.8309 0.686693
\(753\) −24.2256 −0.882832
\(754\) 0 0
\(755\) −9.60278 −0.349481
\(756\) −0.289142 −0.0105160
\(757\) 4.54992 0.165370 0.0826848 0.996576i \(-0.473651\pi\)
0.0826848 + 0.996576i \(0.473651\pi\)
\(758\) 2.96078 0.107540
\(759\) 2.89931 0.105238
\(760\) 3.07606 0.111580
\(761\) −15.7565 −0.571173 −0.285586 0.958353i \(-0.592188\pi\)
−0.285586 + 0.958353i \(0.592188\pi\)
\(762\) 17.7058 0.641415
\(763\) 71.4069 2.58510
\(764\) 0.789255 0.0285542
\(765\) −4.58791 −0.165876
\(766\) −22.9272 −0.828394
\(767\) 0 0
\(768\) −1.48729 −0.0536679
\(769\) −20.7562 −0.748489 −0.374245 0.927330i \(-0.622098\pi\)
−0.374245 + 0.927330i \(0.622098\pi\)
\(770\) 41.3952 1.49178
\(771\) −2.13383 −0.0768481
\(772\) 1.05490 0.0379668
\(773\) 26.6310 0.957852 0.478926 0.877855i \(-0.341026\pi\)
0.478926 + 0.877855i \(0.341026\pi\)
\(774\) −9.09269 −0.326830
\(775\) 1.71209 0.0615000
\(776\) −53.0599 −1.90474
\(777\) −32.0845 −1.15102
\(778\) −5.40277 −0.193699
\(779\) 7.15984 0.256528
\(780\) 0 0
\(781\) −63.8989 −2.28648
\(782\) 3.08864 0.110449
\(783\) −7.41205 −0.264885
\(784\) −60.6837 −2.16728
\(785\) −17.7352 −0.632997
\(786\) 21.9780 0.783931
\(787\) 1.10935 0.0395441 0.0197721 0.999805i \(-0.493706\pi\)
0.0197721 + 0.999805i \(0.493706\pi\)
\(788\) 0.152961 0.00544901
\(789\) −4.74578 −0.168954
\(790\) −23.5920 −0.839366
\(791\) 67.9102 2.41461
\(792\) 17.2101 0.611535
\(793\) 0 0
\(794\) 41.7735 1.48249
\(795\) −1.81559 −0.0643922
\(796\) −0.427609 −0.0151562
\(797\) 10.5839 0.374901 0.187451 0.982274i \(-0.439978\pi\)
0.187451 + 0.982274i \(0.439978\pi\)
\(798\) −7.39879 −0.261914
\(799\) −20.9685 −0.741811
\(800\) −0.350766 −0.0124015
\(801\) −9.66236 −0.341403
\(802\) −28.8734 −1.01955
\(803\) 40.0708 1.41407
\(804\) −0.418651 −0.0147647
\(805\) −2.18533 −0.0770228
\(806\) 0 0
\(807\) −0.699303 −0.0246166
\(808\) −44.3519 −1.56029
\(809\) −38.9573 −1.36967 −0.684833 0.728700i \(-0.740125\pi\)
−0.684833 + 0.728700i \(0.740125\pi\)
\(810\) −1.43598 −0.0504551
\(811\) −7.30523 −0.256521 −0.128261 0.991740i \(-0.540939\pi\)
−0.128261 + 0.991740i \(0.540939\pi\)
\(812\) 2.14313 0.0752092
\(813\) −12.2889 −0.430991
\(814\) −61.1250 −2.14243
\(815\) 19.1373 0.670349
\(816\) 18.9032 0.661743
\(817\) −6.99915 −0.244869
\(818\) 15.4799 0.541244
\(819\) 0 0
\(820\) −0.401791 −0.0140312
\(821\) 23.3882 0.816255 0.408127 0.912925i \(-0.366182\pi\)
0.408127 + 0.912925i \(0.366182\pi\)
\(822\) 21.6916 0.756580
\(823\) −33.0256 −1.15120 −0.575600 0.817732i \(-0.695231\pi\)
−0.575600 + 0.817732i \(0.695231\pi\)
\(824\) −17.2247 −0.600050
\(825\) 6.18428 0.215309
\(826\) −13.9062 −0.483859
\(827\) −28.0039 −0.973789 −0.486895 0.873461i \(-0.661870\pi\)
−0.486895 + 0.873461i \(0.661870\pi\)
\(828\) 0.0290805 0.00101062
\(829\) 22.3965 0.777861 0.388931 0.921267i \(-0.372845\pi\)
0.388931 + 0.921267i \(0.372845\pi\)
\(830\) 4.84170 0.168058
\(831\) −25.8088 −0.895298
\(832\) 0 0
\(833\) 67.5721 2.34124
\(834\) −3.77765 −0.130809
\(835\) −7.15778 −0.247705
\(836\) −0.424021 −0.0146651
\(837\) −1.71209 −0.0591784
\(838\) 8.28381 0.286159
\(839\) 45.8682 1.58355 0.791773 0.610816i \(-0.209158\pi\)
0.791773 + 0.610816i \(0.209158\pi\)
\(840\) −12.9720 −0.447577
\(841\) 25.9385 0.894429
\(842\) −12.1037 −0.417120
\(843\) 28.6333 0.986184
\(844\) 0.121006 0.00416518
\(845\) 0 0
\(846\) −6.56295 −0.225639
\(847\) 127.001 4.36379
\(848\) 7.48060 0.256885
\(849\) −23.2312 −0.797292
\(850\) 6.58813 0.225971
\(851\) 3.22691 0.110617
\(852\) −0.640916 −0.0219574
\(853\) −8.06735 −0.276221 −0.138110 0.990417i \(-0.544103\pi\)
−0.138110 + 0.990417i \(0.544103\pi\)
\(854\) −11.4120 −0.390512
\(855\) −1.10535 −0.0378022
\(856\) 5.74646 0.196410
\(857\) 48.7793 1.66627 0.833134 0.553071i \(-0.186544\pi\)
0.833134 + 0.553071i \(0.186544\pi\)
\(858\) 0 0
\(859\) 23.7741 0.811161 0.405580 0.914059i \(-0.367069\pi\)
0.405580 + 0.914059i \(0.367069\pi\)
\(860\) 0.392774 0.0133935
\(861\) −30.1937 −1.02900
\(862\) 19.6757 0.670157
\(863\) 29.6339 1.00875 0.504375 0.863485i \(-0.331723\pi\)
0.504375 + 0.863485i \(0.331723\pi\)
\(864\) 0.350766 0.0119333
\(865\) −5.98501 −0.203496
\(866\) 37.8339 1.28565
\(867\) −4.04892 −0.137508
\(868\) 0.495036 0.0168026
\(869\) −101.603 −3.44665
\(870\) 10.6435 0.360849
\(871\) 0 0
\(872\) −42.6306 −1.44365
\(873\) 19.0665 0.645304
\(874\) 0.744136 0.0251708
\(875\) −4.66136 −0.157583
\(876\) 0.401916 0.0135795
\(877\) 1.32718 0.0448156 0.0224078 0.999749i \(-0.492867\pi\)
0.0224078 + 0.999749i \(0.492867\pi\)
\(878\) −15.1986 −0.512928
\(879\) 17.7782 0.599642
\(880\) −25.4806 −0.858949
\(881\) 47.1336 1.58797 0.793986 0.607936i \(-0.208002\pi\)
0.793986 + 0.607936i \(0.208002\pi\)
\(882\) 21.1495 0.712141
\(883\) −24.1882 −0.813999 −0.406999 0.913428i \(-0.633425\pi\)
−0.406999 + 0.913428i \(0.633425\pi\)
\(884\) 0 0
\(885\) −2.07754 −0.0698356
\(886\) −20.9092 −0.702457
\(887\) −27.7606 −0.932109 −0.466054 0.884756i \(-0.654325\pi\)
−0.466054 + 0.884756i \(0.654325\pi\)
\(888\) 19.1548 0.642792
\(889\) −57.4754 −1.92766
\(890\) 13.8749 0.465089
\(891\) −6.18428 −0.207181
\(892\) −0.821158 −0.0274944
\(893\) −5.05187 −0.169054
\(894\) 27.7146 0.926916
\(895\) 9.17996 0.306852
\(896\) 55.0567 1.83932
\(897\) 0 0
\(898\) −2.61414 −0.0872349
\(899\) 12.6901 0.423238
\(900\) 0.0620294 0.00206765
\(901\) −8.32974 −0.277504
\(902\) −57.5228 −1.91530
\(903\) 29.5160 0.982232
\(904\) −40.5431 −1.34844
\(905\) 7.33835 0.243935
\(906\) −13.7894 −0.458121
\(907\) 4.74347 0.157504 0.0787522 0.996894i \(-0.474906\pi\)
0.0787522 + 0.996894i \(0.474906\pi\)
\(908\) 0.253183 0.00840216
\(909\) 15.9374 0.528610
\(910\) 0 0
\(911\) 16.9192 0.560560 0.280280 0.959918i \(-0.409573\pi\)
0.280280 + 0.959918i \(0.409573\pi\)
\(912\) 4.55428 0.150807
\(913\) 20.8516 0.690088
\(914\) −22.4348 −0.742076
\(915\) −1.70491 −0.0563627
\(916\) −1.43837 −0.0475251
\(917\) −71.3435 −2.35597
\(918\) −6.58813 −0.217441
\(919\) 38.9332 1.28429 0.642145 0.766584i \(-0.278045\pi\)
0.642145 + 0.766584i \(0.278045\pi\)
\(920\) 1.30467 0.0430135
\(921\) 11.3286 0.373289
\(922\) 0.965657 0.0318022
\(923\) 0 0
\(924\) 1.78813 0.0588253
\(925\) 6.88307 0.226314
\(926\) 42.1010 1.38353
\(927\) 6.18951 0.203290
\(928\) −2.59990 −0.0853457
\(929\) 29.2709 0.960347 0.480174 0.877173i \(-0.340574\pi\)
0.480174 + 0.877173i \(0.340574\pi\)
\(930\) 2.45852 0.0806180
\(931\) 16.2800 0.533554
\(932\) −0.0544937 −0.00178500
\(933\) 3.64202 0.119234
\(934\) −17.9553 −0.587515
\(935\) 28.3729 0.927894
\(936\) 0 0
\(937\) 55.9440 1.82761 0.913805 0.406154i \(-0.133130\pi\)
0.913805 + 0.406154i \(0.133130\pi\)
\(938\) 45.1767 1.47507
\(939\) 26.9199 0.878499
\(940\) 0.283498 0.00924668
\(941\) 1.75509 0.0572143 0.0286072 0.999591i \(-0.490893\pi\)
0.0286072 + 0.999591i \(0.490893\pi\)
\(942\) −25.4674 −0.829771
\(943\) 3.03674 0.0988898
\(944\) 8.55989 0.278601
\(945\) 4.66136 0.151634
\(946\) 56.2318 1.82825
\(947\) −34.3262 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(948\) −1.01910 −0.0330987
\(949\) 0 0
\(950\) 1.58726 0.0514975
\(951\) 19.0352 0.617260
\(952\) −59.5145 −1.92887
\(953\) 18.9918 0.615204 0.307602 0.951515i \(-0.400473\pi\)
0.307602 + 0.951515i \(0.400473\pi\)
\(954\) −2.60714 −0.0844092
\(955\) −12.7239 −0.411735
\(956\) −1.12935 −0.0365259
\(957\) 45.8382 1.48174
\(958\) 45.6582 1.47515
\(959\) −70.4136 −2.27377
\(960\) 7.73673 0.249702
\(961\) −28.0688 −0.905444
\(962\) 0 0
\(963\) −2.06493 −0.0665415
\(964\) −1.02285 −0.0329436
\(965\) −17.0065 −0.547459
\(966\) −3.13809 −0.100966
\(967\) 21.0962 0.678407 0.339203 0.940713i \(-0.389842\pi\)
0.339203 + 0.940713i \(0.389842\pi\)
\(968\) −75.8206 −2.43697
\(969\) −5.07125 −0.162912
\(970\) −27.3791 −0.879089
\(971\) 3.35505 0.107669 0.0538344 0.998550i \(-0.482856\pi\)
0.0538344 + 0.998550i \(0.482856\pi\)
\(972\) −0.0620294 −0.00198959
\(973\) 12.2627 0.393125
\(974\) 54.5358 1.74744
\(975\) 0 0
\(976\) 7.02461 0.224852
\(977\) −33.8647 −1.08343 −0.541714 0.840563i \(-0.682224\pi\)
−0.541714 + 0.840563i \(0.682224\pi\)
\(978\) 27.4807 0.878735
\(979\) 59.7548 1.90977
\(980\) −0.913588 −0.0291835
\(981\) 15.3189 0.489094
\(982\) −16.9536 −0.541010
\(983\) 4.75377 0.151622 0.0758108 0.997122i \(-0.475845\pi\)
0.0758108 + 0.997122i \(0.475845\pi\)
\(984\) 18.0259 0.574645
\(985\) −2.46594 −0.0785714
\(986\) 48.8316 1.55511
\(987\) 21.3042 0.678120
\(988\) 0 0
\(989\) −2.96858 −0.0943955
\(990\) 8.88049 0.282240
\(991\) −40.3098 −1.28048 −0.640242 0.768173i \(-0.721166\pi\)
−0.640242 + 0.768173i \(0.721166\pi\)
\(992\) −0.600543 −0.0190673
\(993\) 2.98681 0.0947835
\(994\) 69.1614 2.19367
\(995\) 6.89365 0.218543
\(996\) 0.209145 0.00662702
\(997\) −8.91196 −0.282245 −0.141122 0.989992i \(-0.545071\pi\)
−0.141122 + 0.989992i \(0.545071\pi\)
\(998\) −57.3884 −1.81660
\(999\) −6.88307 −0.217771
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2535.2.a.bm.1.6 9
3.2 odd 2 7605.2.a.cr.1.4 9
13.12 even 2 2535.2.a.bn.1.4 yes 9
39.38 odd 2 7605.2.a.cq.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2535.2.a.bm.1.6 9 1.1 even 1 trivial
2535.2.a.bn.1.4 yes 9 13.12 even 2
7605.2.a.cq.1.6 9 39.38 odd 2
7605.2.a.cr.1.4 9 3.2 odd 2