Properties

Label 2535.2.a.bm.1.3
Level $2535$
Weight $2$
Character 2535.1
Self dual yes
Analytic conductor $20.242$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2535,2,Mod(1,2535)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2535.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2535, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-9,10,-9,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2420769124\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 9x^{7} + 29x^{6} + 17x^{5} - 83x^{4} + 17x^{3} + 70x^{2} - 48x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.813006\) of defining polynomial
Character \(\chi\) \(=\) 2535.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.16585 q^{2} -1.00000 q^{3} -0.640788 q^{4} -1.00000 q^{5} +1.16585 q^{6} +0.957202 q^{7} +3.07877 q^{8} +1.00000 q^{9} +1.16585 q^{10} -5.05761 q^{11} +0.640788 q^{12} -1.11596 q^{14} +1.00000 q^{15} -2.30781 q^{16} -1.25739 q^{17} -1.16585 q^{18} +2.44704 q^{19} +0.640788 q^{20} -0.957202 q^{21} +5.89643 q^{22} -5.45555 q^{23} -3.07877 q^{24} +1.00000 q^{25} -1.00000 q^{27} -0.613364 q^{28} +10.2006 q^{29} -1.16585 q^{30} -1.02783 q^{31} -3.46697 q^{32} +5.05761 q^{33} +1.46593 q^{34} -0.957202 q^{35} -0.640788 q^{36} -0.939148 q^{37} -2.85289 q^{38} -3.07877 q^{40} -7.55650 q^{41} +1.11596 q^{42} +0.259367 q^{43} +3.24086 q^{44} -1.00000 q^{45} +6.36037 q^{46} +0.115292 q^{47} +2.30781 q^{48} -6.08376 q^{49} -1.16585 q^{50} +1.25739 q^{51} -2.43698 q^{53} +1.16585 q^{54} +5.05761 q^{55} +2.94700 q^{56} -2.44704 q^{57} -11.8924 q^{58} -8.32438 q^{59} -0.640788 q^{60} +13.1657 q^{61} +1.19830 q^{62} +0.957202 q^{63} +8.65760 q^{64} -5.89643 q^{66} -11.8247 q^{67} +0.805722 q^{68} +5.45555 q^{69} +1.11596 q^{70} +0.977874 q^{71} +3.07877 q^{72} +7.06112 q^{73} +1.09491 q^{74} -1.00000 q^{75} -1.56804 q^{76} -4.84116 q^{77} -13.0206 q^{79} +2.30781 q^{80} +1.00000 q^{81} +8.80977 q^{82} -3.76930 q^{83} +0.613364 q^{84} +1.25739 q^{85} -0.302384 q^{86} -10.2006 q^{87} -15.5712 q^{88} -17.9201 q^{89} +1.16585 q^{90} +3.49585 q^{92} +1.02783 q^{93} -0.134414 q^{94} -2.44704 q^{95} +3.46697 q^{96} +8.42595 q^{97} +7.09277 q^{98} -5.05761 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 9 q^{3} + 10 q^{4} - 9 q^{5} + 10 q^{7} - 3 q^{8} + 9 q^{9} - 11 q^{11} - 10 q^{12} + 10 q^{14} + 9 q^{15} + 8 q^{16} + 18 q^{17} - 10 q^{19} - 10 q^{20} - 10 q^{21} + 17 q^{22} - 7 q^{23} + 3 q^{24}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.16585 −0.824382 −0.412191 0.911097i \(-0.635236\pi\)
−0.412191 + 0.911097i \(0.635236\pi\)
\(3\) −1.00000 −0.577350
\(4\) −0.640788 −0.320394
\(5\) −1.00000 −0.447214
\(6\) 1.16585 0.475957
\(7\) 0.957202 0.361788 0.180894 0.983503i \(-0.442101\pi\)
0.180894 + 0.983503i \(0.442101\pi\)
\(8\) 3.07877 1.08851
\(9\) 1.00000 0.333333
\(10\) 1.16585 0.368675
\(11\) −5.05761 −1.52493 −0.762464 0.647031i \(-0.776011\pi\)
−0.762464 + 0.647031i \(0.776011\pi\)
\(12\) 0.640788 0.184980
\(13\) 0 0
\(14\) −1.11596 −0.298252
\(15\) 1.00000 0.258199
\(16\) −2.30781 −0.576954
\(17\) −1.25739 −0.304962 −0.152481 0.988306i \(-0.548726\pi\)
−0.152481 + 0.988306i \(0.548726\pi\)
\(18\) −1.16585 −0.274794
\(19\) 2.44704 0.561390 0.280695 0.959797i \(-0.409435\pi\)
0.280695 + 0.959797i \(0.409435\pi\)
\(20\) 0.640788 0.143285
\(21\) −0.957202 −0.208879
\(22\) 5.89643 1.25712
\(23\) −5.45555 −1.13756 −0.568781 0.822489i \(-0.692585\pi\)
−0.568781 + 0.822489i \(0.692585\pi\)
\(24\) −3.07877 −0.628451
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) −0.613364 −0.115915
\(29\) 10.2006 1.89421 0.947103 0.320929i \(-0.103995\pi\)
0.947103 + 0.320929i \(0.103995\pi\)
\(30\) −1.16585 −0.212855
\(31\) −1.02783 −0.184604 −0.0923022 0.995731i \(-0.529423\pi\)
−0.0923022 + 0.995731i \(0.529423\pi\)
\(32\) −3.46697 −0.612879
\(33\) 5.05761 0.880418
\(34\) 1.46593 0.251405
\(35\) −0.957202 −0.161797
\(36\) −0.640788 −0.106798
\(37\) −0.939148 −0.154395 −0.0771975 0.997016i \(-0.524597\pi\)
−0.0771975 + 0.997016i \(0.524597\pi\)
\(38\) −2.85289 −0.462800
\(39\) 0 0
\(40\) −3.07877 −0.486796
\(41\) −7.55650 −1.18013 −0.590064 0.807357i \(-0.700897\pi\)
−0.590064 + 0.807357i \(0.700897\pi\)
\(42\) 1.11596 0.172196
\(43\) 0.259367 0.0395531 0.0197765 0.999804i \(-0.493705\pi\)
0.0197765 + 0.999804i \(0.493705\pi\)
\(44\) 3.24086 0.488578
\(45\) −1.00000 −0.149071
\(46\) 6.36037 0.937786
\(47\) 0.115292 0.0168171 0.00840855 0.999965i \(-0.497323\pi\)
0.00840855 + 0.999965i \(0.497323\pi\)
\(48\) 2.30781 0.333104
\(49\) −6.08376 −0.869109
\(50\) −1.16585 −0.164876
\(51\) 1.25739 0.176070
\(52\) 0 0
\(53\) −2.43698 −0.334745 −0.167372 0.985894i \(-0.553528\pi\)
−0.167372 + 0.985894i \(0.553528\pi\)
\(54\) 1.16585 0.158652
\(55\) 5.05761 0.681969
\(56\) 2.94700 0.393810
\(57\) −2.44704 −0.324119
\(58\) −11.8924 −1.56155
\(59\) −8.32438 −1.08374 −0.541871 0.840461i \(-0.682284\pi\)
−0.541871 + 0.840461i \(0.682284\pi\)
\(60\) −0.640788 −0.0827254
\(61\) 13.1657 1.68569 0.842845 0.538156i \(-0.180879\pi\)
0.842845 + 0.538156i \(0.180879\pi\)
\(62\) 1.19830 0.152185
\(63\) 0.957202 0.120596
\(64\) 8.65760 1.08220
\(65\) 0 0
\(66\) −5.89643 −0.725801
\(67\) −11.8247 −1.44462 −0.722311 0.691569i \(-0.756920\pi\)
−0.722311 + 0.691569i \(0.756920\pi\)
\(68\) 0.805722 0.0977081
\(69\) 5.45555 0.656772
\(70\) 1.11596 0.133382
\(71\) 0.977874 0.116052 0.0580261 0.998315i \(-0.481519\pi\)
0.0580261 + 0.998315i \(0.481519\pi\)
\(72\) 3.07877 0.362836
\(73\) 7.06112 0.826442 0.413221 0.910631i \(-0.364404\pi\)
0.413221 + 0.910631i \(0.364404\pi\)
\(74\) 1.09491 0.127280
\(75\) −1.00000 −0.115470
\(76\) −1.56804 −0.179866
\(77\) −4.84116 −0.551701
\(78\) 0 0
\(79\) −13.0206 −1.46493 −0.732467 0.680803i \(-0.761631\pi\)
−0.732467 + 0.680803i \(0.761631\pi\)
\(80\) 2.30781 0.258022
\(81\) 1.00000 0.111111
\(82\) 8.80977 0.972876
\(83\) −3.76930 −0.413734 −0.206867 0.978369i \(-0.566327\pi\)
−0.206867 + 0.978369i \(0.566327\pi\)
\(84\) 0.613364 0.0669235
\(85\) 1.25739 0.136383
\(86\) −0.302384 −0.0326069
\(87\) −10.2006 −1.09362
\(88\) −15.5712 −1.65990
\(89\) −17.9201 −1.89952 −0.949762 0.312972i \(-0.898675\pi\)
−0.949762 + 0.312972i \(0.898675\pi\)
\(90\) 1.16585 0.122892
\(91\) 0 0
\(92\) 3.49585 0.364468
\(93\) 1.02783 0.106581
\(94\) −0.134414 −0.0138637
\(95\) −2.44704 −0.251061
\(96\) 3.46697 0.353846
\(97\) 8.42595 0.855525 0.427763 0.903891i \(-0.359302\pi\)
0.427763 + 0.903891i \(0.359302\pi\)
\(98\) 7.09277 0.716478
\(99\) −5.05761 −0.508309
\(100\) −0.640788 −0.0640788
\(101\) 4.78493 0.476118 0.238059 0.971251i \(-0.423489\pi\)
0.238059 + 0.971251i \(0.423489\pi\)
\(102\) −1.46593 −0.145149
\(103\) 10.6406 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(104\) 0 0
\(105\) 0.957202 0.0934134
\(106\) 2.84116 0.275958
\(107\) 16.5805 1.60290 0.801449 0.598063i \(-0.204063\pi\)
0.801449 + 0.598063i \(0.204063\pi\)
\(108\) 0.640788 0.0616599
\(109\) −12.8615 −1.23191 −0.615953 0.787783i \(-0.711229\pi\)
−0.615953 + 0.787783i \(0.711229\pi\)
\(110\) −5.89643 −0.562203
\(111\) 0.939148 0.0891400
\(112\) −2.20905 −0.208735
\(113\) 13.2710 1.24843 0.624213 0.781254i \(-0.285420\pi\)
0.624213 + 0.781254i \(0.285420\pi\)
\(114\) 2.85289 0.267198
\(115\) 5.45555 0.508733
\(116\) −6.53643 −0.606892
\(117\) 0 0
\(118\) 9.70500 0.893418
\(119\) −1.20358 −0.110332
\(120\) 3.07877 0.281052
\(121\) 14.5795 1.32541
\(122\) −15.3492 −1.38965
\(123\) 7.55650 0.681347
\(124\) 0.658624 0.0591462
\(125\) −1.00000 −0.0894427
\(126\) −1.11596 −0.0994173
\(127\) 13.4321 1.19191 0.595953 0.803020i \(-0.296775\pi\)
0.595953 + 0.803020i \(0.296775\pi\)
\(128\) −3.15955 −0.279268
\(129\) −0.259367 −0.0228360
\(130\) 0 0
\(131\) 8.09375 0.707154 0.353577 0.935405i \(-0.384965\pi\)
0.353577 + 0.935405i \(0.384965\pi\)
\(132\) −3.24086 −0.282081
\(133\) 2.34231 0.203104
\(134\) 13.7859 1.19092
\(135\) 1.00000 0.0860663
\(136\) −3.87122 −0.331954
\(137\) 17.5189 1.49674 0.748372 0.663279i \(-0.230836\pi\)
0.748372 + 0.663279i \(0.230836\pi\)
\(138\) −6.36037 −0.541431
\(139\) −8.84347 −0.750094 −0.375047 0.927006i \(-0.622373\pi\)
−0.375047 + 0.927006i \(0.622373\pi\)
\(140\) 0.613364 0.0518387
\(141\) −0.115292 −0.00970935
\(142\) −1.14006 −0.0956714
\(143\) 0 0
\(144\) −2.30781 −0.192318
\(145\) −10.2006 −0.847115
\(146\) −8.23223 −0.681304
\(147\) 6.08376 0.501780
\(148\) 0.601795 0.0494672
\(149\) −7.44717 −0.610096 −0.305048 0.952337i \(-0.598673\pi\)
−0.305048 + 0.952337i \(0.598673\pi\)
\(150\) 1.16585 0.0951915
\(151\) 18.9412 1.54141 0.770705 0.637192i \(-0.219904\pi\)
0.770705 + 0.637192i \(0.219904\pi\)
\(152\) 7.53388 0.611078
\(153\) −1.25739 −0.101654
\(154\) 5.64408 0.454813
\(155\) 1.02783 0.0825576
\(156\) 0 0
\(157\) 20.1480 1.60799 0.803993 0.594638i \(-0.202705\pi\)
0.803993 + 0.594638i \(0.202705\pi\)
\(158\) 15.1801 1.20766
\(159\) 2.43698 0.193265
\(160\) 3.46697 0.274088
\(161\) −5.22207 −0.411557
\(162\) −1.16585 −0.0915980
\(163\) 9.33184 0.730926 0.365463 0.930826i \(-0.380911\pi\)
0.365463 + 0.930826i \(0.380911\pi\)
\(164\) 4.84212 0.378106
\(165\) −5.05761 −0.393735
\(166\) 4.39444 0.341075
\(167\) −0.308104 −0.0238418 −0.0119209 0.999929i \(-0.503795\pi\)
−0.0119209 + 0.999929i \(0.503795\pi\)
\(168\) −2.94700 −0.227366
\(169\) 0 0
\(170\) −1.46593 −0.112432
\(171\) 2.44704 0.187130
\(172\) −0.166199 −0.0126726
\(173\) −9.83812 −0.747978 −0.373989 0.927433i \(-0.622010\pi\)
−0.373989 + 0.927433i \(0.622010\pi\)
\(174\) 11.8924 0.901562
\(175\) 0.957202 0.0723577
\(176\) 11.6720 0.879813
\(177\) 8.32438 0.625699
\(178\) 20.8922 1.56593
\(179\) −3.92634 −0.293469 −0.146734 0.989176i \(-0.546876\pi\)
−0.146734 + 0.989176i \(0.546876\pi\)
\(180\) 0.640788 0.0477615
\(181\) 21.3537 1.58721 0.793603 0.608436i \(-0.208203\pi\)
0.793603 + 0.608436i \(0.208203\pi\)
\(182\) 0 0
\(183\) −13.1657 −0.973234
\(184\) −16.7964 −1.23825
\(185\) 0.939148 0.0690475
\(186\) −1.19830 −0.0878638
\(187\) 6.35940 0.465046
\(188\) −0.0738779 −0.00538810
\(189\) −0.957202 −0.0696262
\(190\) 2.85289 0.206970
\(191\) 2.06081 0.149115 0.0745577 0.997217i \(-0.476246\pi\)
0.0745577 + 0.997217i \(0.476246\pi\)
\(192\) −8.65760 −0.624809
\(193\) 10.6654 0.767709 0.383855 0.923394i \(-0.374596\pi\)
0.383855 + 0.923394i \(0.374596\pi\)
\(194\) −9.82341 −0.705280
\(195\) 0 0
\(196\) 3.89840 0.278457
\(197\) 17.2608 1.22978 0.614889 0.788613i \(-0.289201\pi\)
0.614889 + 0.788613i \(0.289201\pi\)
\(198\) 5.89643 0.419041
\(199\) 1.48323 0.105143 0.0525716 0.998617i \(-0.483258\pi\)
0.0525716 + 0.998617i \(0.483258\pi\)
\(200\) 3.07877 0.217702
\(201\) 11.8247 0.834053
\(202\) −5.57852 −0.392503
\(203\) 9.76405 0.685302
\(204\) −0.805722 −0.0564118
\(205\) 7.55650 0.527769
\(206\) −12.4053 −0.864319
\(207\) −5.45555 −0.379187
\(208\) 0 0
\(209\) −12.3762 −0.856080
\(210\) −1.11596 −0.0770083
\(211\) 4.95941 0.341420 0.170710 0.985321i \(-0.445394\pi\)
0.170710 + 0.985321i \(0.445394\pi\)
\(212\) 1.56159 0.107250
\(213\) −0.977874 −0.0670028
\(214\) −19.3304 −1.32140
\(215\) −0.259367 −0.0176887
\(216\) −3.07877 −0.209484
\(217\) −0.983845 −0.0667878
\(218\) 14.9946 1.01556
\(219\) −7.06112 −0.477146
\(220\) −3.24086 −0.218499
\(221\) 0 0
\(222\) −1.09491 −0.0734854
\(223\) 28.1738 1.88666 0.943329 0.331860i \(-0.107676\pi\)
0.943329 + 0.331860i \(0.107676\pi\)
\(224\) −3.31859 −0.221732
\(225\) 1.00000 0.0666667
\(226\) −15.4720 −1.02918
\(227\) −21.1618 −1.40456 −0.702280 0.711901i \(-0.747835\pi\)
−0.702280 + 0.711901i \(0.747835\pi\)
\(228\) 1.56804 0.103846
\(229\) 24.2688 1.60373 0.801865 0.597506i \(-0.203841\pi\)
0.801865 + 0.597506i \(0.203841\pi\)
\(230\) −6.36037 −0.419391
\(231\) 4.84116 0.318525
\(232\) 31.4053 2.06186
\(233\) −24.5751 −1.60997 −0.804983 0.593298i \(-0.797826\pi\)
−0.804983 + 0.593298i \(0.797826\pi\)
\(234\) 0 0
\(235\) −0.115292 −0.00752083
\(236\) 5.33417 0.347225
\(237\) 13.0206 0.845780
\(238\) 1.40319 0.0909556
\(239\) 25.0729 1.62183 0.810916 0.585163i \(-0.198969\pi\)
0.810916 + 0.585163i \(0.198969\pi\)
\(240\) −2.30781 −0.148969
\(241\) −1.78188 −0.114781 −0.0573904 0.998352i \(-0.518278\pi\)
−0.0573904 + 0.998352i \(0.518278\pi\)
\(242\) −16.9975 −1.09264
\(243\) −1.00000 −0.0641500
\(244\) −8.43640 −0.540085
\(245\) 6.08376 0.388677
\(246\) −8.80977 −0.561690
\(247\) 0 0
\(248\) −3.16446 −0.200944
\(249\) 3.76930 0.238870
\(250\) 1.16585 0.0737350
\(251\) −17.7480 −1.12024 −0.560122 0.828410i \(-0.689246\pi\)
−0.560122 + 0.828410i \(0.689246\pi\)
\(252\) −0.613364 −0.0386383
\(253\) 27.5921 1.73470
\(254\) −15.6598 −0.982585
\(255\) −1.25739 −0.0787409
\(256\) −13.6316 −0.851977
\(257\) 27.8765 1.73889 0.869445 0.494031i \(-0.164477\pi\)
0.869445 + 0.494031i \(0.164477\pi\)
\(258\) 0.302384 0.0188256
\(259\) −0.898955 −0.0558583
\(260\) 0 0
\(261\) 10.2006 0.631402
\(262\) −9.43612 −0.582965
\(263\) 11.9705 0.738134 0.369067 0.929403i \(-0.379677\pi\)
0.369067 + 0.929403i \(0.379677\pi\)
\(264\) 15.5712 0.958343
\(265\) 2.43698 0.149702
\(266\) −2.73079 −0.167436
\(267\) 17.9201 1.09669
\(268\) 7.57715 0.462848
\(269\) −17.0425 −1.03910 −0.519551 0.854440i \(-0.673901\pi\)
−0.519551 + 0.854440i \(0.673901\pi\)
\(270\) −1.16585 −0.0709515
\(271\) −12.3515 −0.750301 −0.375151 0.926964i \(-0.622409\pi\)
−0.375151 + 0.926964i \(0.622409\pi\)
\(272\) 2.90183 0.175949
\(273\) 0 0
\(274\) −20.4245 −1.23389
\(275\) −5.05761 −0.304986
\(276\) −3.49585 −0.210426
\(277\) −1.71328 −0.102941 −0.0514705 0.998675i \(-0.516391\pi\)
−0.0514705 + 0.998675i \(0.516391\pi\)
\(278\) 10.3102 0.618364
\(279\) −1.02783 −0.0615348
\(280\) −2.94700 −0.176117
\(281\) −0.221037 −0.0131860 −0.00659299 0.999978i \(-0.502099\pi\)
−0.00659299 + 0.999978i \(0.502099\pi\)
\(282\) 0.134414 0.00800422
\(283\) 9.44547 0.561475 0.280737 0.959785i \(-0.409421\pi\)
0.280737 + 0.959785i \(0.409421\pi\)
\(284\) −0.626610 −0.0371825
\(285\) 2.44704 0.144950
\(286\) 0 0
\(287\) −7.23310 −0.426956
\(288\) −3.46697 −0.204293
\(289\) −15.4190 −0.906998
\(290\) 11.8924 0.698347
\(291\) −8.42595 −0.493938
\(292\) −4.52468 −0.264787
\(293\) −13.5832 −0.793539 −0.396769 0.917918i \(-0.629869\pi\)
−0.396769 + 0.917918i \(0.629869\pi\)
\(294\) −7.09277 −0.413659
\(295\) 8.32438 0.484664
\(296\) −2.89142 −0.168060
\(297\) 5.05761 0.293473
\(298\) 8.68230 0.502952
\(299\) 0 0
\(300\) 0.640788 0.0369959
\(301\) 0.248267 0.0143098
\(302\) −22.0826 −1.27071
\(303\) −4.78493 −0.274887
\(304\) −5.64732 −0.323896
\(305\) −13.1657 −0.753864
\(306\) 1.46593 0.0838018
\(307\) −8.65595 −0.494021 −0.247011 0.969013i \(-0.579448\pi\)
−0.247011 + 0.969013i \(0.579448\pi\)
\(308\) 3.10216 0.176762
\(309\) −10.6406 −0.605320
\(310\) −1.19830 −0.0680590
\(311\) −8.06452 −0.457297 −0.228649 0.973509i \(-0.573431\pi\)
−0.228649 + 0.973509i \(0.573431\pi\)
\(312\) 0 0
\(313\) 22.0529 1.24650 0.623251 0.782022i \(-0.285811\pi\)
0.623251 + 0.782022i \(0.285811\pi\)
\(314\) −23.4896 −1.32560
\(315\) −0.957202 −0.0539322
\(316\) 8.34345 0.469356
\(317\) −20.8086 −1.16873 −0.584364 0.811492i \(-0.698656\pi\)
−0.584364 + 0.811492i \(0.698656\pi\)
\(318\) −2.84116 −0.159324
\(319\) −51.5908 −2.88853
\(320\) −8.65760 −0.483975
\(321\) −16.5805 −0.925433
\(322\) 6.08816 0.339280
\(323\) −3.07689 −0.171203
\(324\) −0.640788 −0.0355993
\(325\) 0 0
\(326\) −10.8795 −0.602562
\(327\) 12.8615 0.711241
\(328\) −23.2647 −1.28458
\(329\) 0.110358 0.00608423
\(330\) 5.89643 0.324588
\(331\) 10.3654 0.569732 0.284866 0.958567i \(-0.408051\pi\)
0.284866 + 0.958567i \(0.408051\pi\)
\(332\) 2.41532 0.132558
\(333\) −0.939148 −0.0514650
\(334\) 0.359204 0.0196548
\(335\) 11.8247 0.646054
\(336\) 2.20905 0.120513
\(337\) 15.4304 0.840546 0.420273 0.907398i \(-0.361934\pi\)
0.420273 + 0.907398i \(0.361934\pi\)
\(338\) 0 0
\(339\) −13.2710 −0.720779
\(340\) −0.805722 −0.0436964
\(341\) 5.19839 0.281509
\(342\) −2.85289 −0.154267
\(343\) −12.5238 −0.676222
\(344\) 0.798531 0.0430539
\(345\) −5.45555 −0.293717
\(346\) 11.4698 0.616620
\(347\) −24.6928 −1.32558 −0.662789 0.748806i \(-0.730627\pi\)
−0.662789 + 0.748806i \(0.730627\pi\)
\(348\) 6.53643 0.350390
\(349\) 15.4777 0.828505 0.414252 0.910162i \(-0.364043\pi\)
0.414252 + 0.910162i \(0.364043\pi\)
\(350\) −1.11596 −0.0596504
\(351\) 0 0
\(352\) 17.5346 0.934596
\(353\) 14.6323 0.778796 0.389398 0.921069i \(-0.372683\pi\)
0.389398 + 0.921069i \(0.372683\pi\)
\(354\) −9.70500 −0.515815
\(355\) −0.977874 −0.0519002
\(356\) 11.4830 0.608596
\(357\) 1.20358 0.0637001
\(358\) 4.57754 0.241930
\(359\) 18.1306 0.956898 0.478449 0.878115i \(-0.341199\pi\)
0.478449 + 0.878115i \(0.341199\pi\)
\(360\) −3.07877 −0.162265
\(361\) −13.0120 −0.684841
\(362\) −24.8952 −1.30846
\(363\) −14.5795 −0.765223
\(364\) 0 0
\(365\) −7.06112 −0.369596
\(366\) 15.3492 0.802317
\(367\) −9.19781 −0.480122 −0.240061 0.970758i \(-0.577167\pi\)
−0.240061 + 0.970758i \(0.577167\pi\)
\(368\) 12.5904 0.656320
\(369\) −7.55650 −0.393376
\(370\) −1.09491 −0.0569216
\(371\) −2.33268 −0.121107
\(372\) −0.658624 −0.0341481
\(373\) 28.5940 1.48054 0.740270 0.672310i \(-0.234698\pi\)
0.740270 + 0.672310i \(0.234698\pi\)
\(374\) −7.41413 −0.383375
\(375\) 1.00000 0.0516398
\(376\) 0.354958 0.0183056
\(377\) 0 0
\(378\) 1.11596 0.0573986
\(379\) −18.7115 −0.961147 −0.480573 0.876955i \(-0.659571\pi\)
−0.480573 + 0.876955i \(0.659571\pi\)
\(380\) 1.56804 0.0804385
\(381\) −13.4321 −0.688147
\(382\) −2.40261 −0.122928
\(383\) 34.2009 1.74759 0.873793 0.486299i \(-0.161653\pi\)
0.873793 + 0.486299i \(0.161653\pi\)
\(384\) 3.15955 0.161235
\(385\) 4.84116 0.246728
\(386\) −12.4342 −0.632886
\(387\) 0.259367 0.0131844
\(388\) −5.39925 −0.274105
\(389\) 14.5536 0.737896 0.368948 0.929450i \(-0.379718\pi\)
0.368948 + 0.929450i \(0.379718\pi\)
\(390\) 0 0
\(391\) 6.85977 0.346913
\(392\) −18.7305 −0.946033
\(393\) −8.09375 −0.408276
\(394\) −20.1235 −1.01381
\(395\) 13.0206 0.655138
\(396\) 3.24086 0.162859
\(397\) −8.07706 −0.405376 −0.202688 0.979243i \(-0.564968\pi\)
−0.202688 + 0.979243i \(0.564968\pi\)
\(398\) −1.72923 −0.0866782
\(399\) −2.34231 −0.117262
\(400\) −2.30781 −0.115391
\(401\) 14.1755 0.707889 0.353944 0.935266i \(-0.384840\pi\)
0.353944 + 0.935266i \(0.384840\pi\)
\(402\) −13.7859 −0.687578
\(403\) 0 0
\(404\) −3.06612 −0.152545
\(405\) −1.00000 −0.0496904
\(406\) −11.3834 −0.564951
\(407\) 4.74985 0.235441
\(408\) 3.87122 0.191654
\(409\) 1.93570 0.0957144 0.0478572 0.998854i \(-0.484761\pi\)
0.0478572 + 0.998854i \(0.484761\pi\)
\(410\) −8.80977 −0.435083
\(411\) −17.5189 −0.864146
\(412\) −6.81834 −0.335915
\(413\) −7.96812 −0.392085
\(414\) 6.36037 0.312595
\(415\) 3.76930 0.185028
\(416\) 0 0
\(417\) 8.84347 0.433067
\(418\) 14.4288 0.705737
\(419\) 26.1769 1.27883 0.639413 0.768863i \(-0.279177\pi\)
0.639413 + 0.768863i \(0.279177\pi\)
\(420\) −0.613364 −0.0299291
\(421\) −12.6661 −0.617309 −0.308655 0.951174i \(-0.599879\pi\)
−0.308655 + 0.951174i \(0.599879\pi\)
\(422\) −5.78194 −0.281460
\(423\) 0.115292 0.00560570
\(424\) −7.50289 −0.364373
\(425\) −1.25739 −0.0609925
\(426\) 1.14006 0.0552359
\(427\) 12.6022 0.609863
\(428\) −10.6246 −0.513559
\(429\) 0 0
\(430\) 0.302384 0.0145822
\(431\) 28.3470 1.36543 0.682713 0.730687i \(-0.260800\pi\)
0.682713 + 0.730687i \(0.260800\pi\)
\(432\) 2.30781 0.111035
\(433\) −9.98885 −0.480033 −0.240017 0.970769i \(-0.577153\pi\)
−0.240017 + 0.970769i \(0.577153\pi\)
\(434\) 1.14702 0.0550586
\(435\) 10.2006 0.489082
\(436\) 8.24148 0.394695
\(437\) −13.3500 −0.638616
\(438\) 8.23223 0.393351
\(439\) 19.3922 0.925540 0.462770 0.886478i \(-0.346856\pi\)
0.462770 + 0.886478i \(0.346856\pi\)
\(440\) 15.5712 0.742329
\(441\) −6.08376 −0.289703
\(442\) 0 0
\(443\) 5.82980 0.276982 0.138491 0.990364i \(-0.455775\pi\)
0.138491 + 0.990364i \(0.455775\pi\)
\(444\) −0.601795 −0.0285599
\(445\) 17.9201 0.849493
\(446\) −32.8465 −1.55533
\(447\) 7.44717 0.352239
\(448\) 8.28707 0.391527
\(449\) −27.2523 −1.28612 −0.643058 0.765818i \(-0.722335\pi\)
−0.643058 + 0.765818i \(0.722335\pi\)
\(450\) −1.16585 −0.0549588
\(451\) 38.2179 1.79961
\(452\) −8.50387 −0.399988
\(453\) −18.9412 −0.889934
\(454\) 24.6716 1.15789
\(455\) 0 0
\(456\) −7.53388 −0.352806
\(457\) 23.7369 1.11036 0.555182 0.831729i \(-0.312648\pi\)
0.555182 + 0.831729i \(0.312648\pi\)
\(458\) −28.2939 −1.32209
\(459\) 1.25739 0.0586900
\(460\) −3.49585 −0.162995
\(461\) 17.3059 0.806014 0.403007 0.915197i \(-0.367965\pi\)
0.403007 + 0.915197i \(0.367965\pi\)
\(462\) −5.64408 −0.262586
\(463\) −34.5377 −1.60510 −0.802552 0.596582i \(-0.796525\pi\)
−0.802552 + 0.596582i \(0.796525\pi\)
\(464\) −23.5411 −1.09287
\(465\) −1.02783 −0.0476647
\(466\) 28.6509 1.32723
\(467\) 13.7597 0.636724 0.318362 0.947969i \(-0.396867\pi\)
0.318362 + 0.947969i \(0.396867\pi\)
\(468\) 0 0
\(469\) −11.3187 −0.522647
\(470\) 0.134414 0.00620004
\(471\) −20.1480 −0.928372
\(472\) −25.6289 −1.17966
\(473\) −1.31178 −0.0603156
\(474\) −15.1801 −0.697246
\(475\) 2.44704 0.112278
\(476\) 0.771238 0.0353497
\(477\) −2.43698 −0.111582
\(478\) −29.2313 −1.33701
\(479\) −2.32088 −0.106044 −0.0530219 0.998593i \(-0.516885\pi\)
−0.0530219 + 0.998593i \(0.516885\pi\)
\(480\) −3.46697 −0.158245
\(481\) 0 0
\(482\) 2.07741 0.0946232
\(483\) 5.22207 0.237612
\(484\) −9.34235 −0.424652
\(485\) −8.42595 −0.382603
\(486\) 1.16585 0.0528841
\(487\) 14.7251 0.667257 0.333629 0.942705i \(-0.391727\pi\)
0.333629 + 0.942705i \(0.391727\pi\)
\(488\) 40.5340 1.83489
\(489\) −9.33184 −0.422000
\(490\) −7.09277 −0.320419
\(491\) −39.3204 −1.77451 −0.887253 0.461283i \(-0.847389\pi\)
−0.887253 + 0.461283i \(0.847389\pi\)
\(492\) −4.84212 −0.218299
\(493\) −12.8262 −0.577662
\(494\) 0 0
\(495\) 5.05761 0.227323
\(496\) 2.37205 0.106508
\(497\) 0.936023 0.0419864
\(498\) −4.39444 −0.196920
\(499\) 21.0832 0.943814 0.471907 0.881648i \(-0.343566\pi\)
0.471907 + 0.881648i \(0.343566\pi\)
\(500\) 0.640788 0.0286569
\(501\) 0.308104 0.0137651
\(502\) 20.6916 0.923510
\(503\) −6.33407 −0.282422 −0.141211 0.989980i \(-0.545100\pi\)
−0.141211 + 0.989980i \(0.545100\pi\)
\(504\) 2.94700 0.131270
\(505\) −4.78493 −0.212927
\(506\) −32.1683 −1.43006
\(507\) 0 0
\(508\) −8.60712 −0.381879
\(509\) 11.0119 0.488092 0.244046 0.969764i \(-0.421525\pi\)
0.244046 + 0.969764i \(0.421525\pi\)
\(510\) 1.46593 0.0649126
\(511\) 6.75892 0.298997
\(512\) 22.2116 0.981622
\(513\) −2.44704 −0.108040
\(514\) −32.4999 −1.43351
\(515\) −10.6406 −0.468879
\(516\) 0.166199 0.00731651
\(517\) −0.583104 −0.0256449
\(518\) 1.04805 0.0460486
\(519\) 9.83812 0.431846
\(520\) 0 0
\(521\) 24.2840 1.06390 0.531951 0.846775i \(-0.321459\pi\)
0.531951 + 0.846775i \(0.321459\pi\)
\(522\) −11.8924 −0.520517
\(523\) −25.8888 −1.13204 −0.566018 0.824393i \(-0.691517\pi\)
−0.566018 + 0.824393i \(0.691517\pi\)
\(524\) −5.18638 −0.226568
\(525\) −0.957202 −0.0417757
\(526\) −13.9559 −0.608504
\(527\) 1.29239 0.0562974
\(528\) −11.6720 −0.507960
\(529\) 6.76308 0.294047
\(530\) −2.84116 −0.123412
\(531\) −8.32438 −0.361248
\(532\) −1.50093 −0.0650734
\(533\) 0 0
\(534\) −20.8922 −0.904093
\(535\) −16.5805 −0.716838
\(536\) −36.4056 −1.57248
\(537\) 3.92634 0.169434
\(538\) 19.8691 0.856617
\(539\) 30.7693 1.32533
\(540\) −0.640788 −0.0275751
\(541\) −3.67904 −0.158174 −0.0790871 0.996868i \(-0.525201\pi\)
−0.0790871 + 0.996868i \(0.525201\pi\)
\(542\) 14.4000 0.618535
\(543\) −21.3537 −0.916374
\(544\) 4.35934 0.186905
\(545\) 12.8615 0.550925
\(546\) 0 0
\(547\) 33.0031 1.41111 0.705554 0.708656i \(-0.250698\pi\)
0.705554 + 0.708656i \(0.250698\pi\)
\(548\) −11.2259 −0.479548
\(549\) 13.1657 0.561897
\(550\) 5.89643 0.251425
\(551\) 24.9613 1.06339
\(552\) 16.7964 0.714902
\(553\) −12.4634 −0.529996
\(554\) 1.99743 0.0848627
\(555\) −0.939148 −0.0398646
\(556\) 5.66679 0.240326
\(557\) 25.6886 1.08846 0.544230 0.838936i \(-0.316822\pi\)
0.544230 + 0.838936i \(0.316822\pi\)
\(558\) 1.19830 0.0507282
\(559\) 0 0
\(560\) 2.20905 0.0933492
\(561\) −6.35940 −0.268494
\(562\) 0.257697 0.0108703
\(563\) −43.7560 −1.84410 −0.922048 0.387075i \(-0.873485\pi\)
−0.922048 + 0.387075i \(0.873485\pi\)
\(564\) 0.0738779 0.00311082
\(565\) −13.2710 −0.558313
\(566\) −11.0120 −0.462870
\(567\) 0.957202 0.0401987
\(568\) 3.01065 0.126324
\(569\) −24.5255 −1.02816 −0.514082 0.857741i \(-0.671867\pi\)
−0.514082 + 0.857741i \(0.671867\pi\)
\(570\) −2.85289 −0.119494
\(571\) 4.90263 0.205169 0.102584 0.994724i \(-0.467289\pi\)
0.102584 + 0.994724i \(0.467289\pi\)
\(572\) 0 0
\(573\) −2.06081 −0.0860918
\(574\) 8.43273 0.351975
\(575\) −5.45555 −0.227512
\(576\) 8.65760 0.360733
\(577\) 19.1780 0.798391 0.399195 0.916866i \(-0.369290\pi\)
0.399195 + 0.916866i \(0.369290\pi\)
\(578\) 17.9762 0.747713
\(579\) −10.6654 −0.443237
\(580\) 6.53643 0.271411
\(581\) −3.60798 −0.149684
\(582\) 9.82341 0.407194
\(583\) 12.3253 0.510462
\(584\) 21.7396 0.899590
\(585\) 0 0
\(586\) 15.8360 0.654179
\(587\) 14.8326 0.612209 0.306104 0.951998i \(-0.400974\pi\)
0.306104 + 0.951998i \(0.400974\pi\)
\(588\) −3.89840 −0.160767
\(589\) −2.51515 −0.103635
\(590\) −9.70500 −0.399549
\(591\) −17.2608 −0.710013
\(592\) 2.16738 0.0890788
\(593\) 6.61437 0.271620 0.135810 0.990735i \(-0.456636\pi\)
0.135810 + 0.990735i \(0.456636\pi\)
\(594\) −5.89643 −0.241934
\(595\) 1.20358 0.0493419
\(596\) 4.77206 0.195471
\(597\) −1.48323 −0.0607045
\(598\) 0 0
\(599\) −6.94677 −0.283837 −0.141919 0.989878i \(-0.545327\pi\)
−0.141919 + 0.989878i \(0.545327\pi\)
\(600\) −3.07877 −0.125690
\(601\) 18.3658 0.749157 0.374579 0.927195i \(-0.377787\pi\)
0.374579 + 0.927195i \(0.377787\pi\)
\(602\) −0.289442 −0.0117968
\(603\) −11.8247 −0.481541
\(604\) −12.1373 −0.493859
\(605\) −14.5795 −0.592740
\(606\) 5.57852 0.226612
\(607\) −31.6416 −1.28429 −0.642147 0.766582i \(-0.721956\pi\)
−0.642147 + 0.766582i \(0.721956\pi\)
\(608\) −8.48382 −0.344064
\(609\) −9.76405 −0.395659
\(610\) 15.3492 0.621472
\(611\) 0 0
\(612\) 0.805722 0.0325694
\(613\) −43.9923 −1.77683 −0.888417 0.459037i \(-0.848194\pi\)
−0.888417 + 0.459037i \(0.848194\pi\)
\(614\) 10.0916 0.407262
\(615\) −7.55650 −0.304708
\(616\) −14.9048 −0.600532
\(617\) −5.08640 −0.204771 −0.102385 0.994745i \(-0.532647\pi\)
−0.102385 + 0.994745i \(0.532647\pi\)
\(618\) 12.4053 0.499015
\(619\) −44.5174 −1.78931 −0.894653 0.446762i \(-0.852577\pi\)
−0.894653 + 0.446762i \(0.852577\pi\)
\(620\) −0.658624 −0.0264510
\(621\) 5.45555 0.218924
\(622\) 9.40204 0.376988
\(623\) −17.1531 −0.687226
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −25.7104 −1.02759
\(627\) 12.3762 0.494258
\(628\) −12.9106 −0.515189
\(629\) 1.18088 0.0470847
\(630\) 1.11596 0.0444608
\(631\) 25.4933 1.01487 0.507437 0.861689i \(-0.330593\pi\)
0.507437 + 0.861689i \(0.330593\pi\)
\(632\) −40.0875 −1.59459
\(633\) −4.95941 −0.197119
\(634\) 24.2598 0.963478
\(635\) −13.4321 −0.533036
\(636\) −1.56159 −0.0619209
\(637\) 0 0
\(638\) 60.1472 2.38125
\(639\) 0.977874 0.0386841
\(640\) 3.15955 0.124892
\(641\) 16.9617 0.669948 0.334974 0.942227i \(-0.391273\pi\)
0.334974 + 0.942227i \(0.391273\pi\)
\(642\) 19.3304 0.762911
\(643\) −11.7358 −0.462814 −0.231407 0.972857i \(-0.574333\pi\)
−0.231407 + 0.972857i \(0.574333\pi\)
\(644\) 3.34624 0.131860
\(645\) 0.259367 0.0102126
\(646\) 3.58720 0.141137
\(647\) 16.4828 0.648007 0.324004 0.946056i \(-0.394971\pi\)
0.324004 + 0.946056i \(0.394971\pi\)
\(648\) 3.07877 0.120945
\(649\) 42.1015 1.65263
\(650\) 0 0
\(651\) 0.983845 0.0385599
\(652\) −5.97973 −0.234184
\(653\) −11.3795 −0.445316 −0.222658 0.974897i \(-0.571473\pi\)
−0.222658 + 0.974897i \(0.571473\pi\)
\(654\) −14.9946 −0.586335
\(655\) −8.09375 −0.316249
\(656\) 17.4390 0.680879
\(657\) 7.06112 0.275481
\(658\) −0.128661 −0.00501573
\(659\) −31.5912 −1.23062 −0.615310 0.788285i \(-0.710969\pi\)
−0.615310 + 0.788285i \(0.710969\pi\)
\(660\) 3.24086 0.126150
\(661\) −41.2523 −1.60453 −0.802265 0.596968i \(-0.796372\pi\)
−0.802265 + 0.596968i \(0.796372\pi\)
\(662\) −12.0845 −0.469677
\(663\) 0 0
\(664\) −11.6048 −0.450353
\(665\) −2.34231 −0.0908311
\(666\) 1.09491 0.0424268
\(667\) −55.6500 −2.15478
\(668\) 0.197429 0.00763877
\(669\) −28.1738 −1.08926
\(670\) −13.7859 −0.532596
\(671\) −66.5868 −2.57056
\(672\) 3.31859 0.128017
\(673\) 31.1149 1.19939 0.599695 0.800229i \(-0.295289\pi\)
0.599695 + 0.800229i \(0.295289\pi\)
\(674\) −17.9895 −0.692931
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −33.9996 −1.30671 −0.653356 0.757051i \(-0.726640\pi\)
−0.653356 + 0.757051i \(0.726640\pi\)
\(678\) 15.4720 0.594198
\(679\) 8.06534 0.309519
\(680\) 3.87122 0.148454
\(681\) 21.1618 0.810923
\(682\) −6.06056 −0.232071
\(683\) 39.2385 1.50142 0.750710 0.660632i \(-0.229711\pi\)
0.750710 + 0.660632i \(0.229711\pi\)
\(684\) −1.56804 −0.0599553
\(685\) −17.5189 −0.669365
\(686\) 14.6009 0.557465
\(687\) −24.2688 −0.925914
\(688\) −0.598571 −0.0228203
\(689\) 0 0
\(690\) 6.36037 0.242135
\(691\) 3.87229 0.147309 0.0736544 0.997284i \(-0.476534\pi\)
0.0736544 + 0.997284i \(0.476534\pi\)
\(692\) 6.30415 0.239648
\(693\) −4.84116 −0.183900
\(694\) 28.7881 1.09278
\(695\) 8.84347 0.335452
\(696\) −31.4053 −1.19042
\(697\) 9.50148 0.359894
\(698\) −18.0448 −0.683005
\(699\) 24.5751 0.929515
\(700\) −0.613364 −0.0231830
\(701\) 43.7894 1.65390 0.826952 0.562273i \(-0.190073\pi\)
0.826952 + 0.562273i \(0.190073\pi\)
\(702\) 0 0
\(703\) −2.29814 −0.0866758
\(704\) −43.7868 −1.65028
\(705\) 0.115292 0.00434216
\(706\) −17.0591 −0.642026
\(707\) 4.58014 0.172254
\(708\) −5.33417 −0.200470
\(709\) −43.3413 −1.62772 −0.813859 0.581062i \(-0.802637\pi\)
−0.813859 + 0.581062i \(0.802637\pi\)
\(710\) 1.14006 0.0427856
\(711\) −13.0206 −0.488311
\(712\) −55.1718 −2.06765
\(713\) 5.60741 0.209999
\(714\) −1.40319 −0.0525132
\(715\) 0 0
\(716\) 2.51595 0.0940256
\(717\) −25.0729 −0.936365
\(718\) −21.1376 −0.788850
\(719\) 0.135145 0.00504005 0.00252003 0.999997i \(-0.499198\pi\)
0.00252003 + 0.999997i \(0.499198\pi\)
\(720\) 2.30781 0.0860072
\(721\) 10.1852 0.379315
\(722\) 15.1701 0.564571
\(723\) 1.78188 0.0662687
\(724\) −13.6832 −0.508531
\(725\) 10.2006 0.378841
\(726\) 16.9975 0.630837
\(727\) −7.02528 −0.260553 −0.130277 0.991478i \(-0.541587\pi\)
−0.130277 + 0.991478i \(0.541587\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 8.23223 0.304688
\(731\) −0.326126 −0.0120622
\(732\) 8.43640 0.311818
\(733\) −21.2839 −0.786140 −0.393070 0.919509i \(-0.628587\pi\)
−0.393070 + 0.919509i \(0.628587\pi\)
\(734\) 10.7233 0.395804
\(735\) −6.08376 −0.224403
\(736\) 18.9142 0.697188
\(737\) 59.8050 2.20294
\(738\) 8.80977 0.324292
\(739\) −9.68852 −0.356398 −0.178199 0.983994i \(-0.557027\pi\)
−0.178199 + 0.983994i \(0.557027\pi\)
\(740\) −0.601795 −0.0221224
\(741\) 0 0
\(742\) 2.71956 0.0998382
\(743\) 44.8866 1.64673 0.823364 0.567513i \(-0.192095\pi\)
0.823364 + 0.567513i \(0.192095\pi\)
\(744\) 3.16446 0.116015
\(745\) 7.44717 0.272843
\(746\) −33.3364 −1.22053
\(747\) −3.76930 −0.137911
\(748\) −4.07503 −0.148998
\(749\) 15.8709 0.579910
\(750\) −1.16585 −0.0425709
\(751\) 3.50781 0.128002 0.0640009 0.997950i \(-0.479614\pi\)
0.0640009 + 0.997950i \(0.479614\pi\)
\(752\) −0.266073 −0.00970269
\(753\) 17.7480 0.646774
\(754\) 0 0
\(755\) −18.9412 −0.689340
\(756\) 0.613364 0.0223078
\(757\) −22.0135 −0.800095 −0.400048 0.916494i \(-0.631006\pi\)
−0.400048 + 0.916494i \(0.631006\pi\)
\(758\) 21.8149 0.792352
\(759\) −27.5921 −1.00153
\(760\) −7.53388 −0.273283
\(761\) 10.9054 0.395321 0.197661 0.980271i \(-0.436666\pi\)
0.197661 + 0.980271i \(0.436666\pi\)
\(762\) 15.6598 0.567296
\(763\) −12.3110 −0.445689
\(764\) −1.32055 −0.0477757
\(765\) 1.25739 0.0454611
\(766\) −39.8732 −1.44068
\(767\) 0 0
\(768\) 13.6316 0.491889
\(769\) −29.5569 −1.06585 −0.532925 0.846163i \(-0.678907\pi\)
−0.532925 + 0.846163i \(0.678907\pi\)
\(770\) −5.64408 −0.203398
\(771\) −27.8765 −1.00395
\(772\) −6.83423 −0.245969
\(773\) −10.0137 −0.360169 −0.180085 0.983651i \(-0.557637\pi\)
−0.180085 + 0.983651i \(0.557637\pi\)
\(774\) −0.302384 −0.0108690
\(775\) −1.02783 −0.0369209
\(776\) 25.9416 0.931247
\(777\) 0.898955 0.0322498
\(778\) −16.9673 −0.608309
\(779\) −18.4911 −0.662512
\(780\) 0 0
\(781\) −4.94571 −0.176971
\(782\) −7.99748 −0.285989
\(783\) −10.2006 −0.364540
\(784\) 14.0402 0.501436
\(785\) −20.1480 −0.719114
\(786\) 9.43612 0.336575
\(787\) −29.9935 −1.06915 −0.534576 0.845121i \(-0.679529\pi\)
−0.534576 + 0.845121i \(0.679529\pi\)
\(788\) −11.0605 −0.394014
\(789\) −11.9705 −0.426162
\(790\) −15.1801 −0.540084
\(791\) 12.7030 0.451666
\(792\) −15.5712 −0.553300
\(793\) 0 0
\(794\) 9.41665 0.334185
\(795\) −2.43698 −0.0864307
\(796\) −0.950435 −0.0336873
\(797\) 28.8344 1.02137 0.510684 0.859768i \(-0.329392\pi\)
0.510684 + 0.859768i \(0.329392\pi\)
\(798\) 2.73079 0.0966690
\(799\) −0.144967 −0.00512858
\(800\) −3.46697 −0.122576
\(801\) −17.9201 −0.633175
\(802\) −16.5265 −0.583571
\(803\) −35.7124 −1.26026
\(804\) −7.57715 −0.267225
\(805\) 5.22207 0.184054
\(806\) 0 0
\(807\) 17.0425 0.599926
\(808\) 14.7317 0.518259
\(809\) 37.0934 1.30414 0.652068 0.758161i \(-0.273902\pi\)
0.652068 + 0.758161i \(0.273902\pi\)
\(810\) 1.16585 0.0409639
\(811\) 19.6091 0.688568 0.344284 0.938866i \(-0.388122\pi\)
0.344284 + 0.938866i \(0.388122\pi\)
\(812\) −6.25669 −0.219567
\(813\) 12.3515 0.433187
\(814\) −5.53762 −0.194094
\(815\) −9.33184 −0.326880
\(816\) −2.90183 −0.101584
\(817\) 0.634682 0.0222047
\(818\) −2.25674 −0.0789052
\(819\) 0 0
\(820\) −4.84212 −0.169094
\(821\) −2.89699 −0.101106 −0.0505528 0.998721i \(-0.516098\pi\)
−0.0505528 + 0.998721i \(0.516098\pi\)
\(822\) 20.4245 0.712386
\(823\) −28.6695 −0.999356 −0.499678 0.866211i \(-0.666548\pi\)
−0.499678 + 0.866211i \(0.666548\pi\)
\(824\) 32.7598 1.14124
\(825\) 5.05761 0.176084
\(826\) 9.28965 0.323228
\(827\) −30.8087 −1.07132 −0.535662 0.844432i \(-0.679938\pi\)
−0.535662 + 0.844432i \(0.679938\pi\)
\(828\) 3.49585 0.121489
\(829\) 2.42720 0.0843003 0.0421501 0.999111i \(-0.486579\pi\)
0.0421501 + 0.999111i \(0.486579\pi\)
\(830\) −4.39444 −0.152533
\(831\) 1.71328 0.0594330
\(832\) 0 0
\(833\) 7.64968 0.265046
\(834\) −10.3102 −0.357013
\(835\) 0.308104 0.0106624
\(836\) 7.93052 0.274283
\(837\) 1.02783 0.0355271
\(838\) −30.5184 −1.05424
\(839\) 4.26940 0.147396 0.0736981 0.997281i \(-0.476520\pi\)
0.0736981 + 0.997281i \(0.476520\pi\)
\(840\) 2.94700 0.101681
\(841\) 75.0526 2.58802
\(842\) 14.7668 0.508899
\(843\) 0.221037 0.00761293
\(844\) −3.17793 −0.109389
\(845\) 0 0
\(846\) −0.134414 −0.00462124
\(847\) 13.9555 0.479516
\(848\) 5.62409 0.193132
\(849\) −9.44547 −0.324168
\(850\) 1.46593 0.0502811
\(851\) 5.12357 0.175634
\(852\) 0.626610 0.0214673
\(853\) 21.5257 0.737025 0.368513 0.929623i \(-0.379867\pi\)
0.368513 + 0.929623i \(0.379867\pi\)
\(854\) −14.6923 −0.502760
\(855\) −2.44704 −0.0836871
\(856\) 51.0475 1.74477
\(857\) 42.2276 1.44247 0.721234 0.692691i \(-0.243575\pi\)
0.721234 + 0.692691i \(0.243575\pi\)
\(858\) 0 0
\(859\) 35.9388 1.22622 0.613108 0.789999i \(-0.289919\pi\)
0.613108 + 0.789999i \(0.289919\pi\)
\(860\) 0.166199 0.00566735
\(861\) 7.23310 0.246503
\(862\) −33.0484 −1.12563
\(863\) −23.5593 −0.801970 −0.400985 0.916085i \(-0.631332\pi\)
−0.400985 + 0.916085i \(0.631332\pi\)
\(864\) 3.46697 0.117949
\(865\) 9.83812 0.334506
\(866\) 11.6455 0.395731
\(867\) 15.4190 0.523656
\(868\) 0.630436 0.0213984
\(869\) 65.8532 2.23392
\(870\) −11.8924 −0.403191
\(871\) 0 0
\(872\) −39.5975 −1.34094
\(873\) 8.42595 0.285175
\(874\) 15.5641 0.526464
\(875\) −0.957202 −0.0323593
\(876\) 4.52468 0.152875
\(877\) 15.0874 0.509464 0.254732 0.967012i \(-0.418013\pi\)
0.254732 + 0.967012i \(0.418013\pi\)
\(878\) −22.6085 −0.762999
\(879\) 13.5832 0.458150
\(880\) −11.6720 −0.393464
\(881\) 1.03462 0.0348573 0.0174287 0.999848i \(-0.494452\pi\)
0.0174287 + 0.999848i \(0.494452\pi\)
\(882\) 7.09277 0.238826
\(883\) 2.06340 0.0694389 0.0347194 0.999397i \(-0.488946\pi\)
0.0347194 + 0.999397i \(0.488946\pi\)
\(884\) 0 0
\(885\) −8.32438 −0.279821
\(886\) −6.79669 −0.228339
\(887\) −53.8193 −1.80707 −0.903537 0.428511i \(-0.859038\pi\)
−0.903537 + 0.428511i \(0.859038\pi\)
\(888\) 2.89142 0.0970297
\(889\) 12.8572 0.431217
\(890\) −20.8922 −0.700307
\(891\) −5.05761 −0.169436
\(892\) −18.0534 −0.604474
\(893\) 0.282125 0.00944095
\(894\) −8.68230 −0.290380
\(895\) 3.92634 0.131243
\(896\) −3.02433 −0.101036
\(897\) 0 0
\(898\) 31.7722 1.06025
\(899\) −10.4845 −0.349679
\(900\) −0.640788 −0.0213596
\(901\) 3.06424 0.102085
\(902\) −44.5564 −1.48357
\(903\) −0.248267 −0.00826180
\(904\) 40.8582 1.35892
\(905\) −21.3537 −0.709820
\(906\) 22.0826 0.733646
\(907\) 26.4675 0.878839 0.439420 0.898282i \(-0.355184\pi\)
0.439420 + 0.898282i \(0.355184\pi\)
\(908\) 13.5602 0.450013
\(909\) 4.78493 0.158706
\(910\) 0 0
\(911\) −4.13621 −0.137039 −0.0685193 0.997650i \(-0.521827\pi\)
−0.0685193 + 0.997650i \(0.521827\pi\)
\(912\) 5.64732 0.187002
\(913\) 19.0637 0.630915
\(914\) −27.6737 −0.915365
\(915\) 13.1657 0.435243
\(916\) −15.5512 −0.513825
\(917\) 7.74735 0.255840
\(918\) −1.46593 −0.0483830
\(919\) 4.30934 0.142152 0.0710761 0.997471i \(-0.477357\pi\)
0.0710761 + 0.997471i \(0.477357\pi\)
\(920\) 16.7964 0.553761
\(921\) 8.65595 0.285223
\(922\) −20.1761 −0.664463
\(923\) 0 0
\(924\) −3.10216 −0.102053
\(925\) −0.939148 −0.0308790
\(926\) 40.2659 1.32322
\(927\) 10.6406 0.349482
\(928\) −35.3652 −1.16092
\(929\) −43.7707 −1.43607 −0.718035 0.696007i \(-0.754958\pi\)
−0.718035 + 0.696007i \(0.754958\pi\)
\(930\) 1.19830 0.0392939
\(931\) −14.8872 −0.487909
\(932\) 15.7474 0.515824
\(933\) 8.06452 0.264021
\(934\) −16.0418 −0.524904
\(935\) −6.35940 −0.207975
\(936\) 0 0
\(937\) 2.17755 0.0711374 0.0355687 0.999367i \(-0.488676\pi\)
0.0355687 + 0.999367i \(0.488676\pi\)
\(938\) 13.1959 0.430861
\(939\) −22.0529 −0.719669
\(940\) 0.0738779 0.00240963
\(941\) 18.6557 0.608158 0.304079 0.952647i \(-0.401651\pi\)
0.304079 + 0.952647i \(0.401651\pi\)
\(942\) 23.4896 0.765333
\(943\) 41.2249 1.34247
\(944\) 19.2111 0.625269
\(945\) 0.957202 0.0311378
\(946\) 1.52934 0.0497231
\(947\) 0.281211 0.00913813 0.00456907 0.999990i \(-0.498546\pi\)
0.00456907 + 0.999990i \(0.498546\pi\)
\(948\) −8.34345 −0.270983
\(949\) 0 0
\(950\) −2.85289 −0.0925600
\(951\) 20.8086 0.674765
\(952\) −3.70554 −0.120097
\(953\) 29.2264 0.946737 0.473368 0.880865i \(-0.343038\pi\)
0.473368 + 0.880865i \(0.343038\pi\)
\(954\) 2.84116 0.0919858
\(955\) −2.06081 −0.0666864
\(956\) −16.0664 −0.519625
\(957\) 51.5908 1.66769
\(958\) 2.70580 0.0874206
\(959\) 16.7692 0.541505
\(960\) 8.65760 0.279423
\(961\) −29.9436 −0.965921
\(962\) 0 0
\(963\) 16.5805 0.534299
\(964\) 1.14181 0.0367751
\(965\) −10.6654 −0.343330
\(966\) −6.08816 −0.195883
\(967\) 13.1700 0.423519 0.211760 0.977322i \(-0.432081\pi\)
0.211760 + 0.977322i \(0.432081\pi\)
\(968\) 44.8868 1.44272
\(969\) 3.07689 0.0988440
\(970\) 9.82341 0.315411
\(971\) −27.3988 −0.879270 −0.439635 0.898176i \(-0.644892\pi\)
−0.439635 + 0.898176i \(0.644892\pi\)
\(972\) 0.640788 0.0205533
\(973\) −8.46499 −0.271375
\(974\) −17.1673 −0.550075
\(975\) 0 0
\(976\) −30.3839 −0.972565
\(977\) 28.1077 0.899245 0.449622 0.893219i \(-0.351559\pi\)
0.449622 + 0.893219i \(0.351559\pi\)
\(978\) 10.8795 0.347889
\(979\) 90.6329 2.89664
\(980\) −3.89840 −0.124530
\(981\) −12.8615 −0.410635
\(982\) 45.8418 1.46287
\(983\) 37.5892 1.19891 0.599455 0.800409i \(-0.295384\pi\)
0.599455 + 0.800409i \(0.295384\pi\)
\(984\) 23.2647 0.741652
\(985\) −17.2608 −0.549974
\(986\) 14.9534 0.476214
\(987\) −0.110358 −0.00351273
\(988\) 0 0
\(989\) −1.41499 −0.0449941
\(990\) −5.89643 −0.187401
\(991\) 53.2906 1.69283 0.846416 0.532522i \(-0.178756\pi\)
0.846416 + 0.532522i \(0.178756\pi\)
\(992\) 3.56347 0.113140
\(993\) −10.3654 −0.328935
\(994\) −1.09126 −0.0346128
\(995\) −1.48323 −0.0470215
\(996\) −2.41532 −0.0765324
\(997\) −13.2842 −0.420715 −0.210357 0.977625i \(-0.567463\pi\)
−0.210357 + 0.977625i \(0.567463\pi\)
\(998\) −24.5799 −0.778063
\(999\) 0.939148 0.0297133
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2535.2.a.bm.1.3 9
3.2 odd 2 7605.2.a.cr.1.7 9
13.12 even 2 2535.2.a.bn.1.7 yes 9
39.38 odd 2 7605.2.a.cq.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2535.2.a.bm.1.3 9 1.1 even 1 trivial
2535.2.a.bn.1.7 yes 9 13.12 even 2
7605.2.a.cq.1.3 9 39.38 odd 2
7605.2.a.cr.1.7 9 3.2 odd 2