Properties

Label 2535.2.a.bc.1.2
Level $2535$
Weight $2$
Character 2535.1
Self dual yes
Analytic conductor $20.242$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2535,2,Mod(1,2535)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2535, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2535.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2420769124\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.81361\) of defining polynomial
Character \(\chi\) \(=\) 2535.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.289169 q^{2} -1.00000 q^{3} -1.91638 q^{4} +1.00000 q^{5} -0.289169 q^{6} -4.91638 q^{7} -1.13249 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+0.289169 q^{2} -1.00000 q^{3} -1.91638 q^{4} +1.00000 q^{5} -0.289169 q^{6} -4.91638 q^{7} -1.13249 q^{8} +1.00000 q^{9} +0.289169 q^{10} -4.91638 q^{11} +1.91638 q^{12} -1.42166 q^{14} -1.00000 q^{15} +3.50528 q^{16} -4.33804 q^{17} +0.289169 q^{18} -2.57834 q^{19} -1.91638 q^{20} +4.91638 q^{21} -1.42166 q^{22} -6.33804 q^{23} +1.13249 q^{24} +1.00000 q^{25} -1.00000 q^{27} +9.42166 q^{28} +6.00000 q^{29} -0.289169 q^{30} -1.42166 q^{31} +3.27861 q^{32} +4.91638 q^{33} -1.25443 q^{34} -4.91638 q^{35} -1.91638 q^{36} -9.49472 q^{37} -0.745574 q^{38} -1.13249 q^{40} -4.33804 q^{41} +1.42166 q^{42} -1.15667 q^{43} +9.42166 q^{44} +1.00000 q^{45} -1.83276 q^{46} +5.42166 q^{47} -3.50528 q^{48} +17.1708 q^{49} +0.289169 q^{50} +4.33804 q^{51} -0.338044 q^{53} -0.289169 q^{54} -4.91638 q^{55} +5.56777 q^{56} +2.57834 q^{57} +1.73501 q^{58} +11.2544 q^{59} +1.91638 q^{60} -10.1708 q^{61} -0.411100 q^{62} -4.91638 q^{63} -6.06249 q^{64} +1.42166 q^{66} +7.25443 q^{67} +8.31335 q^{68} +6.33804 q^{69} -1.42166 q^{70} -0.916382 q^{71} -1.13249 q^{72} +3.15667 q^{73} -2.74557 q^{74} -1.00000 q^{75} +4.94108 q^{76} +24.1708 q^{77} -3.49472 q^{79} +3.50528 q^{80} +1.00000 q^{81} -1.25443 q^{82} -11.2544 q^{83} -9.42166 q^{84} -4.33804 q^{85} -0.334474 q^{86} -6.00000 q^{87} +5.56777 q^{88} +0.338044 q^{89} +0.289169 q^{90} +12.1461 q^{92} +1.42166 q^{93} +1.56777 q^{94} -2.57834 q^{95} -3.27861 q^{96} +12.3380 q^{97} +4.96526 q^{98} -4.91638 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 8 q^{4} + 3 q^{5} - q^{7} - 6 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{3} + 8 q^{4} + 3 q^{5} - q^{7} - 6 q^{8} + 3 q^{9} - q^{11} - 8 q^{12} - 6 q^{14} - 3 q^{15} + 26 q^{16} - q^{17} - 6 q^{19} + 8 q^{20} + q^{21} - 6 q^{22} - 7 q^{23} + 6 q^{24} + 3 q^{25} - 3 q^{27} + 30 q^{28} + 18 q^{29} - 6 q^{31} - 22 q^{32} + q^{33} + 22 q^{34} - q^{35} + 8 q^{36} - 13 q^{37} - 28 q^{38} - 6 q^{40} - q^{41} + 6 q^{42} + 30 q^{44} + 3 q^{45} + 22 q^{46} + 18 q^{47} - 26 q^{48} + 12 q^{49} + q^{51} + 11 q^{53} - q^{55} - 16 q^{56} + 6 q^{57} + 8 q^{59} - 8 q^{60} + 9 q^{61} + 28 q^{62} - q^{63} + 30 q^{64} + 6 q^{66} - 4 q^{67} + 18 q^{68} + 7 q^{69} - 6 q^{70} + 11 q^{71} - 6 q^{72} + 6 q^{73} - 34 q^{74} - 3 q^{75} - 4 q^{76} + 33 q^{77} + 5 q^{79} + 26 q^{80} + 3 q^{81} + 22 q^{82} - 8 q^{83} - 30 q^{84} - q^{85} - 56 q^{86} - 18 q^{87} - 16 q^{88} - 11 q^{89} + 2 q^{92} + 6 q^{93} - 28 q^{94} - 6 q^{95} + 22 q^{96} + 25 q^{97} - 10 q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.289169 0.204473 0.102237 0.994760i \(-0.467400\pi\)
0.102237 + 0.994760i \(0.467400\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.91638 −0.958191
\(5\) 1.00000 0.447214
\(6\) −0.289169 −0.118053
\(7\) −4.91638 −1.85822 −0.929109 0.369807i \(-0.879424\pi\)
−0.929109 + 0.369807i \(0.879424\pi\)
\(8\) −1.13249 −0.400397
\(9\) 1.00000 0.333333
\(10\) 0.289169 0.0914431
\(11\) −4.91638 −1.48234 −0.741172 0.671315i \(-0.765730\pi\)
−0.741172 + 0.671315i \(0.765730\pi\)
\(12\) 1.91638 0.553212
\(13\) 0 0
\(14\) −1.42166 −0.379955
\(15\) −1.00000 −0.258199
\(16\) 3.50528 0.876320
\(17\) −4.33804 −1.05213 −0.526065 0.850444i \(-0.676333\pi\)
−0.526065 + 0.850444i \(0.676333\pi\)
\(18\) 0.289169 0.0681577
\(19\) −2.57834 −0.591511 −0.295756 0.955264i \(-0.595571\pi\)
−0.295756 + 0.955264i \(0.595571\pi\)
\(20\) −1.91638 −0.428516
\(21\) 4.91638 1.07284
\(22\) −1.42166 −0.303100
\(23\) −6.33804 −1.32157 −0.660787 0.750574i \(-0.729777\pi\)
−0.660787 + 0.750574i \(0.729777\pi\)
\(24\) 1.13249 0.231169
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 9.42166 1.78053
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) −0.289169 −0.0527947
\(31\) −1.42166 −0.255338 −0.127669 0.991817i \(-0.540750\pi\)
−0.127669 + 0.991817i \(0.540750\pi\)
\(32\) 3.27861 0.579581
\(33\) 4.91638 0.855832
\(34\) −1.25443 −0.215132
\(35\) −4.91638 −0.831020
\(36\) −1.91638 −0.319397
\(37\) −9.49472 −1.56092 −0.780461 0.625204i \(-0.785016\pi\)
−0.780461 + 0.625204i \(0.785016\pi\)
\(38\) −0.745574 −0.120948
\(39\) 0 0
\(40\) −1.13249 −0.179063
\(41\) −4.33804 −0.677489 −0.338744 0.940878i \(-0.610002\pi\)
−0.338744 + 0.940878i \(0.610002\pi\)
\(42\) 1.42166 0.219367
\(43\) −1.15667 −0.176391 −0.0881956 0.996103i \(-0.528110\pi\)
−0.0881956 + 0.996103i \(0.528110\pi\)
\(44\) 9.42166 1.42037
\(45\) 1.00000 0.149071
\(46\) −1.83276 −0.270226
\(47\) 5.42166 0.790831 0.395415 0.918502i \(-0.370601\pi\)
0.395415 + 0.918502i \(0.370601\pi\)
\(48\) −3.50528 −0.505944
\(49\) 17.1708 2.45297
\(50\) 0.289169 0.0408946
\(51\) 4.33804 0.607448
\(52\) 0 0
\(53\) −0.338044 −0.0464340 −0.0232170 0.999730i \(-0.507391\pi\)
−0.0232170 + 0.999730i \(0.507391\pi\)
\(54\) −0.289169 −0.0393509
\(55\) −4.91638 −0.662925
\(56\) 5.56777 0.744025
\(57\) 2.57834 0.341509
\(58\) 1.73501 0.227818
\(59\) 11.2544 1.46520 0.732601 0.680659i \(-0.238306\pi\)
0.732601 + 0.680659i \(0.238306\pi\)
\(60\) 1.91638 0.247404
\(61\) −10.1708 −1.30224 −0.651119 0.758975i \(-0.725700\pi\)
−0.651119 + 0.758975i \(0.725700\pi\)
\(62\) −0.411100 −0.0522098
\(63\) −4.91638 −0.619406
\(64\) −6.06249 −0.757812
\(65\) 0 0
\(66\) 1.42166 0.174995
\(67\) 7.25443 0.886269 0.443135 0.896455i \(-0.353866\pi\)
0.443135 + 0.896455i \(0.353866\pi\)
\(68\) 8.31335 1.00814
\(69\) 6.33804 0.763011
\(70\) −1.42166 −0.169921
\(71\) −0.916382 −0.108754 −0.0543772 0.998520i \(-0.517317\pi\)
−0.0543772 + 0.998520i \(0.517317\pi\)
\(72\) −1.13249 −0.133466
\(73\) 3.15667 0.369461 0.184730 0.982789i \(-0.440859\pi\)
0.184730 + 0.982789i \(0.440859\pi\)
\(74\) −2.74557 −0.319166
\(75\) −1.00000 −0.115470
\(76\) 4.94108 0.566780
\(77\) 24.1708 2.75452
\(78\) 0 0
\(79\) −3.49472 −0.393187 −0.196593 0.980485i \(-0.562988\pi\)
−0.196593 + 0.980485i \(0.562988\pi\)
\(80\) 3.50528 0.391902
\(81\) 1.00000 0.111111
\(82\) −1.25443 −0.138528
\(83\) −11.2544 −1.23533 −0.617667 0.786440i \(-0.711922\pi\)
−0.617667 + 0.786440i \(0.711922\pi\)
\(84\) −9.42166 −1.02799
\(85\) −4.33804 −0.470527
\(86\) −0.334474 −0.0360672
\(87\) −6.00000 −0.643268
\(88\) 5.56777 0.593527
\(89\) 0.338044 0.0358326 0.0179163 0.999839i \(-0.494297\pi\)
0.0179163 + 0.999839i \(0.494297\pi\)
\(90\) 0.289169 0.0304810
\(91\) 0 0
\(92\) 12.1461 1.26632
\(93\) 1.42166 0.147420
\(94\) 1.56777 0.161704
\(95\) −2.57834 −0.264532
\(96\) −3.27861 −0.334621
\(97\) 12.3380 1.25274 0.626369 0.779526i \(-0.284540\pi\)
0.626369 + 0.779526i \(0.284540\pi\)
\(98\) 4.96526 0.501567
\(99\) −4.91638 −0.494115
\(100\) −1.91638 −0.191638
\(101\) 10.6761 1.06231 0.531155 0.847274i \(-0.321758\pi\)
0.531155 + 0.847274i \(0.321758\pi\)
\(102\) 1.25443 0.124207
\(103\) −14.5089 −1.42960 −0.714800 0.699329i \(-0.753482\pi\)
−0.714800 + 0.699329i \(0.753482\pi\)
\(104\) 0 0
\(105\) 4.91638 0.479790
\(106\) −0.0977518 −0.00949450
\(107\) 4.17081 0.403207 0.201604 0.979467i \(-0.435385\pi\)
0.201604 + 0.979467i \(0.435385\pi\)
\(108\) 1.91638 0.184404
\(109\) 3.83276 0.367112 0.183556 0.983009i \(-0.441239\pi\)
0.183556 + 0.983009i \(0.441239\pi\)
\(110\) −1.42166 −0.135550
\(111\) 9.49472 0.901199
\(112\) −17.2333 −1.62839
\(113\) −0.843326 −0.0793334 −0.0396667 0.999213i \(-0.512630\pi\)
−0.0396667 + 0.999213i \(0.512630\pi\)
\(114\) 0.745574 0.0698294
\(115\) −6.33804 −0.591026
\(116\) −11.4983 −1.06759
\(117\) 0 0
\(118\) 3.25443 0.299594
\(119\) 21.3275 1.95509
\(120\) 1.13249 0.103382
\(121\) 13.1708 1.19735
\(122\) −2.94108 −0.266273
\(123\) 4.33804 0.391148
\(124\) 2.72445 0.244663
\(125\) 1.00000 0.0894427
\(126\) −1.42166 −0.126652
\(127\) 1.83276 0.162631 0.0813157 0.996688i \(-0.474088\pi\)
0.0813157 + 0.996688i \(0.474088\pi\)
\(128\) −8.31029 −0.734533
\(129\) 1.15667 0.101839
\(130\) 0 0
\(131\) 5.83276 0.509611 0.254805 0.966992i \(-0.417989\pi\)
0.254805 + 0.966992i \(0.417989\pi\)
\(132\) −9.42166 −0.820050
\(133\) 12.6761 1.09916
\(134\) 2.09775 0.181218
\(135\) −1.00000 −0.0860663
\(136\) 4.91281 0.421270
\(137\) 16.5089 1.41045 0.705223 0.708985i \(-0.250847\pi\)
0.705223 + 0.708985i \(0.250847\pi\)
\(138\) 1.83276 0.156015
\(139\) 7.49472 0.635694 0.317847 0.948142i \(-0.397040\pi\)
0.317847 + 0.948142i \(0.397040\pi\)
\(140\) 9.42166 0.796276
\(141\) −5.42166 −0.456586
\(142\) −0.264989 −0.0222374
\(143\) 0 0
\(144\) 3.50528 0.292107
\(145\) 6.00000 0.498273
\(146\) 0.912811 0.0755448
\(147\) −17.1708 −1.41622
\(148\) 18.1955 1.49566
\(149\) −20.4842 −1.67813 −0.839064 0.544033i \(-0.816897\pi\)
−0.839064 + 0.544033i \(0.816897\pi\)
\(150\) −0.289169 −0.0236105
\(151\) 16.4111 1.33552 0.667758 0.744378i \(-0.267254\pi\)
0.667758 + 0.744378i \(0.267254\pi\)
\(152\) 2.91995 0.236839
\(153\) −4.33804 −0.350710
\(154\) 6.98944 0.563225
\(155\) −1.42166 −0.114191
\(156\) 0 0
\(157\) −21.6655 −1.72910 −0.864549 0.502549i \(-0.832396\pi\)
−0.864549 + 0.502549i \(0.832396\pi\)
\(158\) −1.01056 −0.0803961
\(159\) 0.338044 0.0268087
\(160\) 3.27861 0.259197
\(161\) 31.1602 2.45577
\(162\) 0.289169 0.0227192
\(163\) −6.07306 −0.475678 −0.237839 0.971305i \(-0.576439\pi\)
−0.237839 + 0.971305i \(0.576439\pi\)
\(164\) 8.31335 0.649163
\(165\) 4.91638 0.382740
\(166\) −3.25443 −0.252592
\(167\) 0.745574 0.0576942 0.0288471 0.999584i \(-0.490816\pi\)
0.0288471 + 0.999584i \(0.490816\pi\)
\(168\) −5.56777 −0.429563
\(169\) 0 0
\(170\) −1.25443 −0.0962101
\(171\) −2.57834 −0.197170
\(172\) 2.21663 0.169016
\(173\) 0.843326 0.0641169 0.0320584 0.999486i \(-0.489794\pi\)
0.0320584 + 0.999486i \(0.489794\pi\)
\(174\) −1.73501 −0.131531
\(175\) −4.91638 −0.371644
\(176\) −17.2333 −1.29901
\(177\) −11.2544 −0.845934
\(178\) 0.0977518 0.00732681
\(179\) −18.9894 −1.41934 −0.709669 0.704536i \(-0.751155\pi\)
−0.709669 + 0.704536i \(0.751155\pi\)
\(180\) −1.91638 −0.142839
\(181\) 17.4947 1.30037 0.650186 0.759775i \(-0.274691\pi\)
0.650186 + 0.759775i \(0.274691\pi\)
\(182\) 0 0
\(183\) 10.1708 0.751848
\(184\) 7.17780 0.529154
\(185\) −9.49472 −0.698066
\(186\) 0.411100 0.0301433
\(187\) 21.3275 1.55962
\(188\) −10.3900 −0.757767
\(189\) 4.91638 0.357614
\(190\) −0.745574 −0.0540896
\(191\) −22.5089 −1.62868 −0.814342 0.580386i \(-0.802902\pi\)
−0.814342 + 0.580386i \(0.802902\pi\)
\(192\) 6.06249 0.437523
\(193\) −2.65139 −0.190851 −0.0954257 0.995437i \(-0.530421\pi\)
−0.0954257 + 0.995437i \(0.530421\pi\)
\(194\) 3.56777 0.256151
\(195\) 0 0
\(196\) −32.9058 −2.35042
\(197\) 12.9894 0.925459 0.462730 0.886500i \(-0.346870\pi\)
0.462730 + 0.886500i \(0.346870\pi\)
\(198\) −1.42166 −0.101033
\(199\) −2.84333 −0.201558 −0.100779 0.994909i \(-0.532134\pi\)
−0.100779 + 0.994909i \(0.532134\pi\)
\(200\) −1.13249 −0.0800794
\(201\) −7.25443 −0.511688
\(202\) 3.08719 0.217214
\(203\) −29.4983 −2.07037
\(204\) −8.31335 −0.582051
\(205\) −4.33804 −0.302982
\(206\) −4.19550 −0.292315
\(207\) −6.33804 −0.440525
\(208\) 0 0
\(209\) 12.6761 0.876823
\(210\) 1.42166 0.0981041
\(211\) 6.31335 0.434629 0.217314 0.976102i \(-0.430270\pi\)
0.217314 + 0.976102i \(0.430270\pi\)
\(212\) 0.647822 0.0444926
\(213\) 0.916382 0.0627894
\(214\) 1.20607 0.0824450
\(215\) −1.15667 −0.0788845
\(216\) 1.13249 0.0770565
\(217\) 6.98944 0.474474
\(218\) 1.10831 0.0750645
\(219\) −3.15667 −0.213308
\(220\) 9.42166 0.635208
\(221\) 0 0
\(222\) 2.74557 0.184271
\(223\) −19.2544 −1.28937 −0.644686 0.764448i \(-0.723012\pi\)
−0.644686 + 0.764448i \(0.723012\pi\)
\(224\) −16.1189 −1.07699
\(225\) 1.00000 0.0666667
\(226\) −0.243863 −0.0162215
\(227\) 13.0872 0.868627 0.434314 0.900762i \(-0.356991\pi\)
0.434314 + 0.900762i \(0.356991\pi\)
\(228\) −4.94108 −0.327231
\(229\) 24.5089 1.61959 0.809795 0.586713i \(-0.199578\pi\)
0.809795 + 0.586713i \(0.199578\pi\)
\(230\) −1.83276 −0.120849
\(231\) −24.1708 −1.59032
\(232\) −6.79497 −0.446111
\(233\) 8.33804 0.546243 0.273122 0.961979i \(-0.411944\pi\)
0.273122 + 0.961979i \(0.411944\pi\)
\(234\) 0 0
\(235\) 5.42166 0.353670
\(236\) −21.5678 −1.40394
\(237\) 3.49472 0.227006
\(238\) 6.16724 0.399763
\(239\) −8.91638 −0.576753 −0.288376 0.957517i \(-0.593115\pi\)
−0.288376 + 0.957517i \(0.593115\pi\)
\(240\) −3.50528 −0.226265
\(241\) 6.00000 0.386494 0.193247 0.981150i \(-0.438098\pi\)
0.193247 + 0.981150i \(0.438098\pi\)
\(242\) 3.80858 0.244825
\(243\) −1.00000 −0.0641500
\(244\) 19.4911 1.24779
\(245\) 17.1708 1.09700
\(246\) 1.25443 0.0799793
\(247\) 0 0
\(248\) 1.61003 0.102237
\(249\) 11.2544 0.713220
\(250\) 0.289169 0.0182886
\(251\) −6.31335 −0.398495 −0.199248 0.979949i \(-0.563850\pi\)
−0.199248 + 0.979949i \(0.563850\pi\)
\(252\) 9.42166 0.593509
\(253\) 31.1602 1.95903
\(254\) 0.529977 0.0332537
\(255\) 4.33804 0.271659
\(256\) 9.72191 0.607619
\(257\) −11.1567 −0.695934 −0.347967 0.937507i \(-0.613128\pi\)
−0.347967 + 0.937507i \(0.613128\pi\)
\(258\) 0.334474 0.0208234
\(259\) 46.6797 2.90053
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 1.68665 0.104202
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) −5.56777 −0.342673
\(265\) −0.338044 −0.0207659
\(266\) 3.66553 0.224748
\(267\) −0.338044 −0.0206880
\(268\) −13.9022 −0.849215
\(269\) 18.6761 1.13870 0.569351 0.822095i \(-0.307195\pi\)
0.569351 + 0.822095i \(0.307195\pi\)
\(270\) −0.289169 −0.0175982
\(271\) −6.57834 −0.399606 −0.199803 0.979836i \(-0.564030\pi\)
−0.199803 + 0.979836i \(0.564030\pi\)
\(272\) −15.2061 −0.922003
\(273\) 0 0
\(274\) 4.77384 0.288398
\(275\) −4.91638 −0.296469
\(276\) −12.1461 −0.731110
\(277\) 25.6655 1.54209 0.771046 0.636779i \(-0.219734\pi\)
0.771046 + 0.636779i \(0.219734\pi\)
\(278\) 2.16724 0.129982
\(279\) −1.42166 −0.0851127
\(280\) 5.56777 0.332738
\(281\) −3.15667 −0.188311 −0.0941557 0.995557i \(-0.530015\pi\)
−0.0941557 + 0.995557i \(0.530015\pi\)
\(282\) −1.56777 −0.0933596
\(283\) −3.47002 −0.206271 −0.103136 0.994667i \(-0.532888\pi\)
−0.103136 + 0.994667i \(0.532888\pi\)
\(284\) 1.75614 0.104208
\(285\) 2.57834 0.152728
\(286\) 0 0
\(287\) 21.3275 1.25892
\(288\) 3.27861 0.193194
\(289\) 1.81863 0.106978
\(290\) 1.73501 0.101883
\(291\) −12.3380 −0.723269
\(292\) −6.04939 −0.354014
\(293\) −28.6550 −1.67404 −0.837020 0.547172i \(-0.815704\pi\)
−0.837020 + 0.547172i \(0.815704\pi\)
\(294\) −4.96526 −0.289580
\(295\) 11.2544 0.655258
\(296\) 10.7527 0.624989
\(297\) 4.91638 0.285277
\(298\) −5.92337 −0.343132
\(299\) 0 0
\(300\) 1.91638 0.110642
\(301\) 5.68665 0.327773
\(302\) 4.74557 0.273077
\(303\) −10.6761 −0.613325
\(304\) −9.03780 −0.518353
\(305\) −10.1708 −0.582379
\(306\) −1.25443 −0.0717108
\(307\) 1.92694 0.109977 0.0549883 0.998487i \(-0.482488\pi\)
0.0549883 + 0.998487i \(0.482488\pi\)
\(308\) −46.3205 −2.63935
\(309\) 14.5089 0.825380
\(310\) −0.411100 −0.0233489
\(311\) −29.9789 −1.69995 −0.849973 0.526826i \(-0.823382\pi\)
−0.849973 + 0.526826i \(0.823382\pi\)
\(312\) 0 0
\(313\) −16.3133 −0.922085 −0.461042 0.887378i \(-0.652524\pi\)
−0.461042 + 0.887378i \(0.652524\pi\)
\(314\) −6.26499 −0.353554
\(315\) −4.91638 −0.277007
\(316\) 6.69721 0.376748
\(317\) −30.6761 −1.72294 −0.861470 0.507808i \(-0.830456\pi\)
−0.861470 + 0.507808i \(0.830456\pi\)
\(318\) 0.0977518 0.00548165
\(319\) −29.4983 −1.65159
\(320\) −6.06249 −0.338904
\(321\) −4.17081 −0.232792
\(322\) 9.01056 0.502139
\(323\) 11.1849 0.622347
\(324\) −1.91638 −0.106466
\(325\) 0 0
\(326\) −1.75614 −0.0972634
\(327\) −3.83276 −0.211952
\(328\) 4.91281 0.271265
\(329\) −26.6550 −1.46954
\(330\) 1.42166 0.0782600
\(331\) 10.0978 0.555023 0.277511 0.960722i \(-0.410490\pi\)
0.277511 + 0.960722i \(0.410490\pi\)
\(332\) 21.5678 1.18369
\(333\) −9.49472 −0.520307
\(334\) 0.215597 0.0117969
\(335\) 7.25443 0.396352
\(336\) 17.2333 0.940154
\(337\) −1.32391 −0.0721180 −0.0360590 0.999350i \(-0.511480\pi\)
−0.0360590 + 0.999350i \(0.511480\pi\)
\(338\) 0 0
\(339\) 0.843326 0.0458032
\(340\) 8.31335 0.450855
\(341\) 6.98944 0.378499
\(342\) −0.745574 −0.0403160
\(343\) −50.0036 −2.69994
\(344\) 1.30993 0.0706265
\(345\) 6.33804 0.341229
\(346\) 0.243863 0.0131102
\(347\) −7.49472 −0.402338 −0.201169 0.979557i \(-0.564474\pi\)
−0.201169 + 0.979557i \(0.564474\pi\)
\(348\) 11.4983 0.616373
\(349\) 22.1461 1.18545 0.592727 0.805403i \(-0.298051\pi\)
0.592727 + 0.805403i \(0.298051\pi\)
\(350\) −1.42166 −0.0759911
\(351\) 0 0
\(352\) −16.1189 −0.859139
\(353\) −4.50885 −0.239982 −0.119991 0.992775i \(-0.538287\pi\)
−0.119991 + 0.992775i \(0.538287\pi\)
\(354\) −3.25443 −0.172971
\(355\) −0.916382 −0.0486365
\(356\) −0.647822 −0.0343345
\(357\) −21.3275 −1.12877
\(358\) −5.49115 −0.290216
\(359\) 20.4111 1.07726 0.538628 0.842543i \(-0.318943\pi\)
0.538628 + 0.842543i \(0.318943\pi\)
\(360\) −1.13249 −0.0596877
\(361\) −12.3522 −0.650115
\(362\) 5.05892 0.265891
\(363\) −13.1708 −0.691288
\(364\) 0 0
\(365\) 3.15667 0.165228
\(366\) 2.94108 0.153733
\(367\) −10.3133 −0.538352 −0.269176 0.963091i \(-0.586751\pi\)
−0.269176 + 0.963091i \(0.586751\pi\)
\(368\) −22.2166 −1.15812
\(369\) −4.33804 −0.225830
\(370\) −2.74557 −0.142736
\(371\) 1.66196 0.0862844
\(372\) −2.72445 −0.141256
\(373\) 18.6761 0.967011 0.483506 0.875341i \(-0.339363\pi\)
0.483506 + 0.875341i \(0.339363\pi\)
\(374\) 6.16724 0.318900
\(375\) −1.00000 −0.0516398
\(376\) −6.14000 −0.316646
\(377\) 0 0
\(378\) 1.42166 0.0731224
\(379\) 28.7527 1.47693 0.738464 0.674293i \(-0.235552\pi\)
0.738464 + 0.674293i \(0.235552\pi\)
\(380\) 4.94108 0.253472
\(381\) −1.83276 −0.0938953
\(382\) −6.50885 −0.333022
\(383\) 14.2439 0.727827 0.363914 0.931433i \(-0.381440\pi\)
0.363914 + 0.931433i \(0.381440\pi\)
\(384\) 8.31029 0.424083
\(385\) 24.1708 1.23186
\(386\) −0.766699 −0.0390240
\(387\) −1.15667 −0.0587971
\(388\) −23.6444 −1.20036
\(389\) 34.6761 1.75815 0.879074 0.476686i \(-0.158162\pi\)
0.879074 + 0.476686i \(0.158162\pi\)
\(390\) 0 0
\(391\) 27.4947 1.39047
\(392\) −19.4458 −0.982163
\(393\) −5.83276 −0.294224
\(394\) 3.75614 0.189231
\(395\) −3.49472 −0.175838
\(396\) 9.42166 0.473456
\(397\) −7.18137 −0.360423 −0.180211 0.983628i \(-0.557678\pi\)
−0.180211 + 0.983628i \(0.557678\pi\)
\(398\) −0.822200 −0.0412132
\(399\) −12.6761 −0.634598
\(400\) 3.50528 0.175264
\(401\) −37.8610 −1.89069 −0.945345 0.326072i \(-0.894275\pi\)
−0.945345 + 0.326072i \(0.894275\pi\)
\(402\) −2.09775 −0.104626
\(403\) 0 0
\(404\) −20.4595 −1.01790
\(405\) 1.00000 0.0496904
\(406\) −8.52998 −0.423336
\(407\) 46.6797 2.31382
\(408\) −4.91281 −0.243220
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) −1.25443 −0.0619517
\(411\) −16.5089 −0.814322
\(412\) 27.8045 1.36983
\(413\) −55.3311 −2.72266
\(414\) −1.83276 −0.0900754
\(415\) −11.2544 −0.552458
\(416\) 0 0
\(417\) −7.49472 −0.367018
\(418\) 3.66553 0.179287
\(419\) −33.4983 −1.63650 −0.818249 0.574864i \(-0.805055\pi\)
−0.818249 + 0.574864i \(0.805055\pi\)
\(420\) −9.42166 −0.459730
\(421\) −13.5194 −0.658896 −0.329448 0.944174i \(-0.606863\pi\)
−0.329448 + 0.944174i \(0.606863\pi\)
\(422\) 1.82562 0.0888699
\(423\) 5.42166 0.263610
\(424\) 0.382833 0.0185920
\(425\) −4.33804 −0.210426
\(426\) 0.264989 0.0128387
\(427\) 50.0036 2.41984
\(428\) −7.99286 −0.386349
\(429\) 0 0
\(430\) −0.334474 −0.0161298
\(431\) −12.4111 −0.597822 −0.298911 0.954281i \(-0.596623\pi\)
−0.298911 + 0.954281i \(0.596623\pi\)
\(432\) −3.50528 −0.168648
\(433\) −17.3239 −0.832534 −0.416267 0.909242i \(-0.636662\pi\)
−0.416267 + 0.909242i \(0.636662\pi\)
\(434\) 2.02113 0.0970171
\(435\) −6.00000 −0.287678
\(436\) −7.34504 −0.351763
\(437\) 16.3416 0.781725
\(438\) −0.912811 −0.0436158
\(439\) 0.651393 0.0310893 0.0155446 0.999879i \(-0.495052\pi\)
0.0155446 + 0.999879i \(0.495052\pi\)
\(440\) 5.56777 0.265433
\(441\) 17.1708 0.817658
\(442\) 0 0
\(443\) −8.84690 −0.420329 −0.210164 0.977666i \(-0.567400\pi\)
−0.210164 + 0.977666i \(0.567400\pi\)
\(444\) −18.1955 −0.863520
\(445\) 0.338044 0.0160248
\(446\) −5.56777 −0.263642
\(447\) 20.4842 0.968867
\(448\) 29.8055 1.40818
\(449\) −4.33804 −0.204725 −0.102362 0.994747i \(-0.532640\pi\)
−0.102362 + 0.994747i \(0.532640\pi\)
\(450\) 0.289169 0.0136315
\(451\) 21.3275 1.00427
\(452\) 1.61613 0.0760166
\(453\) −16.4111 −0.771061
\(454\) 3.78440 0.177611
\(455\) 0 0
\(456\) −2.91995 −0.136739
\(457\) −15.3275 −0.716989 −0.358495 0.933532i \(-0.616710\pi\)
−0.358495 + 0.933532i \(0.616710\pi\)
\(458\) 7.08719 0.331163
\(459\) 4.33804 0.202483
\(460\) 12.1461 0.566315
\(461\) 11.8575 0.552257 0.276128 0.961121i \(-0.410948\pi\)
0.276128 + 0.961121i \(0.410948\pi\)
\(462\) −6.98944 −0.325178
\(463\) 26.4147 1.22759 0.613797 0.789464i \(-0.289641\pi\)
0.613797 + 0.789464i \(0.289641\pi\)
\(464\) 21.0317 0.976372
\(465\) 1.42166 0.0659280
\(466\) 2.41110 0.111692
\(467\) −33.6691 −1.55802 −0.779010 0.627012i \(-0.784278\pi\)
−0.779010 + 0.627012i \(0.784278\pi\)
\(468\) 0 0
\(469\) −35.6655 −1.64688
\(470\) 1.56777 0.0723160
\(471\) 21.6655 0.998295
\(472\) −12.7456 −0.586663
\(473\) 5.68665 0.261473
\(474\) 1.01056 0.0464167
\(475\) −2.57834 −0.118302
\(476\) −40.8716 −1.87335
\(477\) −0.338044 −0.0154780
\(478\) −2.57834 −0.117930
\(479\) −10.7491 −0.491141 −0.245570 0.969379i \(-0.578975\pi\)
−0.245570 + 0.969379i \(0.578975\pi\)
\(480\) −3.27861 −0.149647
\(481\) 0 0
\(482\) 1.73501 0.0790276
\(483\) −31.1602 −1.41784
\(484\) −25.2403 −1.14729
\(485\) 12.3380 0.560242
\(486\) −0.289169 −0.0131170
\(487\) −22.7491 −1.03086 −0.515431 0.856931i \(-0.672368\pi\)
−0.515431 + 0.856931i \(0.672368\pi\)
\(488\) 11.5184 0.521413
\(489\) 6.07306 0.274633
\(490\) 4.96526 0.224307
\(491\) −17.6867 −0.798187 −0.399094 0.916910i \(-0.630675\pi\)
−0.399094 + 0.916910i \(0.630675\pi\)
\(492\) −8.31335 −0.374795
\(493\) −26.0283 −1.17225
\(494\) 0 0
\(495\) −4.91638 −0.220975
\(496\) −4.98333 −0.223758
\(497\) 4.50528 0.202089
\(498\) 3.25443 0.145834
\(499\) −19.9305 −0.892212 −0.446106 0.894980i \(-0.647190\pi\)
−0.446106 + 0.894980i \(0.647190\pi\)
\(500\) −1.91638 −0.0857032
\(501\) −0.745574 −0.0333098
\(502\) −1.82562 −0.0814815
\(503\) 33.3522 1.48710 0.743550 0.668680i \(-0.233140\pi\)
0.743550 + 0.668680i \(0.233140\pi\)
\(504\) 5.56777 0.248008
\(505\) 10.6761 0.475080
\(506\) 9.01056 0.400568
\(507\) 0 0
\(508\) −3.51227 −0.155832
\(509\) −13.8363 −0.613285 −0.306642 0.951825i \(-0.599206\pi\)
−0.306642 + 0.951825i \(0.599206\pi\)
\(510\) 1.25443 0.0555469
\(511\) −15.5194 −0.686538
\(512\) 19.4319 0.858775
\(513\) 2.57834 0.113836
\(514\) −3.22616 −0.142300
\(515\) −14.5089 −0.639336
\(516\) −2.21663 −0.0975817
\(517\) −26.6550 −1.17228
\(518\) 13.4983 0.593081
\(519\) −0.843326 −0.0370179
\(520\) 0 0
\(521\) −23.3522 −1.02308 −0.511539 0.859260i \(-0.670924\pi\)
−0.511539 + 0.859260i \(0.670924\pi\)
\(522\) 1.73501 0.0759394
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) −11.1778 −0.488304
\(525\) 4.91638 0.214568
\(526\) 2.31335 0.100867
\(527\) 6.16724 0.268649
\(528\) 17.2333 0.749983
\(529\) 17.1708 0.746557
\(530\) −0.0977518 −0.00424607
\(531\) 11.2544 0.488400
\(532\) −24.2922 −1.05320
\(533\) 0 0
\(534\) −0.0977518 −0.00423014
\(535\) 4.17081 0.180320
\(536\) −8.21560 −0.354860
\(537\) 18.9894 0.819455
\(538\) 5.40054 0.232834
\(539\) −84.4182 −3.63615
\(540\) 1.91638 0.0824679
\(541\) −16.1744 −0.695391 −0.347695 0.937608i \(-0.613036\pi\)
−0.347695 + 0.937608i \(0.613036\pi\)
\(542\) −1.90225 −0.0817086
\(543\) −17.4947 −0.750770
\(544\) −14.2227 −0.609795
\(545\) 3.83276 0.164178
\(546\) 0 0
\(547\) 9.68665 0.414171 0.207086 0.978323i \(-0.433602\pi\)
0.207086 + 0.978323i \(0.433602\pi\)
\(548\) −31.6373 −1.35148
\(549\) −10.1708 −0.434079
\(550\) −1.42166 −0.0606199
\(551\) −15.4700 −0.659045
\(552\) −7.17780 −0.305507
\(553\) 17.1814 0.730626
\(554\) 7.42166 0.315316
\(555\) 9.49472 0.403028
\(556\) −14.3627 −0.609116
\(557\) −0.647822 −0.0274491 −0.0137246 0.999906i \(-0.504369\pi\)
−0.0137246 + 0.999906i \(0.504369\pi\)
\(558\) −0.411100 −0.0174033
\(559\) 0 0
\(560\) −17.2333 −0.728240
\(561\) −21.3275 −0.900447
\(562\) −0.912811 −0.0385046
\(563\) −16.3169 −0.687676 −0.343838 0.939029i \(-0.611727\pi\)
−0.343838 + 0.939029i \(0.611727\pi\)
\(564\) 10.3900 0.437497
\(565\) −0.843326 −0.0354790
\(566\) −1.00342 −0.0421769
\(567\) −4.91638 −0.206469
\(568\) 1.03780 0.0435450
\(569\) 44.6550 1.87203 0.936017 0.351956i \(-0.114483\pi\)
0.936017 + 0.351956i \(0.114483\pi\)
\(570\) 0.745574 0.0312287
\(571\) −6.67252 −0.279236 −0.139618 0.990205i \(-0.544587\pi\)
−0.139618 + 0.990205i \(0.544587\pi\)
\(572\) 0 0
\(573\) 22.5089 0.940321
\(574\) 6.16724 0.257415
\(575\) −6.33804 −0.264315
\(576\) −6.06249 −0.252604
\(577\) −15.3275 −0.638091 −0.319046 0.947739i \(-0.603362\pi\)
−0.319046 + 0.947739i \(0.603362\pi\)
\(578\) 0.525891 0.0218742
\(579\) 2.65139 0.110188
\(580\) −11.4983 −0.477440
\(581\) 55.3311 2.29552
\(582\) −3.56777 −0.147889
\(583\) 1.66196 0.0688312
\(584\) −3.57492 −0.147931
\(585\) 0 0
\(586\) −8.28611 −0.342296
\(587\) −12.2650 −0.506230 −0.253115 0.967436i \(-0.581455\pi\)
−0.253115 + 0.967436i \(0.581455\pi\)
\(588\) 32.9058 1.35701
\(589\) 3.66553 0.151035
\(590\) 3.25443 0.133983
\(591\) −12.9894 −0.534314
\(592\) −33.2817 −1.36787
\(593\) 5.85389 0.240390 0.120195 0.992750i \(-0.461648\pi\)
0.120195 + 0.992750i \(0.461648\pi\)
\(594\) 1.42166 0.0583315
\(595\) 21.3275 0.874342
\(596\) 39.2555 1.60797
\(597\) 2.84333 0.116370
\(598\) 0 0
\(599\) 27.1355 1.10873 0.554364 0.832274i \(-0.312961\pi\)
0.554364 + 0.832274i \(0.312961\pi\)
\(600\) 1.13249 0.0462339
\(601\) 34.1708 1.39386 0.696928 0.717141i \(-0.254550\pi\)
0.696928 + 0.717141i \(0.254550\pi\)
\(602\) 1.64440 0.0670208
\(603\) 7.25443 0.295423
\(604\) −31.4499 −1.27968
\(605\) 13.1708 0.535469
\(606\) −3.08719 −0.125408
\(607\) 10.3133 0.418606 0.209303 0.977851i \(-0.432881\pi\)
0.209303 + 0.977851i \(0.432881\pi\)
\(608\) −8.45335 −0.342829
\(609\) 29.4983 1.19533
\(610\) −2.94108 −0.119081
\(611\) 0 0
\(612\) 8.31335 0.336047
\(613\) −0.484156 −0.0195549 −0.00977744 0.999952i \(-0.503112\pi\)
−0.00977744 + 0.999952i \(0.503112\pi\)
\(614\) 0.557212 0.0224872
\(615\) 4.33804 0.174927
\(616\) −27.3733 −1.10290
\(617\) 7.15667 0.288117 0.144058 0.989569i \(-0.453985\pi\)
0.144058 + 0.989569i \(0.453985\pi\)
\(618\) 4.19550 0.168768
\(619\) −5.42166 −0.217915 −0.108958 0.994046i \(-0.534751\pi\)
−0.108958 + 0.994046i \(0.534751\pi\)
\(620\) 2.72445 0.109416
\(621\) 6.33804 0.254337
\(622\) −8.66895 −0.347593
\(623\) −1.66196 −0.0665848
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −4.71731 −0.188542
\(627\) −12.6761 −0.506234
\(628\) 41.5194 1.65681
\(629\) 41.1885 1.64229
\(630\) −1.42166 −0.0566404
\(631\) 10.7244 0.426934 0.213467 0.976950i \(-0.431524\pi\)
0.213467 + 0.976950i \(0.431524\pi\)
\(632\) 3.95775 0.157431
\(633\) −6.31335 −0.250933
\(634\) −8.87056 −0.352295
\(635\) 1.83276 0.0727310
\(636\) −0.647822 −0.0256878
\(637\) 0 0
\(638\) −8.52998 −0.337705
\(639\) −0.916382 −0.0362515
\(640\) −8.31029 −0.328493
\(641\) −0.362741 −0.0143274 −0.00716370 0.999974i \(-0.502280\pi\)
−0.00716370 + 0.999974i \(0.502280\pi\)
\(642\) −1.20607 −0.0475996
\(643\) 9.39697 0.370580 0.185290 0.982684i \(-0.440678\pi\)
0.185290 + 0.982684i \(0.440678\pi\)
\(644\) −59.7149 −2.35310
\(645\) 1.15667 0.0455440
\(646\) 3.23433 0.127253
\(647\) 18.0036 0.707793 0.353897 0.935285i \(-0.384856\pi\)
0.353897 + 0.935285i \(0.384856\pi\)
\(648\) −1.13249 −0.0444886
\(649\) −55.3311 −2.17193
\(650\) 0 0
\(651\) −6.98944 −0.273938
\(652\) 11.6383 0.455791
\(653\) −34.8222 −1.36270 −0.681349 0.731959i \(-0.738606\pi\)
−0.681349 + 0.731959i \(0.738606\pi\)
\(654\) −1.10831 −0.0433385
\(655\) 5.83276 0.227905
\(656\) −15.2061 −0.593697
\(657\) 3.15667 0.123154
\(658\) −7.70778 −0.300480
\(659\) 11.4700 0.446809 0.223404 0.974726i \(-0.428283\pi\)
0.223404 + 0.974726i \(0.428283\pi\)
\(660\) −9.42166 −0.366738
\(661\) −12.1672 −0.473251 −0.236625 0.971601i \(-0.576041\pi\)
−0.236625 + 0.971601i \(0.576041\pi\)
\(662\) 2.91995 0.113487
\(663\) 0 0
\(664\) 12.7456 0.494624
\(665\) 12.6761 0.491558
\(666\) −2.74557 −0.106389
\(667\) −38.0283 −1.47246
\(668\) −1.42880 −0.0552821
\(669\) 19.2544 0.744419
\(670\) 2.09775 0.0810432
\(671\) 50.0036 1.93037
\(672\) 16.1189 0.621799
\(673\) −27.9789 −1.07851 −0.539253 0.842144i \(-0.681293\pi\)
−0.539253 + 0.842144i \(0.681293\pi\)
\(674\) −0.382833 −0.0147462
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 22.9930 0.883693 0.441847 0.897091i \(-0.354324\pi\)
0.441847 + 0.897091i \(0.354324\pi\)
\(678\) 0.243863 0.00936551
\(679\) −60.6585 −2.32786
\(680\) 4.91281 0.188398
\(681\) −13.0872 −0.501502
\(682\) 2.02113 0.0773929
\(683\) 28.6066 1.09460 0.547301 0.836936i \(-0.315655\pi\)
0.547301 + 0.836936i \(0.315655\pi\)
\(684\) 4.94108 0.188927
\(685\) 16.5089 0.630771
\(686\) −14.4595 −0.552065
\(687\) −24.5089 −0.935071
\(688\) −4.05447 −0.154575
\(689\) 0 0
\(690\) 1.83276 0.0697721
\(691\) 19.4005 0.738031 0.369016 0.929423i \(-0.379695\pi\)
0.369016 + 0.929423i \(0.379695\pi\)
\(692\) −1.61613 −0.0614362
\(693\) 24.1708 0.918173
\(694\) −2.16724 −0.0822672
\(695\) 7.49472 0.284291
\(696\) 6.79497 0.257563
\(697\) 18.8186 0.712806
\(698\) 6.40396 0.242393
\(699\) −8.33804 −0.315374
\(700\) 9.42166 0.356105
\(701\) −38.9683 −1.47181 −0.735906 0.677083i \(-0.763244\pi\)
−0.735906 + 0.677083i \(0.763244\pi\)
\(702\) 0 0
\(703\) 24.4806 0.923303
\(704\) 29.8055 1.12334
\(705\) −5.42166 −0.204192
\(706\) −1.30382 −0.0490698
\(707\) −52.4877 −1.97400
\(708\) 21.5678 0.810567
\(709\) 17.5194 0.657955 0.328978 0.944338i \(-0.393296\pi\)
0.328978 + 0.944338i \(0.393296\pi\)
\(710\) −0.264989 −0.00994485
\(711\) −3.49472 −0.131062
\(712\) −0.382833 −0.0143473
\(713\) 9.01056 0.337448
\(714\) −6.16724 −0.230803
\(715\) 0 0
\(716\) 36.3910 1.36000
\(717\) 8.91638 0.332988
\(718\) 5.90225 0.220270
\(719\) −4.33447 −0.161649 −0.0808243 0.996728i \(-0.525755\pi\)
−0.0808243 + 0.996728i \(0.525755\pi\)
\(720\) 3.50528 0.130634
\(721\) 71.3311 2.65651
\(722\) −3.57186 −0.132931
\(723\) −6.00000 −0.223142
\(724\) −33.5266 −1.24600
\(725\) 6.00000 0.222834
\(726\) −3.80858 −0.141350
\(727\) 22.1672 0.822137 0.411069 0.911604i \(-0.365156\pi\)
0.411069 + 0.911604i \(0.365156\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0.912811 0.0337846
\(731\) 5.01770 0.185586
\(732\) −19.4911 −0.720414
\(733\) 2.83976 0.104889 0.0524444 0.998624i \(-0.483299\pi\)
0.0524444 + 0.998624i \(0.483299\pi\)
\(734\) −2.98230 −0.110079
\(735\) −17.1708 −0.633355
\(736\) −20.7799 −0.765959
\(737\) −35.6655 −1.31376
\(738\) −1.25443 −0.0461761
\(739\) 43.9305 1.61601 0.808005 0.589176i \(-0.200547\pi\)
0.808005 + 0.589176i \(0.200547\pi\)
\(740\) 18.1955 0.668880
\(741\) 0 0
\(742\) 0.480585 0.0176428
\(743\) −41.0872 −1.50734 −0.753671 0.657251i \(-0.771719\pi\)
−0.753671 + 0.657251i \(0.771719\pi\)
\(744\) −1.61003 −0.0590264
\(745\) −20.4842 −0.750481
\(746\) 5.40054 0.197728
\(747\) −11.2544 −0.411778
\(748\) −40.8716 −1.49441
\(749\) −20.5053 −0.749247
\(750\) −0.289169 −0.0105589
\(751\) 23.6902 0.864468 0.432234 0.901761i \(-0.357725\pi\)
0.432234 + 0.901761i \(0.357725\pi\)
\(752\) 19.0045 0.693021
\(753\) 6.31335 0.230071
\(754\) 0 0
\(755\) 16.4111 0.597261
\(756\) −9.42166 −0.342663
\(757\) 9.32391 0.338883 0.169442 0.985540i \(-0.445804\pi\)
0.169442 + 0.985540i \(0.445804\pi\)
\(758\) 8.31438 0.301992
\(759\) −31.1602 −1.13105
\(760\) 2.91995 0.105918
\(761\) 42.8222 1.55230 0.776152 0.630546i \(-0.217169\pi\)
0.776152 + 0.630546i \(0.217169\pi\)
\(762\) −0.529977 −0.0191991
\(763\) −18.8433 −0.682174
\(764\) 43.1355 1.56059
\(765\) −4.33804 −0.156842
\(766\) 4.11888 0.148821
\(767\) 0 0
\(768\) −9.72191 −0.350809
\(769\) 17.3239 0.624716 0.312358 0.949964i \(-0.398881\pi\)
0.312358 + 0.949964i \(0.398881\pi\)
\(770\) 6.98944 0.251882
\(771\) 11.1567 0.401798
\(772\) 5.08108 0.182872
\(773\) 11.6373 0.418563 0.209282 0.977855i \(-0.432887\pi\)
0.209282 + 0.977855i \(0.432887\pi\)
\(774\) −0.334474 −0.0120224
\(775\) −1.42166 −0.0510676
\(776\) −13.9728 −0.501593
\(777\) −46.6797 −1.67462
\(778\) 10.0272 0.359494
\(779\) 11.1849 0.400742
\(780\) 0 0
\(781\) 4.50528 0.161212
\(782\) 7.95061 0.284313
\(783\) −6.00000 −0.214423
\(784\) 60.1885 2.14959
\(785\) −21.6655 −0.773276
\(786\) −1.68665 −0.0601609
\(787\) −20.9411 −0.746469 −0.373234 0.927737i \(-0.621751\pi\)
−0.373234 + 0.927737i \(0.621751\pi\)
\(788\) −24.8927 −0.886766
\(789\) −8.00000 −0.284808
\(790\) −1.01056 −0.0359542
\(791\) 4.14611 0.147419
\(792\) 5.56777 0.197842
\(793\) 0 0
\(794\) −2.07663 −0.0736967
\(795\) 0.338044 0.0119892
\(796\) 5.44890 0.193131
\(797\) 20.3380 0.720410 0.360205 0.932873i \(-0.382707\pi\)
0.360205 + 0.932873i \(0.382707\pi\)
\(798\) −3.66553 −0.129758
\(799\) −23.5194 −0.832057
\(800\) 3.27861 0.115916
\(801\) 0.338044 0.0119442
\(802\) −10.9482 −0.386595
\(803\) −15.5194 −0.547668
\(804\) 13.9022 0.490294
\(805\) 31.1602 1.09825
\(806\) 0 0
\(807\) −18.6761 −0.657429
\(808\) −12.0906 −0.425346
\(809\) 7.68665 0.270248 0.135124 0.990829i \(-0.456857\pi\)
0.135124 + 0.990829i \(0.456857\pi\)
\(810\) 0.289169 0.0101603
\(811\) 44.4111 1.55948 0.779742 0.626101i \(-0.215350\pi\)
0.779742 + 0.626101i \(0.215350\pi\)
\(812\) 56.5300 1.98381
\(813\) 6.57834 0.230712
\(814\) 13.4983 0.473115
\(815\) −6.07306 −0.212730
\(816\) 15.2061 0.532319
\(817\) 2.98230 0.104337
\(818\) 4.04836 0.141548
\(819\) 0 0
\(820\) 8.31335 0.290315
\(821\) 46.4630 1.62157 0.810785 0.585343i \(-0.199040\pi\)
0.810785 + 0.585343i \(0.199040\pi\)
\(822\) −4.77384 −0.166507
\(823\) 46.5089 1.62120 0.810598 0.585603i \(-0.199142\pi\)
0.810598 + 0.585603i \(0.199142\pi\)
\(824\) 16.4312 0.572408
\(825\) 4.91638 0.171166
\(826\) −16.0000 −0.556711
\(827\) −39.4005 −1.37009 −0.685045 0.728500i \(-0.740218\pi\)
−0.685045 + 0.728500i \(0.740218\pi\)
\(828\) 12.1461 0.422107
\(829\) 47.6444 1.65476 0.827379 0.561644i \(-0.189831\pi\)
0.827379 + 0.561644i \(0.189831\pi\)
\(830\) −3.25443 −0.112963
\(831\) −25.6655 −0.890327
\(832\) 0 0
\(833\) −74.4877 −2.58085
\(834\) −2.16724 −0.0750453
\(835\) 0.745574 0.0258017
\(836\) −24.2922 −0.840164
\(837\) 1.42166 0.0491399
\(838\) −9.68665 −0.334620
\(839\) 39.9058 1.37770 0.688851 0.724903i \(-0.258115\pi\)
0.688851 + 0.724903i \(0.258115\pi\)
\(840\) −5.56777 −0.192106
\(841\) 7.00000 0.241379
\(842\) −3.90939 −0.134726
\(843\) 3.15667 0.108722
\(844\) −12.0988 −0.416457
\(845\) 0 0
\(846\) 1.56777 0.0539012
\(847\) −64.7527 −2.22493
\(848\) −1.18494 −0.0406910
\(849\) 3.47002 0.119091
\(850\) −1.25443 −0.0430265
\(851\) 60.1779 2.06287
\(852\) −1.75614 −0.0601643
\(853\) −29.5019 −1.01012 −0.505062 0.863083i \(-0.668530\pi\)
−0.505062 + 0.863083i \(0.668530\pi\)
\(854\) 14.4595 0.494793
\(855\) −2.57834 −0.0881773
\(856\) −4.72342 −0.161443
\(857\) 8.33804 0.284822 0.142411 0.989808i \(-0.454515\pi\)
0.142411 + 0.989808i \(0.454515\pi\)
\(858\) 0 0
\(859\) −4.17081 −0.142306 −0.0711531 0.997465i \(-0.522668\pi\)
−0.0711531 + 0.997465i \(0.522668\pi\)
\(860\) 2.21663 0.0755864
\(861\) −21.3275 −0.726839
\(862\) −3.58890 −0.122238
\(863\) 3.93051 0.133796 0.0668981 0.997760i \(-0.478690\pi\)
0.0668981 + 0.997760i \(0.478690\pi\)
\(864\) −3.27861 −0.111540
\(865\) 0.843326 0.0286739
\(866\) −5.00953 −0.170231
\(867\) −1.81863 −0.0617639
\(868\) −13.3944 −0.454637
\(869\) 17.1814 0.582838
\(870\) −1.73501 −0.0588224
\(871\) 0 0
\(872\) −4.34058 −0.146991
\(873\) 12.3380 0.417580
\(874\) 4.72548 0.159842
\(875\) −4.91638 −0.166204
\(876\) 6.04939 0.204390
\(877\) 23.0177 0.777253 0.388626 0.921395i \(-0.372950\pi\)
0.388626 + 0.921395i \(0.372950\pi\)
\(878\) 0.188362 0.00635692
\(879\) 28.6550 0.966508
\(880\) −17.2333 −0.580934
\(881\) −15.3522 −0.517228 −0.258614 0.965981i \(-0.583266\pi\)
−0.258614 + 0.965981i \(0.583266\pi\)
\(882\) 4.96526 0.167189
\(883\) 42.8011 1.44037 0.720185 0.693782i \(-0.244057\pi\)
0.720185 + 0.693782i \(0.244057\pi\)
\(884\) 0 0
\(885\) −11.2544 −0.378313
\(886\) −2.55824 −0.0859459
\(887\) −53.1885 −1.78590 −0.892948 0.450160i \(-0.851367\pi\)
−0.892948 + 0.450160i \(0.851367\pi\)
\(888\) −10.7527 −0.360837
\(889\) −9.01056 −0.302205
\(890\) 0.0977518 0.00327665
\(891\) −4.91638 −0.164705
\(892\) 36.8988 1.23546
\(893\) −13.9789 −0.467785
\(894\) 5.92337 0.198107
\(895\) −18.9894 −0.634747
\(896\) 40.8566 1.36492
\(897\) 0 0
\(898\) −1.25443 −0.0418607
\(899\) −8.52998 −0.284491
\(900\) −1.91638 −0.0638794
\(901\) 1.46645 0.0488546
\(902\) 6.16724 0.205347
\(903\) −5.68665 −0.189240
\(904\) 0.955062 0.0317649
\(905\) 17.4947 0.581544
\(906\) −4.74557 −0.157661
\(907\) 11.8116 0.392199 0.196099 0.980584i \(-0.437172\pi\)
0.196099 + 0.980584i \(0.437172\pi\)
\(908\) −25.0800 −0.832311
\(909\) 10.6761 0.354104
\(910\) 0 0
\(911\) 44.1955 1.46426 0.732131 0.681164i \(-0.238526\pi\)
0.732131 + 0.681164i \(0.238526\pi\)
\(912\) 9.03780 0.299271
\(913\) 55.3311 1.83119
\(914\) −4.43223 −0.146605
\(915\) 10.1708 0.336237
\(916\) −46.9683 −1.55188
\(917\) −28.6761 −0.946968
\(918\) 1.25443 0.0414022
\(919\) 55.2096 1.82120 0.910599 0.413291i \(-0.135621\pi\)
0.910599 + 0.413291i \(0.135621\pi\)
\(920\) 7.17780 0.236645
\(921\) −1.92694 −0.0634950
\(922\) 3.42880 0.112922
\(923\) 0 0
\(924\) 46.3205 1.52383
\(925\) −9.49472 −0.312184
\(926\) 7.63829 0.251010
\(927\) −14.5089 −0.476533
\(928\) 19.6716 0.645753
\(929\) −22.9930 −0.754376 −0.377188 0.926137i \(-0.623109\pi\)
−0.377188 + 0.926137i \(0.623109\pi\)
\(930\) 0.411100 0.0134805
\(931\) −44.2721 −1.45096
\(932\) −15.9789 −0.523405
\(933\) 29.9789 0.981464
\(934\) −9.73604 −0.318573
\(935\) 21.3275 0.697483
\(936\) 0 0
\(937\) 7.97887 0.260658 0.130329 0.991471i \(-0.458397\pi\)
0.130329 + 0.991471i \(0.458397\pi\)
\(938\) −10.3133 −0.336743
\(939\) 16.3133 0.532366
\(940\) −10.3900 −0.338884
\(941\) −41.5019 −1.35292 −0.676461 0.736478i \(-0.736487\pi\)
−0.676461 + 0.736478i \(0.736487\pi\)
\(942\) 6.26499 0.204124
\(943\) 27.4947 0.895351
\(944\) 39.4499 1.28399
\(945\) 4.91638 0.159930
\(946\) 1.64440 0.0534641
\(947\) −47.4499 −1.54192 −0.770958 0.636886i \(-0.780222\pi\)
−0.770958 + 0.636886i \(0.780222\pi\)
\(948\) −6.69721 −0.217515
\(949\) 0 0
\(950\) −0.745574 −0.0241896
\(951\) 30.6761 0.994740
\(952\) −24.1533 −0.782811
\(953\) 30.3663 0.983661 0.491831 0.870691i \(-0.336328\pi\)
0.491831 + 0.870691i \(0.336328\pi\)
\(954\) −0.0977518 −0.00316483
\(955\) −22.5089 −0.728369
\(956\) 17.0872 0.552639
\(957\) 29.4983 0.953544
\(958\) −3.10831 −0.100425
\(959\) −81.1638 −2.62092
\(960\) 6.06249 0.195666
\(961\) −28.9789 −0.934802
\(962\) 0 0
\(963\) 4.17081 0.134402
\(964\) −11.4983 −0.370335
\(965\) −2.65139 −0.0853514
\(966\) −9.01056 −0.289910
\(967\) 41.0943 1.32150 0.660752 0.750604i \(-0.270237\pi\)
0.660752 + 0.750604i \(0.270237\pi\)
\(968\) −14.9159 −0.479414
\(969\) −11.1849 −0.359312
\(970\) 3.56777 0.114554
\(971\) 38.1744 1.22507 0.612537 0.790442i \(-0.290149\pi\)
0.612537 + 0.790442i \(0.290149\pi\)
\(972\) 1.91638 0.0614680
\(973\) −36.8469 −1.18126
\(974\) −6.57834 −0.210784
\(975\) 0 0
\(976\) −35.6515 −1.14118
\(977\) 10.4806 0.335304 0.167652 0.985846i \(-0.446382\pi\)
0.167652 + 0.985846i \(0.446382\pi\)
\(978\) 1.75614 0.0561551
\(979\) −1.66196 −0.0531163
\(980\) −32.9058 −1.05114
\(981\) 3.83276 0.122371
\(982\) −5.11442 −0.163208
\(983\) 0.0766264 0.00244400 0.00122200 0.999999i \(-0.499611\pi\)
0.00122200 + 0.999999i \(0.499611\pi\)
\(984\) −4.91281 −0.156615
\(985\) 12.9894 0.413878
\(986\) −7.52656 −0.239694
\(987\) 26.6550 0.848437
\(988\) 0 0
\(989\) 7.33105 0.233114
\(990\) −1.42166 −0.0451834
\(991\) −13.8575 −0.440197 −0.220098 0.975478i \(-0.570638\pi\)
−0.220098 + 0.975478i \(0.570638\pi\)
\(992\) −4.66107 −0.147989
\(993\) −10.0978 −0.320442
\(994\) 1.30279 0.0413219
\(995\) −2.84333 −0.0901395
\(996\) −21.5678 −0.683401
\(997\) −10.3416 −0.327522 −0.163761 0.986500i \(-0.552363\pi\)
−0.163761 + 0.986500i \(0.552363\pi\)
\(998\) −5.76328 −0.182433
\(999\) 9.49472 0.300400
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2535.2.a.bc.1.2 3
3.2 odd 2 7605.2.a.bx.1.2 3
13.12 even 2 195.2.a.e.1.2 3
39.38 odd 2 585.2.a.n.1.2 3
52.51 odd 2 3120.2.a.bj.1.1 3
65.12 odd 4 975.2.c.i.274.3 6
65.38 odd 4 975.2.c.i.274.4 6
65.64 even 2 975.2.a.o.1.2 3
91.90 odd 2 9555.2.a.bq.1.2 3
156.155 even 2 9360.2.a.dd.1.1 3
195.38 even 4 2925.2.c.w.2224.3 6
195.77 even 4 2925.2.c.w.2224.4 6
195.194 odd 2 2925.2.a.bh.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.a.e.1.2 3 13.12 even 2
585.2.a.n.1.2 3 39.38 odd 2
975.2.a.o.1.2 3 65.64 even 2
975.2.c.i.274.3 6 65.12 odd 4
975.2.c.i.274.4 6 65.38 odd 4
2535.2.a.bc.1.2 3 1.1 even 1 trivial
2925.2.a.bh.1.2 3 195.194 odd 2
2925.2.c.w.2224.3 6 195.38 even 4
2925.2.c.w.2224.4 6 195.77 even 4
3120.2.a.bj.1.1 3 52.51 odd 2
7605.2.a.bx.1.2 3 3.2 odd 2
9360.2.a.dd.1.1 3 156.155 even 2
9555.2.a.bq.1.2 3 91.90 odd 2