Properties

 Label 2535.2.a.ba Level $2535$ Weight $2$ Character orbit 2535.a Self dual yes Analytic conductor $20.242$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2535,2,Mod(1,2535)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2535, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2535.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2535 = 3 \cdot 5 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2535.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$20.2420769124$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.756.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - 6x - 2$$ x^3 - 6*x - 2 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 195) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 2) q^{4} - q^{5} + \beta_1 q^{6} + ( - \beta_1 - 1) q^{7} + ( - 2 \beta_1 - 2) q^{8} + q^{9}+O(q^{10})$$ q - b1 * q^2 - q^3 + (b2 + 2) * q^4 - q^5 + b1 * q^6 + (-b1 - 1) * q^7 + (-2*b1 - 2) * q^8 + q^9 $$q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 2) q^{4} - q^{5} + \beta_1 q^{6} + ( - \beta_1 - 1) q^{7} + ( - 2 \beta_1 - 2) q^{8} + q^{9} + \beta_1 q^{10} + 2 \beta_1 q^{11} + ( - \beta_{2} - 2) q^{12} + (\beta_{2} + \beta_1 + 4) q^{14} + q^{15} + (2 \beta_1 + 4) q^{16} + ( - 2 \beta_{2} + \beta_1) q^{17} - \beta_1 q^{18} + ( - \beta_{2} - 4) q^{19} + ( - \beta_{2} - 2) q^{20} + (\beta_1 + 1) q^{21} + ( - 2 \beta_{2} - 8) q^{22} + 2 \beta_{2} q^{23} + (2 \beta_1 + 2) q^{24} + q^{25} - q^{27} + ( - \beta_{2} - 4 \beta_1 - 4) q^{28} + ( - \beta_{2} + \beta_1 + 2) q^{29} - \beta_1 q^{30} + ( - 3 \beta_{2} + 2 \beta_1 - 1) q^{31} + ( - 2 \beta_{2} - 4) q^{32} - 2 \beta_1 q^{33} + ( - \beta_{2} + 4 \beta_1) q^{34} + (\beta_1 + 1) q^{35} + (\beta_{2} + 2) q^{36} + (2 \beta_{2} - 2) q^{37} + (6 \beta_1 + 2) q^{38} + (2 \beta_1 + 2) q^{40} + (\beta_{2} + \beta_1) q^{41} + ( - \beta_{2} - \beta_1 - 4) q^{42} + (\beta_{2} - \beta_1 + 3) q^{43} + (8 \beta_1 + 4) q^{44} - q^{45} + ( - 4 \beta_1 - 4) q^{46} + ( - 3 \beta_1 + 4) q^{47} + ( - 2 \beta_1 - 4) q^{48} + (\beta_{2} + 2 \beta_1 - 2) q^{49} - \beta_1 q^{50} + (2 \beta_{2} - \beta_1) q^{51} - 2 \beta_1 q^{53} + \beta_1 q^{54} - 2 \beta_1 q^{55} + (2 \beta_{2} + 4 \beta_1 + 10) q^{56} + (\beta_{2} + 4) q^{57} + ( - \beta_{2} - 2) q^{58} + (\beta_{2} + \beta_1 + 2) q^{59} + (\beta_{2} + 2) q^{60} + (\beta_{2} - 2 \beta_1 - 1) q^{61} + ( - 2 \beta_{2} + 7 \beta_1 - 2) q^{62} + ( - \beta_1 - 1) q^{63} + (4 \beta_1 - 4) q^{64} + (2 \beta_{2} + 8) q^{66} + ( - 3 \beta_{2} + 3 \beta_1 - 3) q^{67} - 14 q^{68} - 2 \beta_{2} q^{69} + ( - \beta_{2} - \beta_1 - 4) q^{70} + (3 \beta_{2} - \beta_1 + 4) q^{71} + ( - 2 \beta_1 - 2) q^{72} + (3 \beta_1 - 7) q^{73} + ( - 2 \beta_1 - 4) q^{74} - q^{75} + ( - 4 \beta_{2} - 2 \beta_1 - 16) q^{76} + ( - 2 \beta_{2} - 2 \beta_1 - 8) q^{77} + ( - 3 \beta_{2} + 2 \beta_1 - 1) q^{79} + ( - 2 \beta_1 - 4) q^{80} + q^{81} + ( - \beta_{2} - 2 \beta_1 - 6) q^{82} + (2 \beta_{2} + 6) q^{83} + (\beta_{2} + 4 \beta_1 + 4) q^{84} + (2 \beta_{2} - \beta_1) q^{85} + (\beta_{2} - 5 \beta_1 + 2) q^{86} + (\beta_{2} - \beta_1 - 2) q^{87} + ( - 4 \beta_{2} - 4 \beta_1 - 16) q^{88} + (\beta_{2} - \beta_1 - 10) q^{89} + \beta_1 q^{90} + (4 \beta_1 + 16) q^{92} + (3 \beta_{2} - 2 \beta_1 + 1) q^{93} + (3 \beta_{2} - 4 \beta_1 + 12) q^{94} + (\beta_{2} + 4) q^{95} + (2 \beta_{2} + 4) q^{96} + (\beta_{2} + 3 \beta_1 - 5) q^{97} + ( - 2 \beta_{2} - 10) q^{98} + 2 \beta_1 q^{99}+O(q^{100})$$ q - b1 * q^2 - q^3 + (b2 + 2) * q^4 - q^5 + b1 * q^6 + (-b1 - 1) * q^7 + (-2*b1 - 2) * q^8 + q^9 + b1 * q^10 + 2*b1 * q^11 + (-b2 - 2) * q^12 + (b2 + b1 + 4) * q^14 + q^15 + (2*b1 + 4) * q^16 + (-2*b2 + b1) * q^17 - b1 * q^18 + (-b2 - 4) * q^19 + (-b2 - 2) * q^20 + (b1 + 1) * q^21 + (-2*b2 - 8) * q^22 + 2*b2 * q^23 + (2*b1 + 2) * q^24 + q^25 - q^27 + (-b2 - 4*b1 - 4) * q^28 + (-b2 + b1 + 2) * q^29 - b1 * q^30 + (-3*b2 + 2*b1 - 1) * q^31 + (-2*b2 - 4) * q^32 - 2*b1 * q^33 + (-b2 + 4*b1) * q^34 + (b1 + 1) * q^35 + (b2 + 2) * q^36 + (2*b2 - 2) * q^37 + (6*b1 + 2) * q^38 + (2*b1 + 2) * q^40 + (b2 + b1) * q^41 + (-b2 - b1 - 4) * q^42 + (b2 - b1 + 3) * q^43 + (8*b1 + 4) * q^44 - q^45 + (-4*b1 - 4) * q^46 + (-3*b1 + 4) * q^47 + (-2*b1 - 4) * q^48 + (b2 + 2*b1 - 2) * q^49 - b1 * q^50 + (2*b2 - b1) * q^51 - 2*b1 * q^53 + b1 * q^54 - 2*b1 * q^55 + (2*b2 + 4*b1 + 10) * q^56 + (b2 + 4) * q^57 + (-b2 - 2) * q^58 + (b2 + b1 + 2) * q^59 + (b2 + 2) * q^60 + (b2 - 2*b1 - 1) * q^61 + (-2*b2 + 7*b1 - 2) * q^62 + (-b1 - 1) * q^63 + (4*b1 - 4) * q^64 + (2*b2 + 8) * q^66 + (-3*b2 + 3*b1 - 3) * q^67 - 14 * q^68 - 2*b2 * q^69 + (-b2 - b1 - 4) * q^70 + (3*b2 - b1 + 4) * q^71 + (-2*b1 - 2) * q^72 + (3*b1 - 7) * q^73 + (-2*b1 - 4) * q^74 - q^75 + (-4*b2 - 2*b1 - 16) * q^76 + (-2*b2 - 2*b1 - 8) * q^77 + (-3*b2 + 2*b1 - 1) * q^79 + (-2*b1 - 4) * q^80 + q^81 + (-b2 - 2*b1 - 6) * q^82 + (2*b2 + 6) * q^83 + (b2 + 4*b1 + 4) * q^84 + (2*b2 - b1) * q^85 + (b2 - 5*b1 + 2) * q^86 + (b2 - b1 - 2) * q^87 + (-4*b2 - 4*b1 - 16) * q^88 + (b2 - b1 - 10) * q^89 + b1 * q^90 + (4*b1 + 16) * q^92 + (3*b2 - 2*b1 + 1) * q^93 + (3*b2 - 4*b1 + 12) * q^94 + (b2 + 4) * q^95 + (2*b2 + 4) * q^96 + (b2 + 3*b1 - 5) * q^97 + (-2*b2 - 10) * q^98 + 2*b1 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - 3 q^{3} + 6 q^{4} - 3 q^{5} - 3 q^{7} - 6 q^{8} + 3 q^{9}+O(q^{10})$$ 3 * q - 3 * q^3 + 6 * q^4 - 3 * q^5 - 3 * q^7 - 6 * q^8 + 3 * q^9 $$3 q - 3 q^{3} + 6 q^{4} - 3 q^{5} - 3 q^{7} - 6 q^{8} + 3 q^{9} - 6 q^{12} + 12 q^{14} + 3 q^{15} + 12 q^{16} - 12 q^{19} - 6 q^{20} + 3 q^{21} - 24 q^{22} + 6 q^{24} + 3 q^{25} - 3 q^{27} - 12 q^{28} + 6 q^{29} - 3 q^{31} - 12 q^{32} + 3 q^{35} + 6 q^{36} - 6 q^{37} + 6 q^{38} + 6 q^{40} - 12 q^{42} + 9 q^{43} + 12 q^{44} - 3 q^{45} - 12 q^{46} + 12 q^{47} - 12 q^{48} - 6 q^{49} + 30 q^{56} + 12 q^{57} - 6 q^{58} + 6 q^{59} + 6 q^{60} - 3 q^{61} - 6 q^{62} - 3 q^{63} - 12 q^{64} + 24 q^{66} - 9 q^{67} - 42 q^{68} - 12 q^{70} + 12 q^{71} - 6 q^{72} - 21 q^{73} - 12 q^{74} - 3 q^{75} - 48 q^{76} - 24 q^{77} - 3 q^{79} - 12 q^{80} + 3 q^{81} - 18 q^{82} + 18 q^{83} + 12 q^{84} + 6 q^{86} - 6 q^{87} - 48 q^{88} - 30 q^{89} + 48 q^{92} + 3 q^{93} + 36 q^{94} + 12 q^{95} + 12 q^{96} - 15 q^{97} - 30 q^{98}+O(q^{100})$$ 3 * q - 3 * q^3 + 6 * q^4 - 3 * q^5 - 3 * q^7 - 6 * q^8 + 3 * q^9 - 6 * q^12 + 12 * q^14 + 3 * q^15 + 12 * q^16 - 12 * q^19 - 6 * q^20 + 3 * q^21 - 24 * q^22 + 6 * q^24 + 3 * q^25 - 3 * q^27 - 12 * q^28 + 6 * q^29 - 3 * q^31 - 12 * q^32 + 3 * q^35 + 6 * q^36 - 6 * q^37 + 6 * q^38 + 6 * q^40 - 12 * q^42 + 9 * q^43 + 12 * q^44 - 3 * q^45 - 12 * q^46 + 12 * q^47 - 12 * q^48 - 6 * q^49 + 30 * q^56 + 12 * q^57 - 6 * q^58 + 6 * q^59 + 6 * q^60 - 3 * q^61 - 6 * q^62 - 3 * q^63 - 12 * q^64 + 24 * q^66 - 9 * q^67 - 42 * q^68 - 12 * q^70 + 12 * q^71 - 6 * q^72 - 21 * q^73 - 12 * q^74 - 3 * q^75 - 48 * q^76 - 24 * q^77 - 3 * q^79 - 12 * q^80 + 3 * q^81 - 18 * q^82 + 18 * q^83 + 12 * q^84 + 6 * q^86 - 6 * q^87 - 48 * q^88 - 30 * q^89 + 48 * q^92 + 3 * q^93 + 36 * q^94 + 12 * q^95 + 12 * q^96 - 15 * q^97 - 30 * q^98

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - 6x - 2$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 4$$ v^2 - 4
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 4$$ b2 + 4

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.60168 −0.339877 −2.26180
−2.60168 −1.00000 4.76873 −1.00000 2.60168 −3.60168 −7.20336 1.00000 2.60168
1.2 0.339877 −1.00000 −1.88448 −1.00000 −0.339877 −0.660123 −1.32025 1.00000 −0.339877
1.3 2.26180 −1.00000 3.11575 −1.00000 −2.26180 1.26180 2.52360 1.00000 −2.26180
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$+1$$
$$5$$ $$+1$$
$$13$$ $$+1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2535.2.a.ba 3
3.b odd 2 1 7605.2.a.bw 3
13.b even 2 1 2535.2.a.bb 3
13.e even 6 2 195.2.i.d 6
39.d odd 2 1 7605.2.a.bv 3
39.h odd 6 2 585.2.j.f 6
65.l even 6 2 975.2.i.l 6
65.r odd 12 4 975.2.bb.k 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.i.d 6 13.e even 6 2
585.2.j.f 6 39.h odd 6 2
975.2.i.l 6 65.l even 6 2
975.2.bb.k 12 65.r odd 12 4
2535.2.a.ba 3 1.a even 1 1 trivial
2535.2.a.bb 3 13.b even 2 1
7605.2.a.bv 3 39.d odd 2 1
7605.2.a.bw 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2535))$$:

 $$T_{2}^{3} - 6T_{2} + 2$$ T2^3 - 6*T2 + 2 $$T_{7}^{3} + 3T_{7}^{2} - 3T_{7} - 3$$ T7^3 + 3*T7^2 - 3*T7 - 3 $$T_{11}^{3} - 24T_{11} - 16$$ T11^3 - 24*T11 - 16

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3} - 6T + 2$$
$3$ $$(T + 1)^{3}$$
$5$ $$(T + 1)^{3}$$
$7$ $$T^{3} + 3 T^{2} + \cdots - 3$$
$11$ $$T^{3} - 24T - 16$$
$13$ $$T^{3}$$
$17$ $$T^{3} - 42T - 98$$
$19$ $$T^{3} + 12 T^{2} + \cdots + 4$$
$23$ $$T^{3} - 48T + 96$$
$29$ $$T^{3} - 6T^{2} + 14$$
$31$ $$T^{3} + 3 T^{2} + \cdots - 363$$
$37$ $$T^{3} + 6 T^{2} + \cdots + 8$$
$41$ $$T^{3} - 24T - 26$$
$43$ $$T^{3} - 9 T^{2} + \cdots + 11$$
$47$ $$T^{3} - 12 T^{2} + \cdots + 206$$
$53$ $$T^{3} - 24T + 16$$
$59$ $$T^{3} - 6 T^{2} + \cdots + 14$$
$61$ $$T^{3} + 3 T^{2} + \cdots - 67$$
$67$ $$T^{3} + 9 T^{2} + \cdots - 351$$
$71$ $$T^{3} - 12 T^{2} + \cdots + 682$$
$73$ $$T^{3} + 21 T^{2} + \cdots - 89$$
$79$ $$T^{3} + 3 T^{2} + \cdots - 363$$
$83$ $$T^{3} - 18 T^{2} + \cdots + 168$$
$89$ $$T^{3} + 30 T^{2} + \cdots + 882$$
$97$ $$T^{3} + 15 T^{2} + \cdots - 589$$