Properties

Label 253.3.c.a.208.8
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [253,3,Mod(208,253)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("253.208"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(253, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.8
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.37

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.86502i q^{2} +5.21944 q^{3} -4.20834 q^{4} +3.21069 q^{5} -14.9538i q^{6} -5.03509i q^{7} +0.596911i q^{8} +18.2426 q^{9} -9.19869i q^{10} +(-3.77449 + 10.3321i) q^{11} -21.9652 q^{12} +15.9623i q^{13} -14.4256 q^{14} +16.7580 q^{15} -15.1232 q^{16} -2.07725i q^{17} -52.2654i q^{18} -2.99343i q^{19} -13.5117 q^{20} -26.2803i q^{21} +(29.6018 + 10.8140i) q^{22} +4.79583 q^{23} +3.11554i q^{24} -14.6915 q^{25} +45.7323 q^{26} +48.2412 q^{27} +21.1894i q^{28} -19.2645i q^{29} -48.0120i q^{30} -53.4474 q^{31} +45.7160i q^{32} +(-19.7007 + 53.9280i) q^{33} -5.95137 q^{34} -16.1661i q^{35} -76.7711 q^{36} +35.6340 q^{37} -8.57624 q^{38} +83.3142i q^{39} +1.91649i q^{40} +64.1419i q^{41} -75.2937 q^{42} -48.4215i q^{43} +(15.8844 - 43.4812i) q^{44} +58.5713 q^{45} -13.7402i q^{46} -29.4086 q^{47} -78.9348 q^{48} +23.6479 q^{49} +42.0914i q^{50} -10.8421i q^{51} -67.1748i q^{52} -23.6910 q^{53} -138.212i q^{54} +(-12.1187 + 33.1733i) q^{55} +3.00550 q^{56} -15.6240i q^{57} -55.1933 q^{58} -74.5141 q^{59} -70.5235 q^{60} +36.0105i q^{61} +153.128i q^{62} -91.8530i q^{63} +70.4843 q^{64} +51.2499i q^{65} +(154.505 + 56.4430i) q^{66} +133.886 q^{67} +8.74180i q^{68} +25.0316 q^{69} -46.3162 q^{70} +30.5895 q^{71} +10.8892i q^{72} -52.3969i q^{73} -102.092i q^{74} -76.6814 q^{75} +12.5974i q^{76} +(52.0232 + 19.0049i) q^{77} +238.697 q^{78} +75.9222i q^{79} -48.5559 q^{80} +87.6087 q^{81} +183.768 q^{82} -16.6444i q^{83} +110.597i q^{84} -6.66941i q^{85} -138.728 q^{86} -100.550i q^{87} +(-6.16737 - 2.25303i) q^{88} +56.5773 q^{89} -167.808i q^{90} +80.3715 q^{91} -20.1825 q^{92} -278.966 q^{93} +84.2563i q^{94} -9.61097i q^{95} +238.612i q^{96} +168.076 q^{97} -67.7517i q^{98} +(-68.8565 + 188.485i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.86502i 1.43251i −0.697838 0.716255i \(-0.745855\pi\)
0.697838 0.716255i \(-0.254145\pi\)
\(3\) 5.21944 1.73981 0.869907 0.493215i \(-0.164179\pi\)
0.869907 + 0.493215i \(0.164179\pi\)
\(4\) −4.20834 −1.05209
\(5\) 3.21069 0.642138 0.321069 0.947056i \(-0.395958\pi\)
0.321069 + 0.947056i \(0.395958\pi\)
\(6\) 14.9538i 2.49230i
\(7\) 5.03509i 0.719298i −0.933088 0.359649i \(-0.882896\pi\)
0.933088 0.359649i \(-0.117104\pi\)
\(8\) 0.596911i 0.0746138i
\(9\) 18.2426 2.02695
\(10\) 9.19869i 0.919869i
\(11\) −3.77449 + 10.3321i −0.343136 + 0.939286i
\(12\) −21.9652 −1.83043
\(13\) 15.9623i 1.22787i 0.789357 + 0.613934i \(0.210414\pi\)
−0.789357 + 0.613934i \(0.789586\pi\)
\(14\) −14.4256 −1.03040
\(15\) 16.7580 1.11720
\(16\) −15.1232 −0.945201
\(17\) 2.07725i 0.122191i −0.998132 0.0610957i \(-0.980541\pi\)
0.998132 0.0610957i \(-0.0194595\pi\)
\(18\) 52.2654i 2.90363i
\(19\) 2.99343i 0.157549i −0.996892 0.0787745i \(-0.974899\pi\)
0.996892 0.0787745i \(-0.0251007\pi\)
\(20\) −13.5117 −0.675584
\(21\) 26.2803i 1.25145i
\(22\) 29.6018 + 10.8140i 1.34554 + 0.491545i
\(23\) 4.79583 0.208514
\(24\) 3.11554i 0.129814i
\(25\) −14.6915 −0.587659
\(26\) 45.7323 1.75893
\(27\) 48.2412 1.78671
\(28\) 21.1894i 0.756763i
\(29\) 19.2645i 0.664294i −0.943228 0.332147i \(-0.892227\pi\)
0.943228 0.332147i \(-0.107773\pi\)
\(30\) 48.0120i 1.60040i
\(31\) −53.4474 −1.72411 −0.862055 0.506816i \(-0.830823\pi\)
−0.862055 + 0.506816i \(0.830823\pi\)
\(32\) 45.7160i 1.42862i
\(33\) −19.7007 + 53.9280i −0.596992 + 1.63418i
\(34\) −5.95137 −0.175040
\(35\) 16.1661i 0.461888i
\(36\) −76.7711 −2.13253
\(37\) 35.6340 0.963082 0.481541 0.876424i \(-0.340077\pi\)
0.481541 + 0.876424i \(0.340077\pi\)
\(38\) −8.57624 −0.225691
\(39\) 83.3142i 2.13626i
\(40\) 1.91649i 0.0479123i
\(41\) 64.1419i 1.56444i 0.623005 + 0.782218i \(0.285912\pi\)
−0.623005 + 0.782218i \(0.714088\pi\)
\(42\) −75.2937 −1.79271
\(43\) 48.4215i 1.12608i −0.826429 0.563040i \(-0.809632\pi\)
0.826429 0.563040i \(-0.190368\pi\)
\(44\) 15.8844 43.4812i 0.361008 0.988210i
\(45\) 58.5713 1.30158
\(46\) 13.7402i 0.298699i
\(47\) −29.4086 −0.625715 −0.312858 0.949800i \(-0.601286\pi\)
−0.312858 + 0.949800i \(0.601286\pi\)
\(48\) −78.9348 −1.64447
\(49\) 23.6479 0.482610
\(50\) 42.0914i 0.841828i
\(51\) 10.8421i 0.212590i
\(52\) 67.1748i 1.29182i
\(53\) −23.6910 −0.446999 −0.223500 0.974704i \(-0.571748\pi\)
−0.223500 + 0.974704i \(0.571748\pi\)
\(54\) 138.212i 2.55948i
\(55\) −12.1187 + 33.1733i −0.220340 + 0.603151i
\(56\) 3.00550 0.0536696
\(57\) 15.6240i 0.274106i
\(58\) −55.1933 −0.951608
\(59\) −74.5141 −1.26295 −0.631475 0.775396i \(-0.717550\pi\)
−0.631475 + 0.775396i \(0.717550\pi\)
\(60\) −70.5235 −1.17539
\(61\) 36.0105i 0.590336i 0.955445 + 0.295168i \(0.0953755\pi\)
−0.955445 + 0.295168i \(0.904624\pi\)
\(62\) 153.128i 2.46980i
\(63\) 91.8530i 1.45798i
\(64\) 70.4843 1.10132
\(65\) 51.2499i 0.788460i
\(66\) 154.505 + 56.4430i 2.34098 + 0.855197i
\(67\) 133.886 1.99830 0.999151 0.0411946i \(-0.0131164\pi\)
0.999151 + 0.0411946i \(0.0131164\pi\)
\(68\) 8.74180i 0.128556i
\(69\) 25.0316 0.362776
\(70\) −46.3162 −0.661660
\(71\) 30.5895 0.430837 0.215419 0.976522i \(-0.430888\pi\)
0.215419 + 0.976522i \(0.430888\pi\)
\(72\) 10.8892i 0.151239i
\(73\) 52.3969i 0.717765i −0.933383 0.358883i \(-0.883158\pi\)
0.933383 0.358883i \(-0.116842\pi\)
\(74\) 102.092i 1.37962i
\(75\) −76.6814 −1.02242
\(76\) 12.5974i 0.165755i
\(77\) 52.0232 + 19.0049i 0.675627 + 0.246817i
\(78\) 238.697 3.06022
\(79\) 75.9222i 0.961041i 0.876984 + 0.480520i \(0.159552\pi\)
−0.876984 + 0.480520i \(0.840448\pi\)
\(80\) −48.5559 −0.606949
\(81\) 87.6087 1.08159
\(82\) 183.768 2.24107
\(83\) 16.6444i 0.200535i −0.994961 0.100267i \(-0.968030\pi\)
0.994961 0.100267i \(-0.0319698\pi\)
\(84\) 110.597i 1.31663i
\(85\) 6.66941i 0.0784637i
\(86\) −138.728 −1.61312
\(87\) 100.550i 1.15575i
\(88\) −6.16737 2.25303i −0.0700837 0.0256027i
\(89\) 56.5773 0.635700 0.317850 0.948141i \(-0.397039\pi\)
0.317850 + 0.948141i \(0.397039\pi\)
\(90\) 167.808i 1.86453i
\(91\) 80.3715 0.883203
\(92\) −20.1825 −0.219375
\(93\) −278.966 −2.99963
\(94\) 84.2563i 0.896343i
\(95\) 9.61097i 0.101168i
\(96\) 238.612i 2.48554i
\(97\) 168.076 1.73274 0.866371 0.499401i \(-0.166447\pi\)
0.866371 + 0.499401i \(0.166447\pi\)
\(98\) 67.7517i 0.691344i
\(99\) −68.8565 + 188.485i −0.695520 + 1.90389i
\(100\) 61.8268 0.618268
\(101\) 106.258i 1.05206i −0.850466 0.526031i \(-0.823680\pi\)
0.850466 0.526031i \(-0.176320\pi\)
\(102\) −31.0629 −0.304538
\(103\) 5.04786 0.0490084 0.0245042 0.999700i \(-0.492199\pi\)
0.0245042 + 0.999700i \(0.492199\pi\)
\(104\) −9.52805 −0.0916159
\(105\) 84.3780i 0.803600i
\(106\) 67.8751i 0.640331i
\(107\) 132.268i 1.23615i 0.786119 + 0.618075i \(0.212087\pi\)
−0.786119 + 0.618075i \(0.787913\pi\)
\(108\) −203.015 −1.87977
\(109\) 38.8789i 0.356687i −0.983968 0.178344i \(-0.942926\pi\)
0.983968 0.178344i \(-0.0570739\pi\)
\(110\) 95.0422 + 34.7204i 0.864020 + 0.315640i
\(111\) 185.990 1.67558
\(112\) 76.1467i 0.679881i
\(113\) −65.0290 −0.575478 −0.287739 0.957709i \(-0.592904\pi\)
−0.287739 + 0.957709i \(0.592904\pi\)
\(114\) −44.7632 −0.392660
\(115\) 15.3979 0.133895
\(116\) 81.0717i 0.698894i
\(117\) 291.193i 2.48883i
\(118\) 213.484i 1.80919i
\(119\) −10.4592 −0.0878920
\(120\) 10.0030i 0.0833586i
\(121\) −92.5064 77.9972i −0.764516 0.644605i
\(122\) 103.171 0.845662
\(123\) 334.785i 2.72183i
\(124\) 224.925 1.81391
\(125\) −127.437 −1.01950
\(126\) −263.161 −2.08858
\(127\) 92.9376i 0.731792i −0.930656 0.365896i \(-0.880763\pi\)
0.930656 0.365896i \(-0.119237\pi\)
\(128\) 19.0752i 0.149025i
\(129\) 252.733i 1.95917i
\(130\) 146.832 1.12948
\(131\) 23.7233i 0.181094i −0.995892 0.0905468i \(-0.971139\pi\)
0.995892 0.0905468i \(-0.0288615\pi\)
\(132\) 82.9075 226.948i 0.628087 1.71930i
\(133\) −15.0722 −0.113325
\(134\) 383.587i 2.86259i
\(135\) 154.887 1.14731
\(136\) 1.23993 0.00911717
\(137\) 79.0137 0.576742 0.288371 0.957519i \(-0.406886\pi\)
0.288371 + 0.957519i \(0.406886\pi\)
\(138\) 71.7160i 0.519681i
\(139\) 61.7697i 0.444386i 0.975003 + 0.222193i \(0.0713215\pi\)
−0.975003 + 0.222193i \(0.928678\pi\)
\(140\) 68.0325i 0.485946i
\(141\) −153.497 −1.08863
\(142\) 87.6394i 0.617179i
\(143\) −164.925 60.2495i −1.15332 0.421325i
\(144\) −275.887 −1.91588
\(145\) 61.8524i 0.426568i
\(146\) −150.118 −1.02821
\(147\) 123.429 0.839652
\(148\) −149.960 −1.01324
\(149\) 214.994i 1.44292i −0.692458 0.721458i \(-0.743472\pi\)
0.692458 0.721458i \(-0.256528\pi\)
\(150\) 219.694i 1.46462i
\(151\) 227.647i 1.50760i −0.657104 0.753800i \(-0.728219\pi\)
0.657104 0.753800i \(-0.271781\pi\)
\(152\) 1.78681 0.0117553
\(153\) 37.8945i 0.247676i
\(154\) 54.4494 149.048i 0.353568 0.967842i
\(155\) −171.603 −1.10712
\(156\) 350.615i 2.24753i
\(157\) −5.83540 −0.0371682 −0.0185841 0.999827i \(-0.505916\pi\)
−0.0185841 + 0.999827i \(0.505916\pi\)
\(158\) 217.519 1.37670
\(159\) −123.654 −0.777696
\(160\) 146.780i 0.917373i
\(161\) 24.1474i 0.149984i
\(162\) 251.001i 1.54939i
\(163\) 71.6551 0.439602 0.219801 0.975545i \(-0.429459\pi\)
0.219801 + 0.975545i \(0.429459\pi\)
\(164\) 269.931i 1.64592i
\(165\) −63.2529 + 173.146i −0.383351 + 1.04937i
\(166\) −47.6865 −0.287268
\(167\) 35.4817i 0.212465i −0.994341 0.106233i \(-0.966121\pi\)
0.994341 0.106233i \(-0.0338789\pi\)
\(168\) 15.6870 0.0933751
\(169\) −85.7944 −0.507659
\(170\) −19.1080 −0.112400
\(171\) 54.6079i 0.319345i
\(172\) 203.774i 1.18473i
\(173\) 126.163i 0.729265i 0.931152 + 0.364632i \(0.118805\pi\)
−0.931152 + 0.364632i \(0.881195\pi\)
\(174\) −288.078 −1.65562
\(175\) 73.9729i 0.422702i
\(176\) 57.0824 156.255i 0.324332 0.887814i
\(177\) −388.922 −2.19730
\(178\) 162.095i 0.910647i
\(179\) −333.353 −1.86231 −0.931153 0.364628i \(-0.881196\pi\)
−0.931153 + 0.364628i \(0.881196\pi\)
\(180\) −246.488 −1.36938
\(181\) −99.1014 −0.547522 −0.273761 0.961798i \(-0.588268\pi\)
−0.273761 + 0.961798i \(0.588268\pi\)
\(182\) 230.266i 1.26520i
\(183\) 187.955i 1.02707i
\(184\) 2.86268i 0.0155581i
\(185\) 114.410 0.618431
\(186\) 799.242i 4.29700i
\(187\) 21.4625 + 7.84057i 0.114773 + 0.0419282i
\(188\) 123.762 0.658306
\(189\) 242.898i 1.28518i
\(190\) −27.5356 −0.144924
\(191\) −78.4796 −0.410888 −0.205444 0.978669i \(-0.565864\pi\)
−0.205444 + 0.978669i \(0.565864\pi\)
\(192\) 367.889 1.91609
\(193\) 233.573i 1.21022i 0.796141 + 0.605112i \(0.206871\pi\)
−0.796141 + 0.605112i \(0.793129\pi\)
\(194\) 481.541i 2.48217i
\(195\) 267.496i 1.37177i
\(196\) −99.5185 −0.507748
\(197\) 196.368i 0.996791i −0.866950 0.498395i \(-0.833923\pi\)
0.866950 0.498395i \(-0.166077\pi\)
\(198\) 540.014 + 197.275i 2.72734 + 0.996340i
\(199\) 320.558 1.61085 0.805423 0.592700i \(-0.201938\pi\)
0.805423 + 0.592700i \(0.201938\pi\)
\(200\) 8.76950i 0.0438475i
\(201\) 698.812 3.47668
\(202\) −304.432 −1.50709
\(203\) −96.9985 −0.477825
\(204\) 45.6273i 0.223663i
\(205\) 205.940i 1.00458i
\(206\) 14.4622i 0.0702050i
\(207\) 87.4884 0.422649
\(208\) 241.401i 1.16058i
\(209\) 30.9286 + 11.2987i 0.147984 + 0.0540607i
\(210\) −241.745 −1.15117
\(211\) 360.599i 1.70900i 0.519450 + 0.854501i \(0.326137\pi\)
−0.519450 + 0.854501i \(0.673863\pi\)
\(212\) 99.6997 0.470282
\(213\) 159.660 0.749577
\(214\) 378.951 1.77080
\(215\) 155.466i 0.723099i
\(216\) 28.7957i 0.133313i
\(217\) 269.112i 1.24015i
\(218\) −111.389 −0.510959
\(219\) 273.482i 1.24878i
\(220\) 50.9997 139.605i 0.231817 0.634567i
\(221\) 33.1577 0.150035
\(222\) 532.864i 2.40029i
\(223\) −166.162 −0.745122 −0.372561 0.928008i \(-0.621520\pi\)
−0.372561 + 0.928008i \(0.621520\pi\)
\(224\) 230.184 1.02761
\(225\) −268.011 −1.19116
\(226\) 186.309i 0.824378i
\(227\) 42.3260i 0.186458i 0.995645 + 0.0932290i \(0.0297189\pi\)
−0.995645 + 0.0932290i \(0.970281\pi\)
\(228\) 65.7513i 0.288383i
\(229\) −163.446 −0.713739 −0.356870 0.934154i \(-0.616156\pi\)
−0.356870 + 0.934154i \(0.616156\pi\)
\(230\) 44.1154i 0.191806i
\(231\) 271.532 + 99.1949i 1.17546 + 0.429415i
\(232\) 11.4992 0.0495655
\(233\) 344.958i 1.48051i 0.672328 + 0.740254i \(0.265295\pi\)
−0.672328 + 0.740254i \(0.734705\pi\)
\(234\) 834.275 3.56528
\(235\) −94.4219 −0.401795
\(236\) 313.581 1.32873
\(237\) 396.272i 1.67203i
\(238\) 29.9657i 0.125906i
\(239\) 31.9150i 0.133536i 0.997769 + 0.0667678i \(0.0212687\pi\)
−0.997769 + 0.0667678i \(0.978731\pi\)
\(240\) −253.435 −1.05598
\(241\) 434.350i 1.80228i −0.433526 0.901141i \(-0.642731\pi\)
0.433526 0.901141i \(-0.357269\pi\)
\(242\) −223.464 + 265.033i −0.923403 + 1.09518i
\(243\) 23.0981 0.0950541
\(244\) 151.544i 0.621084i
\(245\) 75.9260 0.309902
\(246\) 959.166 3.89905
\(247\) 47.7820 0.193449
\(248\) 31.9033i 0.128642i
\(249\) 86.8744i 0.348893i
\(250\) 365.110i 1.46044i
\(251\) −381.453 −1.51973 −0.759867 0.650079i \(-0.774736\pi\)
−0.759867 + 0.650079i \(0.774736\pi\)
\(252\) 386.549i 1.53392i
\(253\) −18.1018 + 49.5512i −0.0715487 + 0.195855i
\(254\) −266.268 −1.04830
\(255\) 34.8106i 0.136512i
\(256\) 227.286 0.887838
\(257\) −217.809 −0.847506 −0.423753 0.905778i \(-0.639288\pi\)
−0.423753 + 0.905778i \(0.639288\pi\)
\(258\) −724.085 −2.80653
\(259\) 179.420i 0.692743i
\(260\) 215.677i 0.829528i
\(261\) 351.435i 1.34649i
\(262\) −67.9676 −0.259418
\(263\) 72.0649i 0.274011i −0.990570 0.137005i \(-0.956252\pi\)
0.990570 0.137005i \(-0.0437478\pi\)
\(264\) −32.1902 11.7596i −0.121933 0.0445439i
\(265\) −76.0643 −0.287035
\(266\) 43.1821i 0.162339i
\(267\) 295.302 1.10600
\(268\) −563.439 −2.10239
\(269\) 88.1182 0.327577 0.163788 0.986495i \(-0.447629\pi\)
0.163788 + 0.986495i \(0.447629\pi\)
\(270\) 443.755i 1.64354i
\(271\) 420.838i 1.55291i −0.630175 0.776454i \(-0.717017\pi\)
0.630175 0.776454i \(-0.282983\pi\)
\(272\) 31.4148i 0.115495i
\(273\) 419.494 1.53661
\(274\) 226.376i 0.826189i
\(275\) 55.4529 151.795i 0.201647 0.551980i
\(276\) −105.341 −0.381672
\(277\) 224.180i 0.809316i 0.914468 + 0.404658i \(0.132609\pi\)
−0.914468 + 0.404658i \(0.867391\pi\)
\(278\) 176.971 0.636588
\(279\) −975.018 −3.49469
\(280\) 9.64971 0.0344633
\(281\) 382.501i 1.36121i 0.732650 + 0.680606i \(0.238283\pi\)
−0.732650 + 0.680606i \(0.761717\pi\)
\(282\) 439.771i 1.55947i
\(283\) 543.305i 1.91980i −0.280336 0.959902i \(-0.590446\pi\)
0.280336 0.959902i \(-0.409554\pi\)
\(284\) −128.731 −0.453278
\(285\) 50.1639i 0.176014i
\(286\) −172.616 + 472.512i −0.603553 + 1.65214i
\(287\) 322.960 1.12530
\(288\) 833.978i 2.89576i
\(289\) 284.685 0.985069
\(290\) −177.208 −0.611063
\(291\) 877.263 3.01465
\(292\) 220.504i 0.755151i
\(293\) 576.181i 1.96649i −0.182293 0.983244i \(-0.558352\pi\)
0.182293 0.983244i \(-0.441648\pi\)
\(294\) 353.626i 1.20281i
\(295\) −239.241 −0.810988
\(296\) 21.2703i 0.0718592i
\(297\) −182.086 + 498.435i −0.613083 + 1.67823i
\(298\) −615.964 −2.06699
\(299\) 76.5524i 0.256028i
\(300\) 322.702 1.07567
\(301\) −243.806 −0.809988
\(302\) −652.215 −2.15965
\(303\) 554.609i 1.83039i
\(304\) 45.2703i 0.148915i
\(305\) 115.618i 0.379077i
\(306\) −108.568 −0.354799
\(307\) 380.988i 1.24100i −0.784205 0.620502i \(-0.786929\pi\)
0.784205 0.620502i \(-0.213071\pi\)
\(308\) −218.932 79.9791i −0.710817 0.259672i
\(309\) 26.3470 0.0852654
\(310\) 491.646i 1.58595i
\(311\) −331.228 −1.06504 −0.532520 0.846417i \(-0.678755\pi\)
−0.532520 + 0.846417i \(0.678755\pi\)
\(312\) −49.7311 −0.159395
\(313\) −86.7825 −0.277260 −0.138630 0.990344i \(-0.544270\pi\)
−0.138630 + 0.990344i \(0.544270\pi\)
\(314\) 16.7186i 0.0532438i
\(315\) 294.911i 0.936226i
\(316\) 319.507i 1.01110i
\(317\) −18.9429 −0.0597567 −0.0298784 0.999554i \(-0.509512\pi\)
−0.0298784 + 0.999554i \(0.509512\pi\)
\(318\) 354.270i 1.11406i
\(319\) 199.044 + 72.7138i 0.623962 + 0.227943i
\(320\) 226.303 0.707198
\(321\) 690.366i 2.15067i
\(322\) −69.1829 −0.214854
\(323\) −6.21811 −0.0192511
\(324\) −368.687 −1.13792
\(325\) 234.510i 0.721568i
\(326\) 205.293i 0.629735i
\(327\) 202.926i 0.620570i
\(328\) −38.2870 −0.116729
\(329\) 148.075i 0.450076i
\(330\) 496.067 + 181.221i 1.50323 + 0.549154i
\(331\) 563.364 1.70200 0.851002 0.525162i \(-0.175995\pi\)
0.851002 + 0.525162i \(0.175995\pi\)
\(332\) 70.0452i 0.210980i
\(333\) 650.057 1.95212
\(334\) −101.656 −0.304359
\(335\) 429.867 1.28319
\(336\) 397.443i 1.18287i
\(337\) 318.523i 0.945172i 0.881285 + 0.472586i \(0.156679\pi\)
−0.881285 + 0.472586i \(0.843321\pi\)
\(338\) 245.803i 0.727227i
\(339\) −339.415 −1.00122
\(340\) 28.0672i 0.0825506i
\(341\) 201.737 552.226i 0.591603 1.61943i
\(342\) −156.453 −0.457464
\(343\) 365.788i 1.06644i
\(344\) 28.9033 0.0840212
\(345\) 80.3686 0.232952
\(346\) 361.459 1.04468
\(347\) 98.0094i 0.282448i 0.989978 + 0.141224i \(0.0451037\pi\)
−0.989978 + 0.141224i \(0.954896\pi\)
\(348\) 423.149i 1.21595i
\(349\) 68.6741i 0.196774i −0.995148 0.0983870i \(-0.968632\pi\)
0.995148 0.0983870i \(-0.0313683\pi\)
\(350\) 211.934 0.605525
\(351\) 770.039i 2.19384i
\(352\) −472.344 172.555i −1.34189 0.490212i
\(353\) −30.7226 −0.0870328 −0.0435164 0.999053i \(-0.513856\pi\)
−0.0435164 + 0.999053i \(0.513856\pi\)
\(354\) 1114.27i 3.14765i
\(355\) 98.2132 0.276657
\(356\) −238.097 −0.668811
\(357\) −54.5909 −0.152916
\(358\) 955.063i 2.66777i
\(359\) 448.408i 1.24905i −0.781006 0.624524i \(-0.785293\pi\)
0.781006 0.624524i \(-0.214707\pi\)
\(360\) 34.9618i 0.0971161i
\(361\) 352.039 0.975178
\(362\) 283.928i 0.784330i
\(363\) −482.832 407.102i −1.33012 1.12149i
\(364\) −338.231 −0.929205
\(365\) 168.230i 0.460904i
\(366\) 538.494 1.47129
\(367\) −485.115 −1.32184 −0.660919 0.750457i \(-0.729833\pi\)
−0.660919 + 0.750457i \(0.729833\pi\)
\(368\) −72.5284 −0.197088
\(369\) 1170.11i 3.17104i
\(370\) 327.786i 0.885909i
\(371\) 119.286i 0.321526i
\(372\) 1173.98 3.15587
\(373\) 637.189i 1.70828i 0.520041 + 0.854141i \(0.325917\pi\)
−0.520041 + 0.854141i \(0.674083\pi\)
\(374\) 22.4634 61.4905i 0.0600626 0.164413i
\(375\) −665.150 −1.77373
\(376\) 17.5543i 0.0466870i
\(377\) 307.506 0.815665
\(378\) −695.909 −1.84103
\(379\) −81.1675 −0.214162 −0.107081 0.994250i \(-0.534150\pi\)
−0.107081 + 0.994250i \(0.534150\pi\)
\(380\) 40.4463i 0.106438i
\(381\) 485.082i 1.27318i
\(382\) 224.846i 0.588601i
\(383\) 432.293 1.12870 0.564351 0.825535i \(-0.309126\pi\)
0.564351 + 0.825535i \(0.309126\pi\)
\(384\) 99.5621i 0.259276i
\(385\) 167.030 + 61.0188i 0.433845 + 0.158490i
\(386\) 669.192 1.73366
\(387\) 883.333i 2.28251i
\(388\) −707.321 −1.82299
\(389\) −528.536 −1.35870 −0.679352 0.733812i \(-0.737739\pi\)
−0.679352 + 0.733812i \(0.737739\pi\)
\(390\) 766.382 1.96508
\(391\) 9.96216i 0.0254787i
\(392\) 14.1157i 0.0360094i
\(393\) 123.822i 0.315069i
\(394\) −562.598 −1.42791
\(395\) 243.763i 0.617120i
\(396\) 289.772 793.210i 0.731747 2.00306i
\(397\) −39.0756 −0.0984273 −0.0492136 0.998788i \(-0.515672\pi\)
−0.0492136 + 0.998788i \(0.515672\pi\)
\(398\) 918.407i 2.30755i
\(399\) −78.6684 −0.197164
\(400\) 222.182 0.555456
\(401\) 195.864 0.488438 0.244219 0.969720i \(-0.421468\pi\)
0.244219 + 0.969720i \(0.421468\pi\)
\(402\) 2002.11i 4.98037i
\(403\) 853.142i 2.11698i
\(404\) 447.171i 1.10686i
\(405\) 281.284 0.694529
\(406\) 277.903i 0.684490i
\(407\) −134.500 + 368.176i −0.330468 + 0.904609i
\(408\) 6.47177 0.0158622
\(409\) 527.157i 1.28889i 0.764649 + 0.644447i \(0.222912\pi\)
−0.764649 + 0.644447i \(0.777088\pi\)
\(410\) 590.021 1.43908
\(411\) 412.408 1.00342
\(412\) −21.2431 −0.0515610
\(413\) 375.185i 0.908438i
\(414\) 250.656i 0.605449i
\(415\) 53.4399i 0.128771i
\(416\) −729.731 −1.75416
\(417\) 322.403i 0.773149i
\(418\) 32.3709 88.6110i 0.0774424 0.211988i
\(419\) −549.419 −1.31126 −0.655631 0.755081i \(-0.727597\pi\)
−0.655631 + 0.755081i \(0.727597\pi\)
\(420\) 355.092i 0.845456i
\(421\) −50.8288 −0.120734 −0.0603668 0.998176i \(-0.519227\pi\)
−0.0603668 + 0.998176i \(0.519227\pi\)
\(422\) 1033.12 2.44816
\(423\) −536.489 −1.26830
\(424\) 14.1414i 0.0333523i
\(425\) 30.5179i 0.0718069i
\(426\) 457.429i 1.07378i
\(427\) 181.316 0.424627
\(428\) 556.630i 1.30054i
\(429\) −860.815 314.469i −2.00656 0.733027i
\(430\) −445.414 −1.03585
\(431\) 151.965i 0.352588i −0.984338 0.176294i \(-0.943589\pi\)
0.984338 0.176294i \(-0.0564109\pi\)
\(432\) −729.561 −1.68880
\(433\) 17.3838 0.0401473 0.0200736 0.999799i \(-0.493610\pi\)
0.0200736 + 0.999799i \(0.493610\pi\)
\(434\) 771.012 1.77653
\(435\) 322.835i 0.742149i
\(436\) 163.616i 0.375266i
\(437\) 14.3560i 0.0328512i
\(438\) −783.533 −1.78889
\(439\) 491.356i 1.11926i −0.828742 0.559631i \(-0.810943\pi\)
0.828742 0.559631i \(-0.189057\pi\)
\(440\) −19.8015 7.23379i −0.0450034 0.0164404i
\(441\) 431.399 0.978229
\(442\) 94.9975i 0.214927i
\(443\) −287.338 −0.648618 −0.324309 0.945951i \(-0.605132\pi\)
−0.324309 + 0.945951i \(0.605132\pi\)
\(444\) −782.709 −1.76286
\(445\) 181.652 0.408207
\(446\) 476.058i 1.06740i
\(447\) 1122.15i 2.51041i
\(448\) 354.895i 0.792176i
\(449\) 574.563 1.27965 0.639825 0.768520i \(-0.279007\pi\)
0.639825 + 0.768520i \(0.279007\pi\)
\(450\) 767.856i 1.70635i
\(451\) −662.723 242.103i −1.46945 0.536814i
\(452\) 273.664 0.605452
\(453\) 1188.19i 2.62294i
\(454\) 121.265 0.267103
\(455\) 258.048 0.567138
\(456\) 9.32615 0.0204521
\(457\) 596.898i 1.30612i −0.757305 0.653061i \(-0.773484\pi\)
0.757305 0.653061i \(-0.226516\pi\)
\(458\) 468.277i 1.02244i
\(459\) 100.209i 0.218321i
\(460\) −64.7997 −0.140869
\(461\) 405.057i 0.878649i 0.898328 + 0.439325i \(0.144782\pi\)
−0.898328 + 0.439325i \(0.855218\pi\)
\(462\) 284.196 777.946i 0.615142 1.68387i
\(463\) 696.882 1.50514 0.752572 0.658510i \(-0.228813\pi\)
0.752572 + 0.658510i \(0.228813\pi\)
\(464\) 291.342i 0.627891i
\(465\) −895.671 −1.92618
\(466\) 988.313 2.12084
\(467\) 579.895 1.24175 0.620873 0.783911i \(-0.286778\pi\)
0.620873 + 0.783911i \(0.286778\pi\)
\(468\) 1225.44i 2.61846i
\(469\) 674.129i 1.43737i
\(470\) 270.521i 0.575576i
\(471\) −30.4576 −0.0646657
\(472\) 44.4782i 0.0942335i
\(473\) 500.298 + 182.766i 1.05771 + 0.386398i
\(474\) 1135.33 2.39520
\(475\) 43.9779i 0.0925851i
\(476\) 44.0157 0.0924700
\(477\) −432.184 −0.906047
\(478\) 91.4371 0.191291
\(479\) 460.293i 0.960945i 0.877010 + 0.480472i \(0.159535\pi\)
−0.877010 + 0.480472i \(0.840465\pi\)
\(480\) 766.108i 1.59606i
\(481\) 568.800i 1.18254i
\(482\) −1244.42 −2.58179
\(483\) 126.036i 0.260944i
\(484\) 389.299 + 328.239i 0.804337 + 0.678180i
\(485\) 539.639 1.11266
\(486\) 66.1767i 0.136166i
\(487\) −668.522 −1.37274 −0.686368 0.727254i \(-0.740796\pi\)
−0.686368 + 0.727254i \(0.740796\pi\)
\(488\) −21.4950 −0.0440472
\(489\) 374.000 0.764826
\(490\) 217.530i 0.443938i
\(491\) 75.5332i 0.153835i −0.997037 0.0769177i \(-0.975492\pi\)
0.997037 0.0769177i \(-0.0245079\pi\)
\(492\) 1408.89i 2.86360i
\(493\) −40.0173 −0.0811710
\(494\) 136.896i 0.277118i
\(495\) −221.077 + 605.167i −0.446620 + 1.22256i
\(496\) 808.296 1.62963
\(497\) 154.021i 0.309901i
\(498\) −248.897 −0.499793
\(499\) −185.124 −0.370990 −0.185495 0.982645i \(-0.559389\pi\)
−0.185495 + 0.982645i \(0.559389\pi\)
\(500\) 536.299 1.07260
\(501\) 185.195i 0.369651i
\(502\) 1092.87i 2.17703i
\(503\) 125.110i 0.248729i 0.992237 + 0.124364i \(0.0396891\pi\)
−0.992237 + 0.124364i \(0.960311\pi\)
\(504\) 54.8280 0.108786
\(505\) 341.162i 0.675568i
\(506\) 141.965 + 51.8621i 0.280564 + 0.102494i
\(507\) −447.799 −0.883233
\(508\) 391.113i 0.769908i
\(509\) 755.706 1.48469 0.742344 0.670019i \(-0.233714\pi\)
0.742344 + 0.670019i \(0.233714\pi\)
\(510\) −99.7332 −0.195555
\(511\) −263.823 −0.516287
\(512\) 727.481i 1.42086i
\(513\) 144.407i 0.281494i
\(514\) 624.028i 1.21406i
\(515\) 16.2071 0.0314701
\(516\) 1063.59i 2.06122i
\(517\) 111.003 303.854i 0.214705 0.587725i
\(518\) −514.043 −0.992361
\(519\) 658.500i 1.26879i
\(520\) −30.5916 −0.0588300
\(521\) 791.446 1.51909 0.759545 0.650455i \(-0.225422\pi\)
0.759545 + 0.650455i \(0.225422\pi\)
\(522\) −1006.87 −1.92887
\(523\) 652.320i 1.24727i 0.781717 + 0.623633i \(0.214344\pi\)
−0.781717 + 0.623633i \(0.785656\pi\)
\(524\) 99.8356i 0.190526i
\(525\) 386.097i 0.735423i
\(526\) −206.467 −0.392523
\(527\) 111.024i 0.210671i
\(528\) 297.939 815.565i 0.564278 1.54463i
\(529\) 23.0000 0.0434783
\(530\) 217.926i 0.411181i
\(531\) −1359.33 −2.55994
\(532\) 63.4289 0.119227
\(533\) −1023.85 −1.92092
\(534\) 846.046i 1.58436i
\(535\) 424.672i 0.793779i
\(536\) 79.9181i 0.149101i
\(537\) −1739.92 −3.24007
\(538\) 252.460i 0.469257i
\(539\) −89.2588 + 244.334i −0.165601 + 0.453309i
\(540\) −651.819 −1.20707
\(541\) 339.679i 0.627872i 0.949444 + 0.313936i \(0.101648\pi\)
−0.949444 + 0.313936i \(0.898352\pi\)
\(542\) −1205.71 −2.22456
\(543\) −517.254 −0.952586
\(544\) 94.9637 0.174566
\(545\) 124.828i 0.229042i
\(546\) 1201.86i 2.20121i
\(547\) 531.120i 0.970969i 0.874245 + 0.485485i \(0.161357\pi\)
−0.874245 + 0.485485i \(0.838643\pi\)
\(548\) −332.517 −0.606783
\(549\) 656.924i 1.19658i
\(550\) −434.894 158.874i −0.790717 0.288861i
\(551\) −57.6670 −0.104659
\(552\) 14.9416i 0.0270681i
\(553\) 382.275 0.691275
\(554\) 642.282 1.15935
\(555\) 597.155 1.07596
\(556\) 259.948i 0.467532i
\(557\) 741.975i 1.33209i 0.745911 + 0.666046i \(0.232015\pi\)
−0.745911 + 0.666046i \(0.767985\pi\)
\(558\) 2793.45i 5.00618i
\(559\) 772.917 1.38268
\(560\) 244.483i 0.436577i
\(561\) 112.022 + 40.9234i 0.199683 + 0.0729473i
\(562\) 1095.87 1.94995
\(563\) 775.491i 1.37743i −0.725034 0.688713i \(-0.758176\pi\)
0.725034 0.688713i \(-0.241824\pi\)
\(564\) 645.966 1.14533
\(565\) −208.788 −0.369536
\(566\) −1556.58 −2.75014
\(567\) 441.117i 0.777985i
\(568\) 18.2592i 0.0321464i
\(569\) 690.359i 1.21328i 0.794975 + 0.606642i \(0.207484\pi\)
−0.794975 + 0.606642i \(0.792516\pi\)
\(570\) −143.721 −0.252142
\(571\) 88.0692i 0.154237i 0.997022 + 0.0771184i \(0.0245719\pi\)
−0.997022 + 0.0771184i \(0.975428\pi\)
\(572\) 694.059 + 253.551i 1.21339 + 0.443270i
\(573\) −409.620 −0.714869
\(574\) 925.287i 1.61200i
\(575\) −70.4579 −0.122535
\(576\) 1285.82 2.23232
\(577\) −59.9277 −0.103861 −0.0519304 0.998651i \(-0.516537\pi\)
−0.0519304 + 0.998651i \(0.516537\pi\)
\(578\) 815.628i 1.41112i
\(579\) 1219.12i 2.10556i
\(580\) 260.296i 0.448786i
\(581\) −83.8059 −0.144244
\(582\) 2513.38i 4.31852i
\(583\) 89.4213 244.778i 0.153381 0.419860i
\(584\) 31.2762 0.0535552
\(585\) 934.931i 1.59817i
\(586\) −1650.77 −2.81702
\(587\) −65.2446 −0.111149 −0.0555746 0.998455i \(-0.517699\pi\)
−0.0555746 + 0.998455i \(0.517699\pi\)
\(588\) −519.431 −0.883386
\(589\) 159.991i 0.271632i
\(590\) 685.432i 1.16175i
\(591\) 1024.93i 1.73423i
\(592\) −538.901 −0.910306
\(593\) 269.648i 0.454718i 0.973811 + 0.227359i \(0.0730090\pi\)
−0.973811 + 0.227359i \(0.926991\pi\)
\(594\) 1428.03 + 521.680i 2.40408 + 0.878248i
\(595\) −33.5811 −0.0564388
\(596\) 904.771i 1.51807i
\(597\) 1673.14 2.80257
\(598\) 219.324 0.366763
\(599\) 344.884 0.575767 0.287883 0.957665i \(-0.407048\pi\)
0.287883 + 0.957665i \(0.407048\pi\)
\(600\) 45.7719i 0.0762865i
\(601\) 766.012i 1.27456i 0.770631 + 0.637282i \(0.219941\pi\)
−0.770631 + 0.637282i \(0.780059\pi\)
\(602\) 698.510i 1.16032i
\(603\) 2442.43 4.05047
\(604\) 958.019i 1.58612i
\(605\) −297.009 250.425i −0.490924 0.413925i
\(606\) −1588.97 −2.62205
\(607\) 600.171i 0.988750i −0.869249 0.494375i \(-0.835397\pi\)
0.869249 0.494375i \(-0.164603\pi\)
\(608\) 136.848 0.225078
\(609\) −506.278 −0.831327
\(610\) 331.249 0.543031
\(611\) 469.428i 0.768295i
\(612\) 159.473i 0.260577i
\(613\) 303.933i 0.495813i −0.968784 0.247906i \(-0.920257\pi\)
0.968784 0.247906i \(-0.0797425\pi\)
\(614\) −1091.54 −1.77775
\(615\) 1074.89i 1.74779i
\(616\) −11.3442 + 31.0532i −0.0184159 + 0.0504111i
\(617\) −298.795 −0.484270 −0.242135 0.970243i \(-0.577848\pi\)
−0.242135 + 0.970243i \(0.577848\pi\)
\(618\) 75.4848i 0.122144i
\(619\) 898.772 1.45197 0.725987 0.687709i \(-0.241383\pi\)
0.725987 + 0.687709i \(0.241383\pi\)
\(620\) 722.164 1.16478
\(621\) 231.356 0.372555
\(622\) 948.974i 1.52568i
\(623\) 284.872i 0.457258i
\(624\) 1259.98i 2.01920i
\(625\) −41.8733 −0.0669973
\(626\) 248.634i 0.397178i
\(627\) 161.430 + 58.9728i 0.257464 + 0.0940555i
\(628\) 24.5574 0.0391041
\(629\) 74.0209i 0.117680i
\(630\) −844.927 −1.34115
\(631\) −288.733 −0.457580 −0.228790 0.973476i \(-0.573477\pi\)
−0.228790 + 0.973476i \(0.573477\pi\)
\(632\) −45.3188 −0.0717069
\(633\) 1882.13i 2.97335i
\(634\) 54.2718i 0.0856021i
\(635\) 298.394i 0.469911i
\(636\) 520.377 0.818203
\(637\) 377.474i 0.592582i
\(638\) 208.326 570.265i 0.326531 0.893832i
\(639\) 558.031 0.873288
\(640\) 61.2446i 0.0956947i
\(641\) −90.8999 −0.141810 −0.0709048 0.997483i \(-0.522589\pi\)
−0.0709048 + 0.997483i \(0.522589\pi\)
\(642\) 1977.91 3.08086
\(643\) 256.597 0.399063 0.199531 0.979891i \(-0.436058\pi\)
0.199531 + 0.979891i \(0.436058\pi\)
\(644\) 101.621i 0.157796i
\(645\) 811.447i 1.25806i
\(646\) 17.8150i 0.0275774i
\(647\) −482.348 −0.745515 −0.372758 0.927929i \(-0.621588\pi\)
−0.372758 + 0.927929i \(0.621588\pi\)
\(648\) 52.2945i 0.0807015i
\(649\) 281.253 769.890i 0.433363 1.18627i
\(650\) −671.875 −1.03365
\(651\) 1404.62i 2.15763i
\(652\) −301.549 −0.462499
\(653\) 717.322 1.09850 0.549251 0.835657i \(-0.314913\pi\)
0.549251 + 0.835657i \(0.314913\pi\)
\(654\) −581.388 −0.888973
\(655\) 76.1680i 0.116287i
\(656\) 970.032i 1.47871i
\(657\) 955.854i 1.45488i
\(658\) 424.238 0.644738
\(659\) 265.092i 0.402264i 0.979564 + 0.201132i \(0.0644620\pi\)
−0.979564 + 0.201132i \(0.935538\pi\)
\(660\) 266.190 728.659i 0.403318 1.10403i
\(661\) 229.692 0.347492 0.173746 0.984790i \(-0.444413\pi\)
0.173746 + 0.984790i \(0.444413\pi\)
\(662\) 1614.05i 2.43814i
\(663\) 173.065 0.261033
\(664\) 9.93520 0.0149627
\(665\) −48.3921 −0.0727700
\(666\) 1862.43i 2.79644i
\(667\) 92.3894i 0.138515i
\(668\) 149.319i 0.223532i
\(669\) −867.275 −1.29637
\(670\) 1231.58i 1.83818i
\(671\) −372.065 135.921i −0.554494 0.202565i
\(672\) 1201.43 1.78784
\(673\) 300.834i 0.447004i 0.974703 + 0.223502i \(0.0717490\pi\)
−0.974703 + 0.223502i \(0.928251\pi\)
\(674\) 912.574 1.35397
\(675\) −708.734 −1.04998
\(676\) 361.052 0.534101
\(677\) 1097.42i 1.62100i 0.585740 + 0.810499i \(0.300804\pi\)
−0.585740 + 0.810499i \(0.699196\pi\)
\(678\) 972.431i 1.43426i
\(679\) 846.277i 1.24636i
\(680\) 3.98104 0.00585448
\(681\) 220.918i 0.324402i
\(682\) −1582.14 577.980i −2.31985 0.847478i
\(683\) −944.682 −1.38314 −0.691568 0.722311i \(-0.743080\pi\)
−0.691568 + 0.722311i \(0.743080\pi\)
\(684\) 229.809i 0.335978i
\(685\) 253.688 0.370348
\(686\) −1047.99 −1.52768
\(687\) −853.099 −1.24177
\(688\) 732.288i 1.06437i
\(689\) 378.162i 0.548856i
\(690\) 230.258i 0.333707i
\(691\) −536.710 −0.776714 −0.388357 0.921509i \(-0.626957\pi\)
−0.388357 + 0.921509i \(0.626957\pi\)
\(692\) 530.937i 0.767249i
\(693\) 949.039 + 346.698i 1.36946 + 0.500286i
\(694\) 280.799 0.404609
\(695\) 198.323i 0.285357i
\(696\) 60.0194 0.0862348
\(697\) 133.239 0.191161
\(698\) −196.753 −0.281881
\(699\) 1800.49i 2.57581i
\(700\) 311.303i 0.444719i
\(701\) 1306.89i 1.86433i 0.362040 + 0.932163i \(0.382080\pi\)
−0.362040 + 0.932163i \(0.617920\pi\)
\(702\) 2206.18 3.14270
\(703\) 106.668i 0.151733i
\(704\) −266.043 + 728.254i −0.377901 + 1.03445i
\(705\) −492.830 −0.699049
\(706\) 88.0208i 0.124675i
\(707\) −535.019 −0.756746
\(708\) 1636.72 2.31175
\(709\) 14.1130 0.0199055 0.00995275 0.999950i \(-0.496832\pi\)
0.00995275 + 0.999950i \(0.496832\pi\)
\(710\) 281.383i 0.396314i
\(711\) 1385.02i 1.94799i
\(712\) 33.7716i 0.0474320i
\(713\) −256.325 −0.359502
\(714\) 156.404i 0.219054i
\(715\) −529.521 193.442i −0.740589 0.270549i
\(716\) 1402.86 1.95931
\(717\) 166.579i 0.232327i
\(718\) −1284.70 −1.78927
\(719\) 669.154 0.930673 0.465337 0.885134i \(-0.345933\pi\)
0.465337 + 0.885134i \(0.345933\pi\)
\(720\) −885.786 −1.23026
\(721\) 25.4164i 0.0352516i
\(722\) 1008.60i 1.39695i
\(723\) 2267.06i 3.13564i
\(724\) 417.053 0.576040
\(725\) 283.024i 0.390378i
\(726\) −1166.36 + 1383.32i −1.60655 + 1.90540i
\(727\) 1298.54 1.78616 0.893080 0.449897i \(-0.148539\pi\)
0.893080 + 0.449897i \(0.148539\pi\)
\(728\) 47.9746i 0.0658991i
\(729\) −667.919 −0.916212
\(730\) −481.982 −0.660250
\(731\) −100.584 −0.137597
\(732\) 790.978i 1.08057i
\(733\) 157.669i 0.215101i −0.994200 0.107550i \(-0.965699\pi\)
0.994200 0.107550i \(-0.0343007\pi\)
\(734\) 1389.86i 1.89355i
\(735\) 396.292 0.539172
\(736\) 219.246i 0.297889i
\(737\) −505.352 + 1383.33i −0.685689 + 1.87698i
\(738\) 3352.40 4.54255
\(739\) 1360.20i 1.84060i −0.391212 0.920301i \(-0.627944\pi\)
0.391212 0.920301i \(-0.372056\pi\)
\(740\) −481.476 −0.650643
\(741\) 249.395 0.336566
\(742\) 341.757 0.460589
\(743\) 798.694i 1.07496i 0.843277 + 0.537479i \(0.180623\pi\)
−0.843277 + 0.537479i \(0.819377\pi\)
\(744\) 166.517i 0.223814i
\(745\) 690.280i 0.926551i
\(746\) 1825.56 2.44713
\(747\) 303.636i 0.406474i
\(748\) −90.3215 32.9958i −0.120751 0.0441121i
\(749\) 665.982 0.889161
\(750\) 1905.67i 2.54089i
\(751\) 227.333 0.302707 0.151354 0.988480i \(-0.451637\pi\)
0.151354 + 0.988480i \(0.451637\pi\)
\(752\) 444.753 0.591426
\(753\) −1990.97 −2.64405
\(754\) 881.010i 1.16845i
\(755\) 730.905i 0.968086i
\(756\) 1022.20i 1.35212i
\(757\) 981.114 1.29605 0.648027 0.761617i \(-0.275594\pi\)
0.648027 + 0.761617i \(0.275594\pi\)
\(758\) 232.547i 0.306790i
\(759\) −94.4814 + 258.630i −0.124481 + 0.340751i
\(760\) 5.73689 0.00754854
\(761\) 969.838i 1.27443i 0.770688 + 0.637213i \(0.219913\pi\)
−0.770688 + 0.637213i \(0.780087\pi\)
\(762\) −1389.77 −1.82385
\(763\) −195.759 −0.256565
\(764\) 330.269 0.432290
\(765\) 121.667i 0.159042i
\(766\) 1238.53i 1.61688i
\(767\) 1189.41i 1.55074i
\(768\) 1186.31 1.54467
\(769\) 244.258i 0.317630i 0.987308 + 0.158815i \(0.0507674\pi\)
−0.987308 + 0.158815i \(0.949233\pi\)
\(770\) 174.820 478.546i 0.227039 0.621488i
\(771\) −1136.84 −1.47450
\(772\) 982.956i 1.27326i
\(773\) −465.031 −0.601593 −0.300796 0.953688i \(-0.597252\pi\)
−0.300796 + 0.953688i \(0.597252\pi\)
\(774\) −2530.77 −3.26972
\(775\) 785.221 1.01319
\(776\) 100.326i 0.129286i
\(777\) 936.474i 1.20524i
\(778\) 1514.27i 1.94636i
\(779\) 192.004 0.246475
\(780\) 1125.72i 1.44322i
\(781\) −115.460 + 316.055i −0.147836 + 0.404680i
\(782\) −28.5418 −0.0364985
\(783\) 929.343i 1.18690i
\(784\) −357.632 −0.456164
\(785\) −18.7357 −0.0238671
\(786\) −354.753 −0.451340
\(787\) 825.123i 1.04844i −0.851583 0.524220i \(-0.824357\pi\)
0.851583 0.524220i \(-0.175643\pi\)
\(788\) 826.383i 1.04871i
\(789\) 376.138i 0.476728i
\(790\) 698.385 0.884031
\(791\) 327.427i 0.413940i
\(792\) −112.509 41.1012i −0.142056 0.0518954i
\(793\) −574.809 −0.724854
\(794\) 111.952i 0.140998i
\(795\) −397.013 −0.499388
\(796\) −1349.02 −1.69475
\(797\) −703.098 −0.882181 −0.441091 0.897463i \(-0.645408\pi\)
−0.441091 + 0.897463i \(0.645408\pi\)
\(798\) 225.387i 0.282439i
\(799\) 61.0891i 0.0764570i
\(800\) 671.635i 0.839544i
\(801\) 1032.12 1.28853
\(802\) 561.154i 0.699693i
\(803\) 541.372 + 197.771i 0.674187 + 0.246291i
\(804\) −2940.84 −3.65776
\(805\) 77.5299i 0.0963104i
\(806\) −2444.27 −3.03259
\(807\) 459.928 0.569923
\(808\) 63.4266 0.0784983
\(809\) 93.4751i 0.115544i 0.998330 + 0.0577720i \(0.0183996\pi\)
−0.998330 + 0.0577720i \(0.981600\pi\)
\(810\) 805.885i 0.994920i
\(811\) 1264.96i 1.55975i 0.625936 + 0.779875i \(0.284717\pi\)
−0.625936 + 0.779875i \(0.715283\pi\)
\(812\) 408.203 0.502713
\(813\) 2196.54i 2.70177i
\(814\) 1054.83 + 385.346i 1.29586 + 0.473398i
\(815\) 230.062 0.282285
\(816\) 163.968i 0.200941i
\(817\) −144.946 −0.177413
\(818\) 1510.32 1.84635
\(819\) 1466.18 1.79021
\(820\) 866.665i 1.05691i
\(821\) 139.850i 0.170342i 0.996366 + 0.0851708i \(0.0271436\pi\)
−0.996366 + 0.0851708i \(0.972856\pi\)
\(822\) 1181.56i 1.43742i
\(823\) −1032.07 −1.25403 −0.627015 0.779008i \(-0.715723\pi\)
−0.627015 + 0.779008i \(0.715723\pi\)
\(824\) 3.01312i 0.00365670i
\(825\) 289.433 792.283i 0.350828 0.960343i
\(826\) 1074.91 1.30135
\(827\) 676.580i 0.818113i 0.912509 + 0.409057i \(0.134142\pi\)
−0.912509 + 0.409057i \(0.865858\pi\)
\(828\) −368.181 −0.444663
\(829\) 267.827 0.323072 0.161536 0.986867i \(-0.448355\pi\)
0.161536 + 0.986867i \(0.448355\pi\)
\(830\) −153.106 −0.184466
\(831\) 1170.10i 1.40806i
\(832\) 1125.09i 1.35227i
\(833\) 49.1227i 0.0589708i
\(834\) 923.692 1.10754
\(835\) 113.921i 0.136432i
\(836\) −130.158 47.5487i −0.155691 0.0568765i
\(837\) −2578.36 −3.08048
\(838\) 1574.10i 1.87840i
\(839\) 1336.74 1.59326 0.796629 0.604469i \(-0.206615\pi\)
0.796629 + 0.604469i \(0.206615\pi\)
\(840\) 50.3661 0.0599597
\(841\) 469.878 0.558714
\(842\) 145.626i 0.172952i
\(843\) 1996.44i 2.36826i
\(844\) 1517.53i 1.79802i
\(845\) −275.459 −0.325987
\(846\) 1537.05i 1.81685i
\(847\) −392.723 + 465.778i −0.463663 + 0.549915i
\(848\) 358.284 0.422504
\(849\) 2835.75i 3.34010i
\(850\) 87.4345 0.102864
\(851\) 170.895 0.200816
\(852\) −671.904 −0.788620
\(853\) 1612.02i 1.88982i −0.327327 0.944911i \(-0.606148\pi\)
0.327327 0.944911i \(-0.393852\pi\)
\(854\) 519.474i 0.608283i
\(855\) 175.329i 0.205063i
\(856\) −78.9523 −0.0922339
\(857\) 237.693i 0.277355i −0.990338 0.138677i \(-0.955715\pi\)
0.990338 0.138677i \(-0.0442851\pi\)
\(858\) −900.960 + 2466.25i −1.05007 + 2.87442i
\(859\) 248.510 0.289302 0.144651 0.989483i \(-0.453794\pi\)
0.144651 + 0.989483i \(0.453794\pi\)
\(860\) 654.255i 0.760762i
\(861\) 1685.67 1.95781
\(862\) −435.384 −0.505086
\(863\) 316.222 0.366421 0.183211 0.983074i \(-0.441351\pi\)
0.183211 + 0.983074i \(0.441351\pi\)
\(864\) 2205.39i 2.55254i
\(865\) 405.069i 0.468288i
\(866\) 49.8049i 0.0575114i
\(867\) 1485.90 1.71384
\(868\) 1132.52i 1.30474i
\(869\) −784.439 286.568i −0.902692 0.329767i
\(870\) −924.929 −1.06314
\(871\) 2137.13i 2.45365i
\(872\) 23.2072 0.0266138
\(873\) 3066.14 3.51219
\(874\) −41.1302 −0.0470597
\(875\) 641.656i 0.733321i
\(876\) 1150.91i 1.31382i
\(877\) 44.4435i 0.0506767i −0.999679 0.0253384i \(-0.991934\pi\)
0.999679 0.0253384i \(-0.00806632\pi\)
\(878\) −1407.75 −1.60335
\(879\) 3007.34i 3.42132i
\(880\) 183.274 501.687i 0.208266 0.570099i
\(881\) −1009.34 −1.14568 −0.572838 0.819668i \(-0.694158\pi\)
−0.572838 + 0.819668i \(0.694158\pi\)
\(882\) 1235.97i 1.40132i
\(883\) 961.842 1.08929 0.544645 0.838667i \(-0.316665\pi\)
0.544645 + 0.838667i \(0.316665\pi\)
\(884\) −139.539 −0.157850
\(885\) −1248.71 −1.41097
\(886\) 823.229i 0.929152i
\(887\) 497.564i 0.560952i −0.959861 0.280476i \(-0.909508\pi\)
0.959861 0.280476i \(-0.0904922\pi\)
\(888\) 111.019i 0.125022i
\(889\) −467.949 −0.526377
\(890\) 520.437i 0.584761i
\(891\) −330.678 + 905.186i −0.371132 + 1.01592i
\(892\) 699.268 0.783933
\(893\) 88.0326i 0.0985808i
\(894\) −3214.99 −3.59618
\(895\) −1070.29 −1.19586
\(896\) −96.0454 −0.107194
\(897\) 399.561i 0.445441i
\(898\) 1646.14i 1.83311i
\(899\) 1029.64i 1.14532i
\(900\) 1127.88 1.25320
\(901\) 49.2121i 0.0546195i
\(902\) −693.630 + 1898.72i −0.768991 + 2.10501i
\(903\) −1272.53 −1.40923
\(904\) 38.8165i 0.0429386i
\(905\) −318.184 −0.351584
\(906\) −3404.20 −3.75739
\(907\) 510.772 0.563145 0.281572 0.959540i \(-0.409144\pi\)
0.281572 + 0.959540i \(0.409144\pi\)
\(908\) 178.122i 0.196170i
\(909\) 1938.42i 2.13248i
\(910\) 739.312i 0.812431i
\(911\) −815.445 −0.895109 −0.447555 0.894257i \(-0.647705\pi\)
−0.447555 + 0.894257i \(0.647705\pi\)
\(912\) 236.286i 0.259085i
\(913\) 171.972 + 62.8240i 0.188359 + 0.0688105i
\(914\) −1710.12 −1.87103
\(915\) 603.464i 0.659523i
\(916\) 687.838 0.750915
\(917\) −119.449 −0.130260
\(918\) −287.101 −0.312746
\(919\) 1208.26i 1.31476i −0.753560 0.657379i \(-0.771665\pi\)
0.753560 0.657379i \(-0.228335\pi\)
\(920\) 9.19118i 0.00999041i
\(921\) 1988.55i 2.15912i
\(922\) 1160.50 1.25867
\(923\) 488.278i 0.529011i
\(924\) −1142.70 417.446i −1.23669 0.451782i
\(925\) −523.517 −0.565964
\(926\) 1996.58i 2.15613i
\(927\) 92.0860 0.0993377
\(928\) 880.696 0.949026
\(929\) −837.070 −0.901045 −0.450522 0.892765i \(-0.648762\pi\)
−0.450522 + 0.892765i \(0.648762\pi\)
\(930\) 2566.12i 2.75927i
\(931\) 70.7884i 0.0760348i
\(932\) 1451.70i 1.55762i
\(933\) −1728.82 −1.85297
\(934\) 1661.41i 1.77881i
\(935\) 68.9093 + 25.1736i 0.0736998 + 0.0269237i
\(936\) −173.816 −0.185701
\(937\) 358.046i 0.382119i 0.981578 + 0.191060i \(0.0611924\pi\)
−0.981578 + 0.191060i \(0.938808\pi\)
\(938\) −1931.39 −2.05905
\(939\) −452.956 −0.482381
\(940\) 397.360 0.422723
\(941\) 753.076i 0.800293i −0.916451 0.400147i \(-0.868959\pi\)
0.916451 0.400147i \(-0.131041\pi\)
\(942\) 87.2616i 0.0926343i
\(943\) 307.614i 0.326207i
\(944\) 1126.89 1.19374
\(945\) 779.871i 0.825260i
\(946\) 523.629 1433.36i 0.553519 1.51518i
\(947\) −135.297 −0.142869 −0.0714344 0.997445i \(-0.522758\pi\)
−0.0714344 + 0.997445i \(0.522758\pi\)
\(948\) 1667.65i 1.75912i
\(949\) 836.373 0.881321
\(950\) 125.998 0.132629
\(951\) −98.8713 −0.103966
\(952\) 6.24318i 0.00655796i
\(953\) 98.8279i 0.103702i −0.998655 0.0518510i \(-0.983488\pi\)
0.998655 0.0518510i \(-0.0165121\pi\)
\(954\) 1238.22i 1.29792i
\(955\) −251.974 −0.263847
\(956\) 134.309i 0.140491i
\(957\) 1038.90 + 379.525i 1.08558 + 0.396578i
\(958\) 1318.75 1.37656
\(959\) 397.841i 0.414850i
\(960\) 1181.18 1.23039
\(961\) 1895.62 1.97255
\(962\) 1629.62 1.69400
\(963\) 2412.91i 2.50562i
\(964\) 1827.89i 1.89616i
\(965\) 749.930i 0.777130i
\(966\) −361.096 −0.373805
\(967\) 520.664i 0.538432i −0.963080 0.269216i \(-0.913235\pi\)
0.963080 0.269216i \(-0.0867645\pi\)
\(968\) 46.5573 55.2181i 0.0480964 0.0570435i
\(969\) −32.4551 −0.0334934
\(970\) 1546.08i 1.59389i
\(971\) 1054.39 1.08588 0.542938 0.839773i \(-0.317312\pi\)
0.542938 + 0.839773i \(0.317312\pi\)
\(972\) −97.2050 −0.100005
\(973\) 311.016 0.319646
\(974\) 1915.33i 1.96646i
\(975\) 1224.01i 1.25539i
\(976\) 544.594i 0.557986i
\(977\) 1914.70 1.95978 0.979888 0.199550i \(-0.0639480\pi\)
0.979888 + 0.199550i \(0.0639480\pi\)
\(978\) 1071.52i 1.09562i
\(979\) −213.550 + 584.565i −0.218131 + 0.597104i
\(980\) −319.523 −0.326044
\(981\) 709.252i 0.722989i
\(982\) −216.404 −0.220371
\(983\) −450.426 −0.458216 −0.229108 0.973401i \(-0.573581\pi\)
−0.229108 + 0.973401i \(0.573581\pi\)
\(984\) −199.837 −0.203086
\(985\) 630.476i 0.640077i
\(986\) 114.650i 0.116278i
\(987\) 772.868i 0.783048i
\(988\) −201.083 −0.203525
\(989\) 232.221i 0.234804i
\(990\) 1733.82 + 633.389i 1.75133 + 0.639787i
\(991\) −426.496 −0.430369 −0.215184 0.976573i \(-0.569035\pi\)
−0.215184 + 0.976573i \(0.569035\pi\)
\(992\) 2443.40i 2.46310i
\(993\) 2940.44 2.96117
\(994\) −441.272 −0.443936
\(995\) 1029.21 1.03439
\(996\) 365.597i 0.367065i
\(997\) 17.2823i 0.0173343i −0.999962 0.00866716i \(-0.997241\pi\)
0.999962 0.00866716i \(-0.00275888\pi\)
\(998\) 530.384i 0.531447i
\(999\) 1719.03 1.72075
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.8 44
11.10 odd 2 inner 253.3.c.a.208.37 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.8 44 1.1 even 1 trivial
253.3.c.a.208.37 yes 44 11.10 odd 2 inner