Properties

Label 253.3.c.a.208.4
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [253,3,Mod(208,253)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("253.208"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(253, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.4
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.41

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.43881i q^{2} +2.25129 q^{3} -7.82541 q^{4} -5.97558 q^{5} -7.74175i q^{6} +7.31000i q^{7} +13.1548i q^{8} -3.93171 q^{9} +20.5489i q^{10} +(-5.54238 + 9.50168i) q^{11} -17.6172 q^{12} -2.03096i q^{13} +25.1377 q^{14} -13.4527 q^{15} +13.9354 q^{16} -12.6026i q^{17} +13.5204i q^{18} +7.17039i q^{19} +46.7613 q^{20} +16.4569i q^{21} +(32.6745 + 19.0592i) q^{22} -4.79583 q^{23} +29.6153i q^{24} +10.7075 q^{25} -6.98408 q^{26} -29.1130 q^{27} -57.2037i q^{28} -4.59018i q^{29} +46.2614i q^{30} -28.3774 q^{31} +4.69829i q^{32} +(-12.4775 + 21.3910i) q^{33} -43.3378 q^{34} -43.6815i q^{35} +30.7672 q^{36} -0.432206 q^{37} +24.6576 q^{38} -4.57227i q^{39} -78.6078i q^{40} -55.0369i q^{41} +56.5921 q^{42} +28.4614i q^{43} +(43.3714 - 74.3546i) q^{44} +23.4942 q^{45} +16.4919i q^{46} -65.8869 q^{47} +31.3725 q^{48} -4.43608 q^{49} -36.8211i q^{50} -28.3720i q^{51} +15.8931i q^{52} +75.3874 q^{53} +100.114i q^{54} +(33.1189 - 56.7780i) q^{55} -96.1619 q^{56} +16.1426i q^{57} -15.7848 q^{58} +30.5593 q^{59} +105.273 q^{60} -14.3773i q^{61} +97.5844i q^{62} -28.7408i q^{63} +71.8980 q^{64} +12.1362i q^{65} +(73.5596 + 42.9077i) q^{66} -121.469 q^{67} +98.6202i q^{68} -10.7968 q^{69} -150.212 q^{70} -51.5776 q^{71} -51.7210i q^{72} +77.8507i q^{73} +1.48627i q^{74} +24.1057 q^{75} -56.1112i q^{76} +(-69.4573 - 40.5148i) q^{77} -15.7232 q^{78} +109.661i q^{79} -83.2719 q^{80} -30.1563 q^{81} -189.261 q^{82} -121.206i q^{83} -128.782i q^{84} +75.3076i q^{85} +97.8732 q^{86} -10.3338i q^{87} +(-124.993 - 72.9092i) q^{88} +64.2205 q^{89} -80.7921i q^{90} +14.8463 q^{91} +37.5293 q^{92} -63.8856 q^{93} +226.572i q^{94} -42.8472i q^{95} +10.5772i q^{96} -31.2577 q^{97} +15.2548i q^{98} +(21.7910 - 37.3579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.43881i 1.71940i −0.510795 0.859702i \(-0.670649\pi\)
0.510795 0.859702i \(-0.329351\pi\)
\(3\) 2.25129 0.750429 0.375214 0.926938i \(-0.377569\pi\)
0.375214 + 0.926938i \(0.377569\pi\)
\(4\) −7.82541 −1.95635
\(5\) −5.97558 −1.19512 −0.597558 0.801826i \(-0.703862\pi\)
−0.597558 + 0.801826i \(0.703862\pi\)
\(6\) 7.74175i 1.29029i
\(7\) 7.31000i 1.04429i 0.852858 + 0.522143i \(0.174867\pi\)
−0.852858 + 0.522143i \(0.825133\pi\)
\(8\) 13.1548i 1.64436i
\(9\) −3.93171 −0.436856
\(10\) 20.5489i 2.05489i
\(11\) −5.54238 + 9.50168i −0.503853 + 0.863790i
\(12\) −17.6172 −1.46810
\(13\) 2.03096i 0.156228i −0.996944 0.0781139i \(-0.975110\pi\)
0.996944 0.0781139i \(-0.0248898\pi\)
\(14\) 25.1377 1.79555
\(15\) −13.4527 −0.896849
\(16\) 13.9354 0.870961
\(17\) 12.6026i 0.741328i −0.928767 0.370664i \(-0.879130\pi\)
0.928767 0.370664i \(-0.120870\pi\)
\(18\) 13.5204i 0.751133i
\(19\) 7.17039i 0.377389i 0.982036 + 0.188694i \(0.0604256\pi\)
−0.982036 + 0.188694i \(0.939574\pi\)
\(20\) 46.7613 2.33807
\(21\) 16.4569i 0.783662i
\(22\) 32.6745 + 19.0592i 1.48520 + 0.866327i
\(23\) −4.79583 −0.208514
\(24\) 29.6153i 1.23397i
\(25\) 10.7075 0.428300
\(26\) −6.98408 −0.268619
\(27\) −29.1130 −1.07826
\(28\) 57.2037i 2.04299i
\(29\) 4.59018i 0.158282i −0.996863 0.0791411i \(-0.974782\pi\)
0.996863 0.0791411i \(-0.0252178\pi\)
\(30\) 46.2614i 1.54205i
\(31\) −28.3774 −0.915399 −0.457700 0.889107i \(-0.651327\pi\)
−0.457700 + 0.889107i \(0.651327\pi\)
\(32\) 4.69829i 0.146822i
\(33\) −12.4775 + 21.3910i −0.378106 + 0.648213i
\(34\) −43.3378 −1.27464
\(35\) 43.6815i 1.24804i
\(36\) 30.7672 0.854645
\(37\) −0.432206 −0.0116813 −0.00584063 0.999983i \(-0.501859\pi\)
−0.00584063 + 0.999983i \(0.501859\pi\)
\(38\) 24.6576 0.648884
\(39\) 4.57227i 0.117238i
\(40\) 78.6078i 1.96519i
\(41\) 55.0369i 1.34236i −0.741293 0.671181i \(-0.765787\pi\)
0.741293 0.671181i \(-0.234213\pi\)
\(42\) 56.5921 1.34743
\(43\) 28.4614i 0.661892i 0.943650 + 0.330946i \(0.107368\pi\)
−0.943650 + 0.330946i \(0.892632\pi\)
\(44\) 43.3714 74.3546i 0.985713 1.68988i
\(45\) 23.4942 0.522094
\(46\) 16.4919i 0.358521i
\(47\) −65.8869 −1.40185 −0.700924 0.713236i \(-0.747229\pi\)
−0.700924 + 0.713236i \(0.747229\pi\)
\(48\) 31.3725 0.653594
\(49\) −4.43608 −0.0905323
\(50\) 36.8211i 0.736421i
\(51\) 28.3720i 0.556314i
\(52\) 15.8931i 0.305636i
\(53\) 75.3874 1.42240 0.711202 0.702988i \(-0.248151\pi\)
0.711202 + 0.702988i \(0.248151\pi\)
\(54\) 100.114i 1.85396i
\(55\) 33.1189 56.7780i 0.602162 1.03233i
\(56\) −96.1619 −1.71718
\(57\) 16.1426i 0.283204i
\(58\) −15.7848 −0.272151
\(59\) 30.5593 0.517954 0.258977 0.965883i \(-0.416615\pi\)
0.258977 + 0.965883i \(0.416615\pi\)
\(60\) 105.273 1.75455
\(61\) 14.3773i 0.235693i −0.993032 0.117847i \(-0.962401\pi\)
0.993032 0.117847i \(-0.0375991\pi\)
\(62\) 97.5844i 1.57394i
\(63\) 28.7408i 0.456203i
\(64\) 71.8980 1.12341
\(65\) 12.1362i 0.186710i
\(66\) 73.5596 + 42.9077i 1.11454 + 0.650117i
\(67\) −121.469 −1.81298 −0.906488 0.422233i \(-0.861247\pi\)
−0.906488 + 0.422233i \(0.861247\pi\)
\(68\) 98.6202i 1.45030i
\(69\) −10.7968 −0.156475
\(70\) −150.212 −2.14589
\(71\) −51.5776 −0.726445 −0.363222 0.931702i \(-0.618324\pi\)
−0.363222 + 0.931702i \(0.618324\pi\)
\(72\) 51.7210i 0.718347i
\(73\) 77.8507i 1.06645i 0.845974 + 0.533224i \(0.179020\pi\)
−0.845974 + 0.533224i \(0.820980\pi\)
\(74\) 1.48627i 0.0200848i
\(75\) 24.1057 0.321409
\(76\) 56.1112i 0.738305i
\(77\) −69.4573 40.5148i −0.902043 0.526166i
\(78\) −15.7232 −0.201579
\(79\) 109.661i 1.38811i 0.719920 + 0.694057i \(0.244178\pi\)
−0.719920 + 0.694057i \(0.755822\pi\)
\(80\) −83.2719 −1.04090
\(81\) −30.1563 −0.372300
\(82\) −189.261 −2.30806
\(83\) 121.206i 1.46031i −0.683279 0.730157i \(-0.739447\pi\)
0.683279 0.730157i \(-0.260553\pi\)
\(84\) 128.782i 1.53312i
\(85\) 75.3076i 0.885972i
\(86\) 97.8732 1.13806
\(87\) 10.3338i 0.118780i
\(88\) −124.993 72.9092i −1.42038 0.828513i
\(89\) 64.2205 0.721579 0.360790 0.932647i \(-0.382507\pi\)
0.360790 + 0.932647i \(0.382507\pi\)
\(90\) 80.7921i 0.897690i
\(91\) 14.8463 0.163146
\(92\) 37.5293 0.407928
\(93\) −63.8856 −0.686942
\(94\) 226.572i 2.41034i
\(95\) 42.8472i 0.451023i
\(96\) 10.5772i 0.110179i
\(97\) −31.2577 −0.322244 −0.161122 0.986934i \(-0.551511\pi\)
−0.161122 + 0.986934i \(0.551511\pi\)
\(98\) 15.2548i 0.155662i
\(99\) 21.7910 37.3579i 0.220111 0.377352i
\(100\) −83.7906 −0.837906
\(101\) 35.0785i 0.347312i 0.984806 + 0.173656i \(0.0555581\pi\)
−0.984806 + 0.173656i \(0.944442\pi\)
\(102\) −97.5659 −0.956528
\(103\) −115.766 −1.12394 −0.561969 0.827158i \(-0.689956\pi\)
−0.561969 + 0.827158i \(0.689956\pi\)
\(104\) 26.7170 0.256894
\(105\) 98.3395i 0.936566i
\(106\) 259.243i 2.44569i
\(107\) 114.288i 1.06811i −0.845450 0.534055i \(-0.820668\pi\)
0.845450 0.534055i \(-0.179332\pi\)
\(108\) 227.821 2.10945
\(109\) 95.0212i 0.871754i 0.900006 + 0.435877i \(0.143562\pi\)
−0.900006 + 0.435877i \(0.856438\pi\)
\(110\) −195.249 113.890i −1.77499 1.03536i
\(111\) −0.973020 −0.00876595
\(112\) 101.868i 0.909532i
\(113\) −53.2784 −0.471490 −0.235745 0.971815i \(-0.575753\pi\)
−0.235745 + 0.971815i \(0.575753\pi\)
\(114\) 55.5113 0.486941
\(115\) 28.6579 0.249199
\(116\) 35.9201i 0.309656i
\(117\) 7.98514i 0.0682491i
\(118\) 105.088i 0.890572i
\(119\) 92.1248 0.774158
\(120\) 176.969i 1.47474i
\(121\) −59.5640 105.324i −0.492265 0.870446i
\(122\) −49.4408 −0.405252
\(123\) 123.904i 1.00735i
\(124\) 222.065 1.79084
\(125\) 85.4059 0.683247
\(126\) −98.8341 −0.784397
\(127\) 227.726i 1.79312i 0.442921 + 0.896561i \(0.353942\pi\)
−0.442921 + 0.896561i \(0.646058\pi\)
\(128\) 228.450i 1.78477i
\(129\) 64.0747i 0.496703i
\(130\) 41.7339 0.321030
\(131\) 195.620i 1.49328i 0.665227 + 0.746641i \(0.268335\pi\)
−0.665227 + 0.746641i \(0.731665\pi\)
\(132\) 97.6414 167.393i 0.739708 1.26813i
\(133\) −52.4155 −0.394102
\(134\) 417.710i 3.11724i
\(135\) 173.967 1.28864
\(136\) 165.785 1.21901
\(137\) 88.4178 0.645385 0.322693 0.946504i \(-0.395412\pi\)
0.322693 + 0.946504i \(0.395412\pi\)
\(138\) 37.1281i 0.269044i
\(139\) 54.8474i 0.394585i −0.980345 0.197293i \(-0.936785\pi\)
0.980345 0.197293i \(-0.0632149\pi\)
\(140\) 341.825i 2.44161i
\(141\) −148.330 −1.05199
\(142\) 177.365i 1.24905i
\(143\) 19.2975 + 11.2564i 0.134948 + 0.0787158i
\(144\) −54.7898 −0.380485
\(145\) 27.4290i 0.189165i
\(146\) 267.714 1.83366
\(147\) −9.98690 −0.0679381
\(148\) 3.38219 0.0228526
\(149\) 2.58929i 0.0173778i 0.999962 + 0.00868889i \(0.00276579\pi\)
−0.999962 + 0.00868889i \(0.997234\pi\)
\(150\) 82.8948i 0.552632i
\(151\) 207.408i 1.37356i −0.726864 0.686782i \(-0.759023\pi\)
0.726864 0.686782i \(-0.240977\pi\)
\(152\) −94.3254 −0.620562
\(153\) 49.5496i 0.323854i
\(154\) −139.323 + 238.850i −0.904693 + 1.55098i
\(155\) 169.571 1.09401
\(156\) 35.7799i 0.229358i
\(157\) 153.280 0.976304 0.488152 0.872759i \(-0.337671\pi\)
0.488152 + 0.872759i \(0.337671\pi\)
\(158\) 377.103 2.38673
\(159\) 169.719 1.06741
\(160\) 28.0750i 0.175469i
\(161\) 35.0575i 0.217749i
\(162\) 103.702i 0.640134i
\(163\) −144.158 −0.884408 −0.442204 0.896915i \(-0.645803\pi\)
−0.442204 + 0.896915i \(0.645803\pi\)
\(164\) 430.686i 2.62613i
\(165\) 74.5602 127.824i 0.451880 0.774689i
\(166\) −416.805 −2.51087
\(167\) 53.8084i 0.322206i 0.986938 + 0.161103i \(0.0515051\pi\)
−0.986938 + 0.161103i \(0.948495\pi\)
\(168\) −216.488 −1.28862
\(169\) 164.875 0.975593
\(170\) 258.968 1.52334
\(171\) 28.1919i 0.164865i
\(172\) 222.722i 1.29489i
\(173\) 127.989i 0.739824i −0.929067 0.369912i \(-0.879388\pi\)
0.929067 0.369912i \(-0.120612\pi\)
\(174\) −35.5360 −0.204230
\(175\) 78.2718i 0.447268i
\(176\) −77.2352 + 132.410i −0.438836 + 0.752327i
\(177\) 68.7977 0.388688
\(178\) 220.842i 1.24069i
\(179\) −209.111 −1.16822 −0.584109 0.811675i \(-0.698556\pi\)
−0.584109 + 0.811675i \(0.698556\pi\)
\(180\) −183.852 −1.02140
\(181\) 204.831 1.13166 0.565831 0.824521i \(-0.308556\pi\)
0.565831 + 0.824521i \(0.308556\pi\)
\(182\) 51.0537i 0.280515i
\(183\) 32.3674i 0.176871i
\(184\) 63.0884i 0.342872i
\(185\) 2.58268 0.0139604
\(186\) 219.690i 1.18113i
\(187\) 119.746 + 69.8482i 0.640351 + 0.373520i
\(188\) 515.592 2.74251
\(189\) 212.816i 1.12601i
\(190\) −147.343 −0.775491
\(191\) 267.508 1.40057 0.700284 0.713865i \(-0.253057\pi\)
0.700284 + 0.713865i \(0.253057\pi\)
\(192\) 161.863 0.843037
\(193\) 190.029i 0.984605i −0.870424 0.492302i \(-0.836155\pi\)
0.870424 0.492302i \(-0.163845\pi\)
\(194\) 107.489i 0.554069i
\(195\) 27.3220i 0.140113i
\(196\) 34.7142 0.177113
\(197\) 305.377i 1.55014i −0.631876 0.775069i \(-0.717715\pi\)
0.631876 0.775069i \(-0.282285\pi\)
\(198\) −128.467 74.9352i −0.648821 0.378460i
\(199\) 243.849 1.22537 0.612687 0.790326i \(-0.290089\pi\)
0.612687 + 0.790326i \(0.290089\pi\)
\(200\) 140.856i 0.704278i
\(201\) −273.462 −1.36051
\(202\) 120.628 0.597170
\(203\) 33.5542 0.165292
\(204\) 222.022i 1.08835i
\(205\) 328.877i 1.60428i
\(206\) 398.096i 1.93251i
\(207\) 18.8558 0.0910909
\(208\) 28.3022i 0.136068i
\(209\) −68.1308 39.7410i −0.325985 0.190148i
\(210\) −338.171 −1.61034
\(211\) 280.012i 1.32707i −0.748145 0.663536i \(-0.769055\pi\)
0.748145 0.663536i \(-0.230945\pi\)
\(212\) −589.937 −2.78272
\(213\) −116.116 −0.545145
\(214\) −393.013 −1.83651
\(215\) 170.073i 0.791037i
\(216\) 382.977i 1.77304i
\(217\) 207.439i 0.955938i
\(218\) 326.760 1.49890
\(219\) 175.264i 0.800293i
\(220\) −259.169 + 444.311i −1.17804 + 2.01960i
\(221\) −25.5953 −0.115816
\(222\) 3.34603i 0.0150722i
\(223\) −297.141 −1.33247 −0.666235 0.745742i \(-0.732095\pi\)
−0.666235 + 0.745742i \(0.732095\pi\)
\(224\) −34.3445 −0.153324
\(225\) −42.0988 −0.187106
\(226\) 183.214i 0.810682i
\(227\) 249.276i 1.09813i 0.835779 + 0.549066i \(0.185016\pi\)
−0.835779 + 0.549066i \(0.814984\pi\)
\(228\) 126.322i 0.554046i
\(229\) −431.863 −1.88586 −0.942932 0.332986i \(-0.891944\pi\)
−0.942932 + 0.332986i \(0.891944\pi\)
\(230\) 98.5489i 0.428473i
\(231\) −156.368 91.2104i −0.676919 0.394850i
\(232\) 60.3832 0.260272
\(233\) 138.106i 0.592728i 0.955075 + 0.296364i \(0.0957741\pi\)
−0.955075 + 0.296364i \(0.904226\pi\)
\(234\) 27.4594 0.117348
\(235\) 393.712 1.67537
\(236\) −239.139 −1.01330
\(237\) 246.878i 1.04168i
\(238\) 316.799i 1.33109i
\(239\) 328.222i 1.37332i 0.726981 + 0.686658i \(0.240923\pi\)
−0.726981 + 0.686658i \(0.759077\pi\)
\(240\) −187.469 −0.781120
\(241\) 151.578i 0.628956i −0.949265 0.314478i \(-0.898171\pi\)
0.949265 0.314478i \(-0.101829\pi\)
\(242\) −362.189 + 204.829i −1.49665 + 0.846402i
\(243\) 194.126 0.798874
\(244\) 112.508i 0.461099i
\(245\) 26.5082 0.108197
\(246\) −426.082 −1.73204
\(247\) 14.5628 0.0589586
\(248\) 373.300i 1.50524i
\(249\) 272.870i 1.09586i
\(250\) 293.695i 1.17478i
\(251\) −359.160 −1.43092 −0.715458 0.698655i \(-0.753782\pi\)
−0.715458 + 0.698655i \(0.753782\pi\)
\(252\) 224.908i 0.892493i
\(253\) 26.5803 45.5685i 0.105061 0.180113i
\(254\) 783.108 3.08310
\(255\) 169.539i 0.664859i
\(256\) −498.005 −1.94533
\(257\) −82.1597 −0.319687 −0.159844 0.987142i \(-0.551099\pi\)
−0.159844 + 0.987142i \(0.551099\pi\)
\(258\) 220.341 0.854033
\(259\) 3.15943i 0.0121986i
\(260\) 94.9704i 0.365271i
\(261\) 18.0473i 0.0691466i
\(262\) 672.700 2.56756
\(263\) 337.482i 1.28320i 0.767039 + 0.641601i \(0.221729\pi\)
−0.767039 + 0.641601i \(0.778271\pi\)
\(264\) −281.396 164.139i −1.06589 0.621740i
\(265\) −450.483 −1.69994
\(266\) 180.247i 0.677620i
\(267\) 144.579 0.541494
\(268\) 950.547 3.54682
\(269\) 49.3183 0.183339 0.0916697 0.995789i \(-0.470780\pi\)
0.0916697 + 0.995789i \(0.470780\pi\)
\(270\) 598.239i 2.21570i
\(271\) 386.698i 1.42693i 0.700691 + 0.713465i \(0.252875\pi\)
−0.700691 + 0.713465i \(0.747125\pi\)
\(272\) 175.622i 0.645667i
\(273\) 33.4233 0.122430
\(274\) 304.052i 1.10968i
\(275\) −59.3451 + 101.739i −0.215800 + 0.369961i
\(276\) 84.4893 0.306121
\(277\) 28.1561i 0.101647i −0.998708 0.0508233i \(-0.983815\pi\)
0.998708 0.0508233i \(-0.0161845\pi\)
\(278\) −188.610 −0.678452
\(279\) 111.572 0.399898
\(280\) 574.623 2.05222
\(281\) 41.5314i 0.147798i −0.997266 0.0738992i \(-0.976456\pi\)
0.997266 0.0738992i \(-0.0235443\pi\)
\(282\) 510.079i 1.80879i
\(283\) 86.3755i 0.305214i 0.988287 + 0.152607i \(0.0487668\pi\)
−0.988287 + 0.152607i \(0.951233\pi\)
\(284\) 403.616 1.42118
\(285\) 96.4613i 0.338461i
\(286\) 38.7085 66.3606i 0.135344 0.232030i
\(287\) 402.320 1.40181
\(288\) 18.4723i 0.0641399i
\(289\) 130.175 0.450433
\(290\) 94.3231 0.325252
\(291\) −70.3701 −0.241822
\(292\) 609.213i 2.08635i
\(293\) 214.375i 0.731655i 0.930683 + 0.365827i \(0.119214\pi\)
−0.930683 + 0.365827i \(0.880786\pi\)
\(294\) 34.3430i 0.116813i
\(295\) −182.609 −0.619015
\(296\) 5.68561i 0.0192081i
\(297\) 161.355 276.622i 0.543284 0.931389i
\(298\) 8.90407 0.0298794
\(299\) 9.74014i 0.0325757i
\(300\) −188.637 −0.628789
\(301\) −208.052 −0.691204
\(302\) −713.237 −2.36171
\(303\) 78.9718i 0.260633i
\(304\) 99.9221i 0.328691i
\(305\) 85.9126i 0.281681i
\(306\) 170.392 0.556836
\(307\) 203.287i 0.662173i 0.943600 + 0.331086i \(0.107415\pi\)
−0.943600 + 0.331086i \(0.892585\pi\)
\(308\) 543.532 + 317.045i 1.76471 + 1.02937i
\(309\) −260.622 −0.843436
\(310\) 583.123i 1.88104i
\(311\) −489.326 −1.57340 −0.786698 0.617338i \(-0.788211\pi\)
−0.786698 + 0.617338i \(0.788211\pi\)
\(312\) 60.1476 0.192781
\(313\) 192.073 0.613652 0.306826 0.951766i \(-0.400733\pi\)
0.306826 + 0.951766i \(0.400733\pi\)
\(314\) 527.100i 1.67866i
\(315\) 171.743i 0.545215i
\(316\) 858.142i 2.71564i
\(317\) −324.085 −1.02235 −0.511176 0.859476i \(-0.670790\pi\)
−0.511176 + 0.859476i \(0.670790\pi\)
\(318\) 583.630i 1.83531i
\(319\) 43.6145 + 25.4405i 0.136723 + 0.0797509i
\(320\) −429.632 −1.34260
\(321\) 257.294i 0.801540i
\(322\) −120.556 −0.374398
\(323\) 90.3653 0.279769
\(324\) 235.985 0.728350
\(325\) 21.7465i 0.0669123i
\(326\) 495.733i 1.52065i
\(327\) 213.920i 0.654189i
\(328\) 724.002 2.20732
\(329\) 481.633i 1.46393i
\(330\) −439.561 256.398i −1.33200 0.776964i
\(331\) −638.017 −1.92754 −0.963772 0.266728i \(-0.914057\pi\)
−0.963772 + 0.266728i \(0.914057\pi\)
\(332\) 948.487i 2.85689i
\(333\) 1.69931 0.00510303
\(334\) 185.037 0.554003
\(335\) 725.849 2.16671
\(336\) 229.333i 0.682539i
\(337\) 4.76839i 0.0141495i −0.999975 0.00707476i \(-0.997748\pi\)
0.999975 0.00707476i \(-0.00225199\pi\)
\(338\) 566.974i 1.67744i
\(339\) −119.945 −0.353820
\(340\) 589.313i 1.73327i
\(341\) 157.278 269.633i 0.461227 0.790712i
\(342\) −96.9465 −0.283469
\(343\) 325.762i 0.949744i
\(344\) −374.405 −1.08839
\(345\) 64.5170 0.187006
\(346\) −440.131 −1.27206
\(347\) 354.696i 1.02218i −0.859527 0.511090i \(-0.829242\pi\)
0.859527 0.511090i \(-0.170758\pi\)
\(348\) 80.8664i 0.232375i
\(349\) 562.820i 1.61266i 0.591463 + 0.806332i \(0.298551\pi\)
−0.591463 + 0.806332i \(0.701449\pi\)
\(350\) 269.162 0.769034
\(351\) 59.1273i 0.168454i
\(352\) −44.6417 26.0397i −0.126823 0.0739764i
\(353\) 161.827 0.458432 0.229216 0.973376i \(-0.426384\pi\)
0.229216 + 0.973376i \(0.426384\pi\)
\(354\) 236.582i 0.668311i
\(355\) 308.206 0.868185
\(356\) −502.552 −1.41166
\(357\) 207.399 0.580950
\(358\) 719.093i 2.00864i
\(359\) 406.019i 1.13097i 0.824757 + 0.565487i \(0.191312\pi\)
−0.824757 + 0.565487i \(0.808688\pi\)
\(360\) 309.063i 0.858508i
\(361\) 309.586 0.857578
\(362\) 704.374i 1.94578i
\(363\) −134.096 237.114i −0.369410 0.653208i
\(364\) −116.178 −0.319172
\(365\) 465.203i 1.27453i
\(366\) −111.305 −0.304113
\(367\) 553.390 1.50788 0.753938 0.656946i \(-0.228152\pi\)
0.753938 + 0.656946i \(0.228152\pi\)
\(368\) −66.8317 −0.181608
\(369\) 216.389i 0.586420i
\(370\) 8.88135i 0.0240036i
\(371\) 551.082i 1.48540i
\(372\) 499.931 1.34390
\(373\) 371.964i 0.997223i 0.866826 + 0.498611i \(0.166156\pi\)
−0.866826 + 0.498611i \(0.833844\pi\)
\(374\) 240.195 411.782i 0.642232 1.10102i
\(375\) 192.273 0.512728
\(376\) 866.732i 2.30514i
\(377\) −9.32248 −0.0247281
\(378\) −731.833 −1.93607
\(379\) −396.427 −1.04598 −0.522991 0.852338i \(-0.675184\pi\)
−0.522991 + 0.852338i \(0.675184\pi\)
\(380\) 335.297i 0.882360i
\(381\) 512.677i 1.34561i
\(382\) 919.910i 2.40814i
\(383\) 307.243 0.802200 0.401100 0.916034i \(-0.368628\pi\)
0.401100 + 0.916034i \(0.368628\pi\)
\(384\) 514.307i 1.33934i
\(385\) 415.047 + 242.099i 1.07805 + 0.628829i
\(386\) −653.473 −1.69293
\(387\) 111.902i 0.289152i
\(388\) 244.604 0.630424
\(389\) −513.353 −1.31967 −0.659837 0.751409i \(-0.729375\pi\)
−0.659837 + 0.751409i \(0.729375\pi\)
\(390\) 93.9550 0.240910
\(391\) 60.4398i 0.154577i
\(392\) 58.3560i 0.148867i
\(393\) 440.397i 1.12060i
\(394\) −1050.13 −2.66532
\(395\) 655.287i 1.65896i
\(396\) −170.524 + 292.340i −0.430615 + 0.738233i
\(397\) 279.794 0.704771 0.352385 0.935855i \(-0.385371\pi\)
0.352385 + 0.935855i \(0.385371\pi\)
\(398\) 838.552i 2.10691i
\(399\) −118.002 −0.295745
\(400\) 149.213 0.373033
\(401\) −724.982 −1.80793 −0.903967 0.427602i \(-0.859358\pi\)
−0.903967 + 0.427602i \(0.859358\pi\)
\(402\) 940.385i 2.33927i
\(403\) 57.6333i 0.143011i
\(404\) 274.504i 0.679465i
\(405\) 180.201 0.444941
\(406\) 115.387i 0.284204i
\(407\) 2.39545 4.10669i 0.00588563 0.0100901i
\(408\) 373.229 0.914778
\(409\) 57.8826i 0.141522i 0.997493 + 0.0707611i \(0.0225428\pi\)
−0.997493 + 0.0707611i \(0.977457\pi\)
\(410\) 1130.95 2.75840
\(411\) 199.054 0.484316
\(412\) 905.914 2.19882
\(413\) 223.388i 0.540892i
\(414\) 64.8415i 0.156622i
\(415\) 724.276i 1.74524i
\(416\) 9.54204 0.0229376
\(417\) 123.477i 0.296108i
\(418\) −136.662 + 234.289i −0.326942 + 0.560499i
\(419\) −506.877 −1.20973 −0.604866 0.796328i \(-0.706773\pi\)
−0.604866 + 0.796328i \(0.706773\pi\)
\(420\) 769.546i 1.83225i
\(421\) −367.915 −0.873907 −0.436954 0.899484i \(-0.643943\pi\)
−0.436954 + 0.899484i \(0.643943\pi\)
\(422\) −962.908 −2.28177
\(423\) 259.048 0.612406
\(424\) 991.710i 2.33894i
\(425\) 134.942i 0.317511i
\(426\) 399.301i 0.937325i
\(427\) 105.098 0.246131
\(428\) 894.348i 2.08960i
\(429\) 43.4443 + 25.3413i 0.101269 + 0.0590706i
\(430\) −584.848 −1.36011
\(431\) 563.137i 1.30658i 0.757107 + 0.653291i \(0.226612\pi\)
−0.757107 + 0.653291i \(0.773388\pi\)
\(432\) −405.700 −0.939121
\(433\) −400.443 −0.924812 −0.462406 0.886668i \(-0.653014\pi\)
−0.462406 + 0.886668i \(0.653014\pi\)
\(434\) −713.342 −1.64364
\(435\) 61.7505i 0.141955i
\(436\) 743.580i 1.70546i
\(437\) 34.3880i 0.0786910i
\(438\) 602.700 1.37603
\(439\) 51.4207i 0.117132i 0.998284 + 0.0585658i \(0.0186527\pi\)
−0.998284 + 0.0585658i \(0.981347\pi\)
\(440\) 746.906 + 435.674i 1.69751 + 0.990169i
\(441\) 17.4414 0.0395496
\(442\) 88.0174i 0.199134i
\(443\) −194.355 −0.438725 −0.219363 0.975643i \(-0.570398\pi\)
−0.219363 + 0.975643i \(0.570398\pi\)
\(444\) 7.61428 0.0171493
\(445\) −383.755 −0.862370
\(446\) 1021.81i 2.29105i
\(447\) 5.82923i 0.0130408i
\(448\) 525.574i 1.17316i
\(449\) 341.728 0.761087 0.380544 0.924763i \(-0.375737\pi\)
0.380544 + 0.924763i \(0.375737\pi\)
\(450\) 144.770i 0.321710i
\(451\) 522.943 + 305.035i 1.15952 + 0.676353i
\(452\) 416.925 0.922400
\(453\) 466.935i 1.03076i
\(454\) 857.212 1.88813
\(455\) −88.7153 −0.194979
\(456\) −212.353 −0.465687
\(457\) 296.786i 0.649423i −0.945813 0.324712i \(-0.894733\pi\)
0.945813 0.324712i \(-0.105267\pi\)
\(458\) 1485.09i 3.24256i
\(459\) 366.898i 0.799343i
\(460\) −224.259 −0.487520
\(461\) 369.852i 0.802282i −0.916016 0.401141i \(-0.868614\pi\)
0.916016 0.401141i \(-0.131386\pi\)
\(462\) −313.655 + 537.721i −0.678907 + 1.16390i
\(463\) 89.8128 0.193980 0.0969901 0.995285i \(-0.469078\pi\)
0.0969901 + 0.995285i \(0.469078\pi\)
\(464\) 63.9659i 0.137858i
\(465\) 381.753 0.820975
\(466\) 474.919 1.01914
\(467\) −570.646 −1.22194 −0.610970 0.791654i \(-0.709220\pi\)
−0.610970 + 0.791654i \(0.709220\pi\)
\(468\) 62.4870i 0.133519i
\(469\) 887.941i 1.89326i
\(470\) 1353.90i 2.88064i
\(471\) 345.077 0.732647
\(472\) 402.003i 0.851701i
\(473\) −270.431 157.744i −0.571735 0.333496i
\(474\) 848.967 1.79107
\(475\) 76.7770i 0.161636i
\(476\) −720.914 −1.51452
\(477\) −296.401 −0.621386
\(478\) 1128.69 2.36129
\(479\) 450.511i 0.940523i −0.882527 0.470262i \(-0.844160\pi\)
0.882527 0.470262i \(-0.155840\pi\)
\(480\) 63.2048i 0.131677i
\(481\) 0.877794i 0.00182494i
\(482\) −521.249 −1.08143
\(483\) 78.9245i 0.163405i
\(484\) 466.113 + 824.203i 0.963043 + 1.70290i
\(485\) 186.783 0.385119
\(486\) 667.564i 1.37359i
\(487\) −322.907 −0.663054 −0.331527 0.943446i \(-0.607564\pi\)
−0.331527 + 0.943446i \(0.607564\pi\)
\(488\) 189.131 0.387564
\(489\) −324.542 −0.663685
\(490\) 91.1565i 0.186034i
\(491\) 178.686i 0.363923i 0.983306 + 0.181962i \(0.0582447\pi\)
−0.983306 + 0.181962i \(0.941755\pi\)
\(492\) 969.598i 1.97073i
\(493\) −57.8481 −0.117339
\(494\) 50.0786i 0.101374i
\(495\) −130.214 + 223.235i −0.263058 + 0.450979i
\(496\) −395.449 −0.797277
\(497\) 377.032i 0.758616i
\(498\) −938.347 −1.88423
\(499\) −278.375 −0.557866 −0.278933 0.960311i \(-0.589981\pi\)
−0.278933 + 0.960311i \(0.589981\pi\)
\(500\) −668.336 −1.33667
\(501\) 121.138i 0.241793i
\(502\) 1235.08i 2.46033i
\(503\) 172.701i 0.343342i −0.985154 0.171671i \(-0.945083\pi\)
0.985154 0.171671i \(-0.0549166\pi\)
\(504\) 378.081 0.750160
\(505\) 209.614i 0.415078i
\(506\) −156.701 91.4047i −0.309686 0.180642i
\(507\) 371.181 0.732113
\(508\) 1782.05i 3.50798i
\(509\) 395.718 0.777442 0.388721 0.921356i \(-0.372917\pi\)
0.388721 + 0.921356i \(0.372917\pi\)
\(510\) 583.012 1.14316
\(511\) −569.089 −1.11368
\(512\) 798.743i 1.56005i
\(513\) 208.751i 0.406923i
\(514\) 282.531i 0.549672i
\(515\) 691.767 1.34324
\(516\) 501.410i 0.971726i
\(517\) 365.170 626.036i 0.706325 1.21090i
\(518\) −10.8647 −0.0209743
\(519\) 288.141i 0.555185i
\(520\) −159.649 −0.307018
\(521\) 199.501 0.382919 0.191460 0.981500i \(-0.438678\pi\)
0.191460 + 0.981500i \(0.438678\pi\)
\(522\) 62.0611 0.118891
\(523\) 359.461i 0.687307i −0.939097 0.343653i \(-0.888335\pi\)
0.939097 0.343653i \(-0.111665\pi\)
\(524\) 1530.81i 2.92139i
\(525\) 176.212i 0.335643i
\(526\) 1160.54 2.20634
\(527\) 357.628i 0.678611i
\(528\) −173.879 + 298.092i −0.329315 + 0.564568i
\(529\) 23.0000 0.0434783
\(530\) 1549.13i 2.92288i
\(531\) −120.150 −0.226272
\(532\) 410.173 0.771002
\(533\) −111.778 −0.209714
\(534\) 497.179i 0.931047i
\(535\) 682.935i 1.27651i
\(536\) 1597.91i 2.98118i
\(537\) −470.769 −0.876665
\(538\) 169.596i 0.315235i
\(539\) 24.5865 42.1503i 0.0456150 0.0782009i
\(540\) −1361.36 −2.52104
\(541\) 344.221i 0.636267i 0.948046 + 0.318134i \(0.103056\pi\)
−0.948046 + 0.318134i \(0.896944\pi\)
\(542\) 1329.78 2.45347
\(543\) 461.133 0.849232
\(544\) 59.2105 0.108843
\(545\) 567.806i 1.04185i
\(546\) 114.936i 0.210506i
\(547\) 202.651i 0.370476i 0.982694 + 0.185238i \(0.0593057\pi\)
−0.982694 + 0.185238i \(0.940694\pi\)
\(548\) −691.905 −1.26260
\(549\) 56.5273i 0.102964i
\(550\) 349.862 + 204.076i 0.636113 + 0.371048i
\(551\) 32.9134 0.0597340
\(552\) 142.030i 0.257301i
\(553\) −801.621 −1.44959
\(554\) −96.8235 −0.174772
\(555\) 5.81436 0.0104763
\(556\) 429.203i 0.771948i
\(557\) 242.506i 0.435379i 0.976018 + 0.217689i \(0.0698519\pi\)
−0.976018 + 0.217689i \(0.930148\pi\)
\(558\) 383.673i 0.687587i
\(559\) 57.8039 0.103406
\(560\) 608.717i 1.08700i
\(561\) 269.582 + 157.248i 0.480538 + 0.280300i
\(562\) −142.818 −0.254125
\(563\) 919.697i 1.63357i −0.576946 0.816783i \(-0.695756\pi\)
0.576946 0.816783i \(-0.304244\pi\)
\(564\) 1160.74 2.05806
\(565\) 318.369 0.563485
\(566\) 297.029 0.524786
\(567\) 220.443i 0.388788i
\(568\) 678.495i 1.19453i
\(569\) 444.307i 0.780855i −0.920634 0.390428i \(-0.872327\pi\)
0.920634 0.390428i \(-0.127673\pi\)
\(570\) −331.712 −0.581951
\(571\) 1061.89i 1.85970i −0.367939 0.929850i \(-0.619936\pi\)
0.367939 0.929850i \(-0.380064\pi\)
\(572\) −151.011 88.0856i −0.264006 0.153996i
\(573\) 602.238 1.05103
\(574\) 1383.50i 2.41028i
\(575\) −51.3514 −0.0893067
\(576\) −282.682 −0.490767
\(577\) −315.321 −0.546484 −0.273242 0.961945i \(-0.588096\pi\)
−0.273242 + 0.961945i \(0.588096\pi\)
\(578\) 447.648i 0.774477i
\(579\) 427.809i 0.738876i
\(580\) 214.643i 0.370074i
\(581\) 886.016 1.52499
\(582\) 241.989i 0.415789i
\(583\) −417.826 + 716.307i −0.716682 + 1.22866i
\(584\) −1024.11 −1.75362
\(585\) 47.7158i 0.0815655i
\(586\) 737.194 1.25801
\(587\) 772.580 1.31615 0.658075 0.752953i \(-0.271371\pi\)
0.658075 + 0.752953i \(0.271371\pi\)
\(588\) 78.1516 0.132911
\(589\) 203.477i 0.345462i
\(590\) 627.959i 1.06434i
\(591\) 687.492i 1.16327i
\(592\) −6.02296 −0.0101739
\(593\) 603.262i 1.01730i −0.860972 0.508652i \(-0.830144\pi\)
0.860972 0.508652i \(-0.169856\pi\)
\(594\) −951.252 554.870i −1.60143 0.934124i
\(595\) −550.499 −0.925208
\(596\) 20.2622i 0.0339970i
\(597\) 548.975 0.919556
\(598\) 33.4945 0.0560109
\(599\) −247.853 −0.413778 −0.206889 0.978364i \(-0.566334\pi\)
−0.206889 + 0.978364i \(0.566334\pi\)
\(600\) 317.106i 0.528510i
\(601\) 873.338i 1.45314i 0.687092 + 0.726570i \(0.258887\pi\)
−0.687092 + 0.726570i \(0.741113\pi\)
\(602\) 715.453i 1.18846i
\(603\) 477.582 0.792010
\(604\) 1623.05i 2.68717i
\(605\) 355.929 + 629.371i 0.588313 + 1.04028i
\(606\) 271.569 0.448134
\(607\) 354.871i 0.584631i −0.956322 0.292315i \(-0.905574\pi\)
0.956322 0.292315i \(-0.0944257\pi\)
\(608\) −33.6886 −0.0554088
\(609\) 75.5402 0.124040
\(610\) 295.437 0.484323
\(611\) 133.814i 0.219008i
\(612\) 387.746i 0.633572i
\(613\) 700.416i 1.14260i 0.820740 + 0.571302i \(0.193562\pi\)
−0.820740 + 0.571302i \(0.806438\pi\)
\(614\) 699.065 1.13854
\(615\) 740.397i 1.20390i
\(616\) 532.966 913.700i 0.865205 1.48328i
\(617\) −479.487 −0.777127 −0.388563 0.921422i \(-0.627029\pi\)
−0.388563 + 0.921422i \(0.627029\pi\)
\(618\) 896.228i 1.45021i
\(619\) 170.763 0.275870 0.137935 0.990441i \(-0.455954\pi\)
0.137935 + 0.990441i \(0.455954\pi\)
\(620\) −1326.96 −2.14026
\(621\) 139.621 0.224832
\(622\) 1682.70i 2.70530i
\(623\) 469.452i 0.753535i
\(624\) 63.7164i 0.102110i
\(625\) −778.037 −1.24486
\(626\) 660.503i 1.05512i
\(627\) −153.382 89.4684i −0.244628 0.142693i
\(628\) −1199.48 −1.91000
\(629\) 5.44691i 0.00865963i
\(630\) 590.590 0.937445
\(631\) 1034.16 1.63892 0.819462 0.573134i \(-0.194273\pi\)
0.819462 + 0.573134i \(0.194273\pi\)
\(632\) −1442.57 −2.28255
\(633\) 630.387i 0.995873i
\(634\) 1114.47i 1.75784i
\(635\) 1360.80i 2.14299i
\(636\) −1328.12 −2.08824
\(637\) 9.00951i 0.0141437i
\(638\) 87.4852 149.982i 0.137124 0.235081i
\(639\) 202.788 0.317352
\(640\) 1365.12i 2.13300i
\(641\) −136.623 −0.213140 −0.106570 0.994305i \(-0.533987\pi\)
−0.106570 + 0.994305i \(0.533987\pi\)
\(642\) −884.786 −1.37817
\(643\) 951.295 1.47946 0.739731 0.672902i \(-0.234953\pi\)
0.739731 + 0.672902i \(0.234953\pi\)
\(644\) 274.339i 0.425993i
\(645\) 382.883i 0.593617i
\(646\) 310.749i 0.481036i
\(647\) 414.008 0.639888 0.319944 0.947436i \(-0.396336\pi\)
0.319944 + 0.947436i \(0.396336\pi\)
\(648\) 396.702i 0.612194i
\(649\) −169.371 + 290.365i −0.260973 + 0.447403i
\(650\) −74.7821 −0.115049
\(651\) 467.004i 0.717364i
\(652\) 1128.10 1.73021
\(653\) −756.063 −1.15783 −0.578915 0.815388i \(-0.696524\pi\)
−0.578915 + 0.815388i \(0.696524\pi\)
\(654\) 735.630 1.12482
\(655\) 1168.94i 1.78464i
\(656\) 766.960i 1.16915i
\(657\) 306.086i 0.465885i
\(658\) −1656.24 −2.51709
\(659\) 555.152i 0.842415i 0.906964 + 0.421208i \(0.138394\pi\)
−0.906964 + 0.421208i \(0.861606\pi\)
\(660\) −583.464 + 1000.27i −0.884036 + 1.51556i
\(661\) −256.614 −0.388220 −0.194110 0.980980i \(-0.562182\pi\)
−0.194110 + 0.980980i \(0.562182\pi\)
\(662\) 2194.02i 3.31423i
\(663\) −57.6224 −0.0869116
\(664\) 1594.45 2.40128
\(665\) 313.213 0.470997
\(666\) 5.84360i 0.00877417i
\(667\) 22.0138i 0.0330041i
\(668\) 421.073i 0.630348i
\(669\) −668.949 −0.999923
\(670\) 2496.06i 3.72546i
\(671\) 136.609 + 79.6844i 0.203589 + 0.118755i
\(672\) −77.3193 −0.115058
\(673\) 491.131i 0.729763i 0.931054 + 0.364882i \(0.118891\pi\)
−0.931054 + 0.364882i \(0.881109\pi\)
\(674\) −16.3976 −0.0243288
\(675\) −311.727 −0.461818
\(676\) −1290.22 −1.90860
\(677\) 700.792i 1.03514i −0.855640 0.517572i \(-0.826836\pi\)
0.855640 0.517572i \(-0.173164\pi\)
\(678\) 412.468i 0.608359i
\(679\) 228.494i 0.336515i
\(680\) −990.660 −1.45685
\(681\) 561.192i 0.824070i
\(682\) −927.216 540.850i −1.35955 0.793035i
\(683\) 328.837 0.481460 0.240730 0.970592i \(-0.422613\pi\)
0.240730 + 0.970592i \(0.422613\pi\)
\(684\) 220.613i 0.322534i
\(685\) −528.347 −0.771310
\(686\) 1120.23 1.63299
\(687\) −972.247 −1.41521
\(688\) 396.620i 0.576482i
\(689\) 153.109i 0.222219i
\(690\) 221.862i 0.321539i
\(691\) −863.102 −1.24906 −0.624531 0.781000i \(-0.714710\pi\)
−0.624531 + 0.781000i \(0.714710\pi\)
\(692\) 1001.57i 1.44736i
\(693\) 273.086 + 159.292i 0.394063 + 0.229859i
\(694\) −1219.73 −1.75754
\(695\) 327.745i 0.471575i
\(696\) 135.940 0.195316
\(697\) −693.606 −0.995131
\(698\) 1935.43 2.77282
\(699\) 310.915i 0.444800i
\(700\) 612.509i 0.875013i
\(701\) 44.9150i 0.0640728i 0.999487 + 0.0320364i \(0.0101992\pi\)
−0.999487 + 0.0320364i \(0.989801\pi\)
\(702\) 203.328 0.289640
\(703\) 3.09909i 0.00440837i
\(704\) −398.486 + 683.152i −0.566032 + 0.970387i
\(705\) 886.358 1.25725
\(706\) 556.491i 0.788230i
\(707\) −256.424 −0.362693
\(708\) −538.370 −0.760410
\(709\) −800.428 −1.12895 −0.564477 0.825449i \(-0.690922\pi\)
−0.564477 + 0.825449i \(0.690922\pi\)
\(710\) 1059.86i 1.49276i
\(711\) 431.155i 0.606406i
\(712\) 844.811i 1.18653i
\(713\) 136.093 0.190874
\(714\) 713.206i 0.998889i
\(715\) −115.314 67.2632i −0.161278 0.0940744i
\(716\) 1636.38 2.28545
\(717\) 738.923i 1.03058i
\(718\) 1396.22 1.94460
\(719\) 177.690 0.247134 0.123567 0.992336i \(-0.460567\pi\)
0.123567 + 0.992336i \(0.460567\pi\)
\(720\) 327.401 0.454723
\(721\) 846.247i 1.17371i
\(722\) 1064.61i 1.47452i
\(723\) 341.246i 0.471987i
\(724\) −1602.88 −2.21393
\(725\) 49.1494i 0.0677923i
\(726\) −815.391 + 461.130i −1.12313 + 0.635165i
\(727\) −323.317 −0.444727 −0.222364 0.974964i \(-0.571377\pi\)
−0.222364 + 0.974964i \(0.571377\pi\)
\(728\) 195.301i 0.268271i
\(729\) 708.441 0.971798
\(730\) −1599.74 −2.19143
\(731\) 358.686 0.490679
\(732\) 253.288i 0.346022i
\(733\) 737.211i 1.00575i 0.864361 + 0.502873i \(0.167723\pi\)
−0.864361 + 0.502873i \(0.832277\pi\)
\(734\) 1903.00i 2.59265i
\(735\) 59.6775 0.0811938
\(736\) 22.5322i 0.0306144i
\(737\) 673.229 1154.16i 0.913473 1.56603i
\(738\) 744.120 1.00829
\(739\) 1055.37i 1.42811i −0.700090 0.714055i \(-0.746857\pi\)
0.700090 0.714055i \(-0.253143\pi\)
\(740\) −20.2105 −0.0273115
\(741\) 32.7850 0.0442442
\(742\) 1895.07 2.55400
\(743\) 777.241i 1.04608i 0.852307 + 0.523042i \(0.175203\pi\)
−0.852307 + 0.523042i \(0.824797\pi\)
\(744\) 840.406i 1.12958i
\(745\) 15.4725i 0.0207684i
\(746\) 1279.11 1.71463
\(747\) 476.547i 0.637948i
\(748\) −937.058 546.591i −1.25275 0.730737i
\(749\) 835.443 1.11541
\(750\) 661.191i 0.881588i
\(751\) −973.248 −1.29594 −0.647968 0.761668i \(-0.724381\pi\)
−0.647968 + 0.761668i \(0.724381\pi\)
\(752\) −918.158 −1.22096
\(753\) −808.572 −1.07380
\(754\) 32.0582i 0.0425176i
\(755\) 1239.38i 1.64157i
\(756\) 1665.37i 2.20287i
\(757\) 623.216 0.823271 0.411635 0.911349i \(-0.364958\pi\)
0.411635 + 0.911349i \(0.364958\pi\)
\(758\) 1363.24i 1.79847i
\(759\) 59.8399 102.588i 0.0788405 0.135162i
\(760\) 563.648 0.741643
\(761\) 547.492i 0.719437i −0.933061 0.359719i \(-0.882873\pi\)
0.933061 0.359719i \(-0.117127\pi\)
\(762\) 1763.00 2.31365
\(763\) −694.605 −0.910360
\(764\) −2093.36 −2.74000
\(765\) 296.088i 0.387042i
\(766\) 1056.55i 1.37931i
\(767\) 62.0647i 0.0809188i
\(768\) −1121.15 −1.45983
\(769\) 992.816i 1.29105i 0.763740 + 0.645524i \(0.223361\pi\)
−0.763740 + 0.645524i \(0.776639\pi\)
\(770\) 832.533 1427.27i 1.08121 1.85360i
\(771\) −184.965 −0.239903
\(772\) 1487.05i 1.92623i
\(773\) −165.000 −0.213454 −0.106727 0.994288i \(-0.534037\pi\)
−0.106727 + 0.994288i \(0.534037\pi\)
\(774\) −384.809 −0.497169
\(775\) −303.851 −0.392066
\(776\) 411.190i 0.529885i
\(777\) 7.11278i 0.00915415i
\(778\) 1765.32i 2.26905i
\(779\) 394.636 0.506593
\(780\) 213.806i 0.274110i
\(781\) 285.863 490.074i 0.366021 0.627496i
\(782\) 207.841 0.265781
\(783\) 133.634i 0.170669i
\(784\) −61.8185 −0.0788501
\(785\) −915.935 −1.16680
\(786\) 1514.44 1.92677
\(787\) 1300.19i 1.65208i −0.563611 0.826040i \(-0.690588\pi\)
0.563611 0.826040i \(-0.309412\pi\)
\(788\) 2389.70i 3.03262i
\(789\) 759.769i 0.962952i
\(790\) −2253.41 −2.85242
\(791\) 389.465i 0.492370i
\(792\) 491.437 + 286.658i 0.620501 + 0.361941i
\(793\) −29.1997 −0.0368218
\(794\) 962.158i 1.21179i
\(795\) −1014.17 −1.27568
\(796\) −1908.22 −2.39726
\(797\) 1203.79 1.51040 0.755201 0.655494i \(-0.227539\pi\)
0.755201 + 0.655494i \(0.227539\pi\)
\(798\) 405.788i 0.508506i
\(799\) 830.344i 1.03923i
\(800\) 50.3069i 0.0628837i
\(801\) −252.496 −0.315227
\(802\) 2493.07i 3.10857i
\(803\) −739.713 431.478i −0.921187 0.537333i
\(804\) 2139.95 2.66163
\(805\) 209.489i 0.260235i
\(806\) 198.190 0.245893
\(807\) 111.030 0.137583
\(808\) −461.453 −0.571105
\(809\) 1206.32i 1.49113i 0.666434 + 0.745564i \(0.267820\pi\)
−0.666434 + 0.745564i \(0.732180\pi\)
\(810\) 619.678i 0.765034i
\(811\) 67.3561i 0.0830532i 0.999137 + 0.0415266i \(0.0132221\pi\)
−0.999137 + 0.0415266i \(0.986778\pi\)
\(812\) −262.576 −0.323369
\(813\) 870.568i 1.07081i
\(814\) −14.1221 8.23750i −0.0173490 0.0101198i
\(815\) 861.430 1.05697
\(816\) 395.374i 0.484528i
\(817\) −204.079 −0.249791
\(818\) 199.047 0.243334
\(819\) −58.3714 −0.0712715
\(820\) 2573.60i 3.13853i
\(821\) 327.635i 0.399068i −0.979891 0.199534i \(-0.936057\pi\)
0.979891 0.199534i \(-0.0639428\pi\)
\(822\) 684.508i 0.832735i
\(823\) −411.970 −0.500571 −0.250285 0.968172i \(-0.580524\pi\)
−0.250285 + 0.968172i \(0.580524\pi\)
\(824\) 1522.88i 1.84816i
\(825\) −133.603 + 229.044i −0.161943 + 0.277630i
\(826\) 768.190 0.930012
\(827\) 1084.04i 1.31081i 0.755279 + 0.655403i \(0.227501\pi\)
−0.755279 + 0.655403i \(0.772499\pi\)
\(828\) −147.554 −0.178206
\(829\) 1141.88 1.37742 0.688708 0.725039i \(-0.258178\pi\)
0.688708 + 0.725039i \(0.258178\pi\)
\(830\) 2490.65 3.00078
\(831\) 63.3875i 0.0762785i
\(832\) 146.022i 0.175507i
\(833\) 55.9061i 0.0671141i
\(834\) −424.614 −0.509130
\(835\) 321.536i 0.385073i
\(836\) 533.151 + 310.990i 0.637741 + 0.371997i
\(837\) 826.150 0.987037
\(838\) 1743.05i 2.08002i
\(839\) 450.554 0.537013 0.268507 0.963278i \(-0.413470\pi\)
0.268507 + 0.963278i \(0.413470\pi\)
\(840\) 1293.64 1.54005
\(841\) 819.930 0.974947
\(842\) 1265.19i 1.50260i
\(843\) 93.4990i 0.110912i
\(844\) 2191.21i 2.59622i
\(845\) −985.224 −1.16595
\(846\) 890.816i 1.05297i
\(847\) 769.918 435.413i 0.908994 0.514065i
\(848\) 1050.55 1.23886
\(849\) 194.456i 0.229041i
\(850\) −464.040 −0.545929
\(851\) 2.07279 0.00243571
\(852\) 908.655 1.06650
\(853\) 1062.60i 1.24572i −0.782334 0.622859i \(-0.785971\pi\)
0.782334 0.622859i \(-0.214029\pi\)
\(854\) 361.412i 0.423199i
\(855\) 168.463i 0.197032i
\(856\) 1503.44 1.75635
\(857\) 1491.67i 1.74057i −0.492550 0.870284i \(-0.663935\pi\)
0.492550 0.870284i \(-0.336065\pi\)
\(858\) 87.1438 149.397i 0.101566 0.174122i
\(859\) −462.413 −0.538315 −0.269158 0.963096i \(-0.586745\pi\)
−0.269158 + 0.963096i \(0.586745\pi\)
\(860\) 1330.89i 1.54755i
\(861\) 905.737 1.05196
\(862\) 1936.52 2.24654
\(863\) −606.226 −0.702464 −0.351232 0.936289i \(-0.614237\pi\)
−0.351232 + 0.936289i \(0.614237\pi\)
\(864\) 136.781i 0.158312i
\(865\) 764.811i 0.884174i
\(866\) 1377.05i 1.59013i
\(867\) 293.062 0.338018
\(868\) 1623.29i 1.87015i
\(869\) −1041.96 607.783i −1.19904 0.699405i
\(870\) 212.348 0.244078
\(871\) 246.699i 0.283237i
\(872\) −1249.99 −1.43347
\(873\) 122.896 0.140775
\(874\) −118.254 −0.135302
\(875\) 624.317i 0.713505i
\(876\) 1371.51i 1.56566i
\(877\) 568.547i 0.648287i 0.946008 + 0.324143i \(0.105076\pi\)
−0.946008 + 0.324143i \(0.894924\pi\)
\(878\) 176.826 0.201396
\(879\) 482.619i 0.549055i
\(880\) 461.525 791.223i 0.524460 0.899117i
\(881\) 202.445 0.229790 0.114895 0.993378i \(-0.463347\pi\)
0.114895 + 0.993378i \(0.463347\pi\)
\(882\) 59.9776i 0.0680018i
\(883\) 877.269 0.993510 0.496755 0.867891i \(-0.334525\pi\)
0.496755 + 0.867891i \(0.334525\pi\)
\(884\) 200.294 0.226577
\(885\) −411.106 −0.464526
\(886\) 668.351i 0.754346i
\(887\) 1317.64i 1.48550i −0.669568 0.742751i \(-0.733521\pi\)
0.669568 0.742751i \(-0.266479\pi\)
\(888\) 12.7999i 0.0144143i
\(889\) −1664.68 −1.87253
\(890\) 1319.66i 1.48276i
\(891\) 167.138 286.536i 0.187584 0.321589i
\(892\) 2325.25 2.60678
\(893\) 472.434i 0.529042i
\(894\) 20.0456 0.0224224
\(895\) 1249.56 1.39615
\(896\) 1669.97 1.86381
\(897\) 21.9279i 0.0244458i
\(898\) 1175.14i 1.30862i
\(899\) 130.257i 0.144891i
\(900\) 329.440 0.366045
\(901\) 950.075i 1.05447i
\(902\) 1048.96 1798.30i 1.16292 1.99368i
\(903\) −468.386 −0.518700
\(904\) 700.869i 0.775297i
\(905\) −1223.98 −1.35247
\(906\) −1605.70 −1.77230
\(907\) 757.738 0.835433 0.417716 0.908577i \(-0.362831\pi\)
0.417716 + 0.908577i \(0.362831\pi\)
\(908\) 1950.69i 2.14833i
\(909\) 137.919i 0.151726i
\(910\) 305.075i 0.335247i
\(911\) −375.430 −0.412107 −0.206054 0.978541i \(-0.566062\pi\)
−0.206054 + 0.978541i \(0.566062\pi\)
\(912\) 224.953i 0.246659i
\(913\) 1151.66 + 671.770i 1.26140 + 0.735783i
\(914\) −1020.59 −1.11662
\(915\) 193.414i 0.211381i
\(916\) 3379.50 3.68941
\(917\) −1429.98 −1.55941
\(918\) 1261.69 1.37439
\(919\) 724.408i 0.788257i −0.919055 0.394129i \(-0.871046\pi\)
0.919055 0.394129i \(-0.128954\pi\)
\(920\) 376.990i 0.409771i
\(921\) 457.657i 0.496914i
\(922\) −1271.85 −1.37945
\(923\) 104.752i 0.113491i
\(924\) 1223.65 + 713.759i 1.32429 + 0.772466i
\(925\) −4.62785 −0.00500308
\(926\) 308.849i 0.333530i
\(927\) 455.157 0.491000
\(928\) 21.5660 0.0232392
\(929\) −1279.10 −1.37685 −0.688427 0.725305i \(-0.741699\pi\)
−0.688427 + 0.725305i \(0.741699\pi\)
\(930\) 1312.78i 1.41159i
\(931\) 31.8085i 0.0341659i
\(932\) 1080.73i 1.15958i
\(933\) −1101.61 −1.18072
\(934\) 1962.34i 2.10101i
\(935\) −715.549 417.383i −0.765293 0.446399i
\(936\) −105.043 −0.112226
\(937\) 212.460i 0.226745i 0.993553 + 0.113373i \(0.0361654\pi\)
−0.993553 + 0.113373i \(0.963835\pi\)
\(938\) −3053.46 −3.25529
\(939\) 432.412 0.460502
\(940\) −3080.96 −3.27761
\(941\) 587.395i 0.624224i 0.950045 + 0.312112i \(0.101036\pi\)
−0.950045 + 0.312112i \(0.898964\pi\)
\(942\) 1186.65i 1.25972i
\(943\) 263.948i 0.279902i
\(944\) 425.855 0.451118
\(945\) 1271.70i 1.34571i
\(946\) −542.450 + 929.960i −0.573415 + 0.983044i
\(947\) −1351.22 −1.42684 −0.713419 0.700737i \(-0.752854\pi\)
−0.713419 + 0.700737i \(0.752854\pi\)
\(948\) 1931.92i 2.03789i
\(949\) 158.112 0.166609
\(950\) 264.021 0.277917
\(951\) −729.609 −0.767202
\(952\) 1211.89i 1.27299i
\(953\) 1465.42i 1.53769i −0.639434 0.768846i \(-0.720831\pi\)
0.639434 0.768846i \(-0.279169\pi\)
\(954\) 1019.27i 1.06841i
\(955\) −1598.52 −1.67384
\(956\) 2568.47i 2.68669i
\(957\) 98.1887 + 57.2740i 0.102601 + 0.0598474i
\(958\) −1549.22 −1.61714
\(959\) 646.334i 0.673967i
\(960\) −967.225 −1.00753
\(961\) −155.724 −0.162044
\(962\) 3.01857 0.00313780
\(963\) 449.346i 0.466610i
\(964\) 1186.16i 1.23046i
\(965\) 1135.53i 1.17672i
\(966\) −271.406 −0.280959
\(967\) 561.539i 0.580702i −0.956920 0.290351i \(-0.906228\pi\)
0.956920 0.290351i \(-0.0937721\pi\)
\(968\) 1385.52 783.556i 1.43132 0.809458i
\(969\) 203.438 0.209947
\(970\) 642.311i 0.662176i
\(971\) −1303.88 −1.34282 −0.671409 0.741087i \(-0.734310\pi\)
−0.671409 + 0.741087i \(0.734310\pi\)
\(972\) −1519.12 −1.56288
\(973\) 400.934 0.412060
\(974\) 1110.42i 1.14006i
\(975\) 48.9576i 0.0502130i
\(976\) 200.353i 0.205280i
\(977\) 787.476 0.806014 0.403007 0.915197i \(-0.367965\pi\)
0.403007 + 0.915197i \(0.367965\pi\)
\(978\) 1116.04i 1.14114i
\(979\) −355.935 + 610.203i −0.363570 + 0.623293i
\(980\) −207.437 −0.211671
\(981\) 373.596i 0.380831i
\(982\) 614.468 0.625731
\(983\) 281.156 0.286018 0.143009 0.989721i \(-0.454322\pi\)
0.143009 + 0.989721i \(0.454322\pi\)
\(984\) 1629.94 1.65644
\(985\) 1824.81i 1.85259i
\(986\) 198.929i 0.201753i
\(987\) 1084.29i 1.09858i
\(988\) −113.960 −0.115344
\(989\) 136.496i 0.138014i
\(990\) 767.661 + 447.781i 0.775416 + 0.452304i
\(991\) 943.116 0.951681 0.475840 0.879532i \(-0.342144\pi\)
0.475840 + 0.879532i \(0.342144\pi\)
\(992\) 133.325i 0.134400i
\(993\) −1436.36 −1.44648
\(994\) −1296.54 −1.30437
\(995\) −1457.14 −1.46446
\(996\) 2135.32i 2.14389i
\(997\) 645.342i 0.647284i −0.946180 0.323642i \(-0.895093\pi\)
0.946180 0.323642i \(-0.104907\pi\)
\(998\) 957.279i 0.959198i
\(999\) 12.5828 0.0125954
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.4 44
11.10 odd 2 inner 253.3.c.a.208.41 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.4 44 1.1 even 1 trivial
253.3.c.a.208.41 yes 44 11.10 odd 2 inner