Properties

Label 253.3.c.a.208.2
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [253,3,Mod(208,253)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("253.208"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(253, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.2
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.43

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.71224i q^{2} -2.82013 q^{3} -9.78074 q^{4} +2.21957 q^{5} +10.4690i q^{6} +5.12153i q^{7} +21.4595i q^{8} -1.04689 q^{9} -8.23959i q^{10} +(9.16580 + 6.08179i) q^{11} +27.5829 q^{12} -2.92352i q^{13} +19.0123 q^{14} -6.25947 q^{15} +40.5400 q^{16} +12.0416i q^{17} +3.88631i q^{18} +1.76698i q^{19} -21.7091 q^{20} -14.4433i q^{21} +(22.5771 - 34.0257i) q^{22} +4.79583 q^{23} -60.5186i q^{24} -20.0735 q^{25} -10.8528 q^{26} +28.3335 q^{27} -50.0923i q^{28} +7.43658i q^{29} +23.2367i q^{30} -15.3983 q^{31} -64.6562i q^{32} +(-25.8487 - 17.1514i) q^{33} +44.7013 q^{34} +11.3676i q^{35} +10.2394 q^{36} +53.4251 q^{37} +6.55946 q^{38} +8.24470i q^{39} +47.6310i q^{40} +58.9509i q^{41} -53.6172 q^{42} +45.8154i q^{43} +(-89.6483 - 59.4844i) q^{44} -2.32365 q^{45} -17.8033i q^{46} +5.73259 q^{47} -114.328 q^{48} +22.7700 q^{49} +74.5177i q^{50} -33.9588i q^{51} +28.5942i q^{52} -90.1928 q^{53} -105.181i q^{54} +(20.3441 + 13.4990i) q^{55} -109.906 q^{56} -4.98311i q^{57} +27.6064 q^{58} +71.4856 q^{59} +61.2223 q^{60} +26.1146i q^{61} +57.1623i q^{62} -5.36168i q^{63} -77.8594 q^{64} -6.48897i q^{65} +(-63.6702 + 95.9567i) q^{66} +20.7812 q^{67} -117.776i q^{68} -13.5248 q^{69} +42.1993 q^{70} +20.2277 q^{71} -22.4658i q^{72} +111.200i q^{73} -198.327i q^{74} +56.6098 q^{75} -17.2824i q^{76} +(-31.1480 + 46.9429i) q^{77} +30.6063 q^{78} +13.9473i q^{79} +89.9814 q^{80} -70.4820 q^{81} +218.840 q^{82} +86.4589i q^{83} +141.267i q^{84} +26.7272i q^{85} +170.078 q^{86} -20.9721i q^{87} +(-130.512 + 196.694i) q^{88} -29.8456 q^{89} +8.62595i q^{90} +14.9729 q^{91} -46.9068 q^{92} +43.4252 q^{93} -21.2808i q^{94} +3.92194i q^{95} +182.339i q^{96} -79.0787 q^{97} -84.5277i q^{98} +(-9.59559 - 6.36697i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.71224i 1.85612i −0.372429 0.928061i \(-0.621475\pi\)
0.372429 0.928061i \(-0.378525\pi\)
\(3\) −2.82013 −0.940042 −0.470021 0.882655i \(-0.655754\pi\)
−0.470021 + 0.882655i \(0.655754\pi\)
\(4\) −9.78074 −2.44519
\(5\) 2.21957 0.443914 0.221957 0.975056i \(-0.428755\pi\)
0.221957 + 0.975056i \(0.428755\pi\)
\(6\) 10.4690i 1.74483i
\(7\) 5.12153i 0.731647i 0.930684 + 0.365823i \(0.119213\pi\)
−0.930684 + 0.365823i \(0.880787\pi\)
\(8\) 21.4595i 2.68244i
\(9\) −1.04689 −0.116321
\(10\) 8.23959i 0.823959i
\(11\) 9.16580 + 6.08179i 0.833254 + 0.552890i
\(12\) 27.5829 2.29858
\(13\) 2.92352i 0.224886i −0.993658 0.112443i \(-0.964132\pi\)
0.993658 0.112443i \(-0.0358676\pi\)
\(14\) 19.0123 1.35802
\(15\) −6.25947 −0.417298
\(16\) 40.5400 2.53375
\(17\) 12.0416i 0.708329i 0.935183 + 0.354164i \(0.115235\pi\)
−0.935183 + 0.354164i \(0.884765\pi\)
\(18\) 3.88631i 0.215906i
\(19\) 1.76698i 0.0929990i 0.998918 + 0.0464995i \(0.0148066\pi\)
−0.998918 + 0.0464995i \(0.985193\pi\)
\(20\) −21.7091 −1.08545
\(21\) 14.4433i 0.687778i
\(22\) 22.5771 34.0257i 1.02623 1.54662i
\(23\) 4.79583 0.208514
\(24\) 60.5186i 2.52161i
\(25\) −20.0735 −0.802940
\(26\) −10.8528 −0.417416
\(27\) 28.3335 1.04939
\(28\) 50.0923i 1.78901i
\(29\) 7.43658i 0.256434i 0.991746 + 0.128217i \(0.0409254\pi\)
−0.991746 + 0.128217i \(0.959075\pi\)
\(30\) 23.2367i 0.774556i
\(31\) −15.3983 −0.496720 −0.248360 0.968668i \(-0.579892\pi\)
−0.248360 + 0.968668i \(0.579892\pi\)
\(32\) 64.6562i 2.02051i
\(33\) −25.8487 17.1514i −0.783294 0.519739i
\(34\) 44.7013 1.31474
\(35\) 11.3676i 0.324788i
\(36\) 10.2394 0.284427
\(37\) 53.4251 1.44392 0.721960 0.691934i \(-0.243241\pi\)
0.721960 + 0.691934i \(0.243241\pi\)
\(38\) 6.55946 0.172617
\(39\) 8.24470i 0.211403i
\(40\) 47.6310i 1.19077i
\(41\) 58.9509i 1.43783i 0.695100 + 0.718913i \(0.255360\pi\)
−0.695100 + 0.718913i \(0.744640\pi\)
\(42\) −53.6172 −1.27660
\(43\) 45.8154i 1.06547i 0.846281 + 0.532737i \(0.178837\pi\)
−0.846281 + 0.532737i \(0.821163\pi\)
\(44\) −89.6483 59.4844i −2.03746 1.35192i
\(45\) −2.32365 −0.0516367
\(46\) 17.8033i 0.387028i
\(47\) 5.73259 0.121970 0.0609850 0.998139i \(-0.480576\pi\)
0.0609850 + 0.998139i \(0.480576\pi\)
\(48\) −114.328 −2.38183
\(49\) 22.7700 0.464693
\(50\) 74.5177i 1.49035i
\(51\) 33.9588i 0.665859i
\(52\) 28.5942i 0.549889i
\(53\) −90.1928 −1.70175 −0.850875 0.525368i \(-0.823928\pi\)
−0.850875 + 0.525368i \(0.823928\pi\)
\(54\) 105.181i 1.94779i
\(55\) 20.3441 + 13.4990i 0.369894 + 0.245436i
\(56\) −109.906 −1.96260
\(57\) 4.98311i 0.0874229i
\(58\) 27.6064 0.475972
\(59\) 71.4856 1.21162 0.605810 0.795609i \(-0.292849\pi\)
0.605810 + 0.795609i \(0.292849\pi\)
\(60\) 61.2223 1.02037
\(61\) 26.1146i 0.428109i 0.976822 + 0.214054i \(0.0686670\pi\)
−0.976822 + 0.214054i \(0.931333\pi\)
\(62\) 57.1623i 0.921972i
\(63\) 5.36168i 0.0851060i
\(64\) −77.8594 −1.21655
\(65\) 6.48897i 0.0998303i
\(66\) −63.6702 + 95.9567i −0.964699 + 1.45389i
\(67\) 20.7812 0.310167 0.155084 0.987901i \(-0.450435\pi\)
0.155084 + 0.987901i \(0.450435\pi\)
\(68\) 117.776i 1.73200i
\(69\) −13.5248 −0.196012
\(70\) 42.1993 0.602847
\(71\) 20.2277 0.284897 0.142449 0.989802i \(-0.454502\pi\)
0.142449 + 0.989802i \(0.454502\pi\)
\(72\) 22.4658i 0.312025i
\(73\) 111.200i 1.52328i 0.647998 + 0.761642i \(0.275606\pi\)
−0.647998 + 0.761642i \(0.724394\pi\)
\(74\) 198.327i 2.68009i
\(75\) 56.6098 0.754797
\(76\) 17.2824i 0.227400i
\(77\) −31.1480 + 46.9429i −0.404520 + 0.609648i
\(78\) 30.6063 0.392389
\(79\) 13.9473i 0.176548i 0.996096 + 0.0882738i \(0.0281350\pi\)
−0.996096 + 0.0882738i \(0.971865\pi\)
\(80\) 89.9814 1.12477
\(81\) −70.4820 −0.870148
\(82\) 218.840 2.66878
\(83\) 86.4589i 1.04167i 0.853656 + 0.520837i \(0.174380\pi\)
−0.853656 + 0.520837i \(0.825620\pi\)
\(84\) 141.267i 1.68175i
\(85\) 26.7272i 0.314437i
\(86\) 170.078 1.97765
\(87\) 20.9721i 0.241059i
\(88\) −130.512 + 196.694i −1.48309 + 2.23516i
\(89\) −29.8456 −0.335344 −0.167672 0.985843i \(-0.553625\pi\)
−0.167672 + 0.985843i \(0.553625\pi\)
\(90\) 8.62595i 0.0958439i
\(91\) 14.9729 0.164537
\(92\) −46.9068 −0.509857
\(93\) 43.4252 0.466938
\(94\) 21.2808i 0.226391i
\(95\) 3.92194i 0.0412836i
\(96\) 182.339i 1.89936i
\(97\) −79.0787 −0.815244 −0.407622 0.913151i \(-0.633642\pi\)
−0.407622 + 0.913151i \(0.633642\pi\)
\(98\) 84.5277i 0.862527i
\(99\) −9.59559 6.36697i −0.0969252 0.0643128i
\(100\) 196.334 1.96334
\(101\) 52.3826i 0.518640i −0.965791 0.259320i \(-0.916502\pi\)
0.965791 0.259320i \(-0.0834984\pi\)
\(102\) −126.063 −1.23591
\(103\) −29.0550 −0.282087 −0.141044 0.990003i \(-0.545046\pi\)
−0.141044 + 0.990003i \(0.545046\pi\)
\(104\) 62.7374 0.603244
\(105\) 32.0580i 0.305315i
\(106\) 334.818i 3.15866i
\(107\) 151.941i 1.42001i −0.704197 0.710005i \(-0.748693\pi\)
0.704197 0.710005i \(-0.251307\pi\)
\(108\) −277.123 −2.56595
\(109\) 42.5027i 0.389933i 0.980810 + 0.194966i \(0.0624598\pi\)
−0.980810 + 0.194966i \(0.937540\pi\)
\(110\) 50.1114 75.5224i 0.455558 0.686567i
\(111\) −150.665 −1.35735
\(112\) 207.627i 1.85381i
\(113\) −138.904 −1.22924 −0.614619 0.788825i \(-0.710690\pi\)
−0.614619 + 0.788825i \(0.710690\pi\)
\(114\) −18.4985 −0.162268
\(115\) 10.6447 0.0925625
\(116\) 72.7353i 0.627029i
\(117\) 3.06061i 0.0261591i
\(118\) 265.372i 2.24892i
\(119\) −61.6713 −0.518246
\(120\) 134.325i 1.11938i
\(121\) 47.0237 + 111.489i 0.388626 + 0.921396i
\(122\) 96.9439 0.794622
\(123\) 166.249i 1.35162i
\(124\) 150.607 1.21457
\(125\) −100.044 −0.800351
\(126\) −19.9039 −0.157967
\(127\) 29.5374i 0.232578i −0.993215 0.116289i \(-0.962900\pi\)
0.993215 0.116289i \(-0.0370998\pi\)
\(128\) 30.4084i 0.237566i
\(129\) 129.205i 1.00159i
\(130\) −24.0886 −0.185297
\(131\) 195.824i 1.49484i 0.664353 + 0.747419i \(0.268707\pi\)
−0.664353 + 0.747419i \(0.731293\pi\)
\(132\) 252.820 + 167.753i 1.91530 + 1.27086i
\(133\) −9.04963 −0.0680424
\(134\) 77.1448i 0.575708i
\(135\) 62.8882 0.465839
\(136\) −258.407 −1.90005
\(137\) −167.319 −1.22131 −0.610654 0.791898i \(-0.709093\pi\)
−0.610654 + 0.791898i \(0.709093\pi\)
\(138\) 50.2075i 0.363823i
\(139\) 140.313i 1.00945i −0.863281 0.504723i \(-0.831595\pi\)
0.863281 0.504723i \(-0.168405\pi\)
\(140\) 111.184i 0.794168i
\(141\) −16.1666 −0.114657
\(142\) 75.0901i 0.528804i
\(143\) 17.7802 26.7964i 0.124337 0.187388i
\(144\) −42.4410 −0.294729
\(145\) 16.5060i 0.113835i
\(146\) 412.800 2.82740
\(147\) −64.2142 −0.436831
\(148\) −522.537 −3.53066
\(149\) 185.326i 1.24380i 0.783097 + 0.621900i \(0.213639\pi\)
−0.783097 + 0.621900i \(0.786361\pi\)
\(150\) 210.149i 1.40100i
\(151\) 106.855i 0.707647i −0.935312 0.353823i \(-0.884881\pi\)
0.935312 0.353823i \(-0.115119\pi\)
\(152\) −37.9186 −0.249464
\(153\) 12.6062i 0.0823937i
\(154\) 174.263 + 115.629i 1.13158 + 0.750838i
\(155\) −34.1777 −0.220501
\(156\) 80.6393i 0.516919i
\(157\) −117.148 −0.746165 −0.373082 0.927798i \(-0.621699\pi\)
−0.373082 + 0.927798i \(0.621699\pi\)
\(158\) 51.7756 0.327694
\(159\) 254.355 1.59972
\(160\) 143.509i 0.896931i
\(161\) 24.5620i 0.152559i
\(162\) 261.646i 1.61510i
\(163\) −82.1719 −0.504122 −0.252061 0.967711i \(-0.581108\pi\)
−0.252061 + 0.967711i \(0.581108\pi\)
\(164\) 576.584i 3.51575i
\(165\) −57.3731 38.0688i −0.347715 0.230720i
\(166\) 320.956 1.93347
\(167\) 324.085i 1.94063i −0.241842 0.970316i \(-0.577752\pi\)
0.241842 0.970316i \(-0.422248\pi\)
\(168\) 309.947 1.84492
\(169\) 160.453 0.949426
\(170\) 99.2177 0.583634
\(171\) 1.84984i 0.0108178i
\(172\) 448.109i 2.60528i
\(173\) 206.843i 1.19563i −0.801636 0.597813i \(-0.796037\pi\)
0.801636 0.597813i \(-0.203963\pi\)
\(174\) −77.8535 −0.447434
\(175\) 102.807i 0.587468i
\(176\) 371.581 + 246.556i 2.11126 + 1.40088i
\(177\) −201.598 −1.13897
\(178\) 110.794i 0.622438i
\(179\) 106.200 0.593295 0.296647 0.954987i \(-0.404131\pi\)
0.296647 + 0.954987i \(0.404131\pi\)
\(180\) 22.7270 0.126261
\(181\) −307.206 −1.69727 −0.848635 0.528979i \(-0.822575\pi\)
−0.848635 + 0.528979i \(0.822575\pi\)
\(182\) 55.5830i 0.305401i
\(183\) 73.6466i 0.402440i
\(184\) 102.916i 0.559328i
\(185\) 118.581 0.640977
\(186\) 161.205i 0.866693i
\(187\) −73.2344 + 110.371i −0.391628 + 0.590218i
\(188\) −56.0690 −0.298239
\(189\) 145.111i 0.767782i
\(190\) 14.5592 0.0766273
\(191\) 86.8653 0.454792 0.227396 0.973802i \(-0.426979\pi\)
0.227396 + 0.973802i \(0.426979\pi\)
\(192\) 219.573 1.14361
\(193\) 319.471i 1.65529i 0.561251 + 0.827646i \(0.310320\pi\)
−0.561251 + 0.827646i \(0.689680\pi\)
\(194\) 293.559i 1.51319i
\(195\) 18.2997i 0.0938446i
\(196\) −222.707 −1.13626
\(197\) 257.423i 1.30672i 0.757048 + 0.653359i \(0.226641\pi\)
−0.757048 + 0.653359i \(0.773359\pi\)
\(198\) −23.6357 + 35.6212i −0.119372 + 0.179905i
\(199\) 208.481 1.04764 0.523821 0.851828i \(-0.324506\pi\)
0.523821 + 0.851828i \(0.324506\pi\)
\(200\) 430.768i 2.15384i
\(201\) −58.6056 −0.291570
\(202\) −194.457 −0.962658
\(203\) −38.0867 −0.187619
\(204\) 332.142i 1.62815i
\(205\) 130.846i 0.638272i
\(206\) 107.859i 0.523588i
\(207\) −5.02071 −0.0242547
\(208\) 118.520i 0.569806i
\(209\) −10.7464 + 16.1958i −0.0514182 + 0.0774918i
\(210\) −119.007 −0.566701
\(211\) 232.777i 1.10321i 0.834107 + 0.551603i \(0.185984\pi\)
−0.834107 + 0.551603i \(0.814016\pi\)
\(212\) 882.153 4.16110
\(213\) −57.0446 −0.267815
\(214\) −564.042 −2.63571
\(215\) 101.691i 0.472979i
\(216\) 608.023i 2.81492i
\(217\) 78.8629i 0.363423i
\(218\) 157.780 0.723763
\(219\) 313.597i 1.43195i
\(220\) −198.981 132.030i −0.904459 0.600136i
\(221\) 35.2039 0.159293
\(222\) 559.307i 2.51940i
\(223\) 129.675 0.581502 0.290751 0.956799i \(-0.406095\pi\)
0.290751 + 0.956799i \(0.406095\pi\)
\(224\) 331.138 1.47830
\(225\) 21.0148 0.0933990
\(226\) 515.645i 2.28161i
\(227\) 354.790i 1.56295i −0.623936 0.781475i \(-0.714467\pi\)
0.623936 0.781475i \(-0.285533\pi\)
\(228\) 48.7385i 0.213765i
\(229\) 306.280 1.33747 0.668733 0.743503i \(-0.266837\pi\)
0.668733 + 0.743503i \(0.266837\pi\)
\(230\) 39.5157i 0.171807i
\(231\) 87.8414 132.385i 0.380266 0.573094i
\(232\) −159.586 −0.687869
\(233\) 365.395i 1.56822i −0.620621 0.784110i \(-0.713120\pi\)
0.620621 0.784110i \(-0.286880\pi\)
\(234\) 11.3617 0.0485544
\(235\) 12.7239 0.0541442
\(236\) −699.183 −2.96264
\(237\) 39.3330i 0.165962i
\(238\) 228.939i 0.961928i
\(239\) 403.911i 1.69000i 0.534764 + 0.845002i \(0.320401\pi\)
−0.534764 + 0.845002i \(0.679599\pi\)
\(240\) −253.759 −1.05733
\(241\) 298.240i 1.23751i −0.785584 0.618755i \(-0.787637\pi\)
0.785584 0.618755i \(-0.212363\pi\)
\(242\) 413.874 174.564i 1.71022 0.721337i
\(243\) −56.2334 −0.231413
\(244\) 255.421i 1.04681i
\(245\) 50.5396 0.206284
\(246\) −617.156 −2.50877
\(247\) 5.16581 0.0209142
\(248\) 330.441i 1.33242i
\(249\) 243.825i 0.979216i
\(250\) 371.387i 1.48555i
\(251\) 286.597 1.14182 0.570911 0.821012i \(-0.306590\pi\)
0.570911 + 0.821012i \(0.306590\pi\)
\(252\) 52.4412i 0.208100i
\(253\) 43.9576 + 29.1672i 0.173746 + 0.115285i
\(254\) −109.650 −0.431693
\(255\) 75.3740i 0.295584i
\(256\) −198.554 −0.775603
\(257\) 407.438 1.58536 0.792681 0.609637i \(-0.208685\pi\)
0.792681 + 0.609637i \(0.208685\pi\)
\(258\) −479.641 −1.85907
\(259\) 273.618i 1.05644i
\(260\) 63.4669i 0.244104i
\(261\) 7.78529i 0.0298287i
\(262\) 726.945 2.77460
\(263\) 122.177i 0.464550i 0.972650 + 0.232275i \(0.0746169\pi\)
−0.972650 + 0.232275i \(0.925383\pi\)
\(264\) 368.061 554.701i 1.39417 2.10114i
\(265\) −200.189 −0.755432
\(266\) 33.5944i 0.126295i
\(267\) 84.1683 0.315237
\(268\) −203.256 −0.758416
\(269\) 256.340 0.952937 0.476469 0.879191i \(-0.341917\pi\)
0.476469 + 0.879191i \(0.341917\pi\)
\(270\) 233.456i 0.864653i
\(271\) 239.693i 0.884476i −0.896898 0.442238i \(-0.854185\pi\)
0.896898 0.442238i \(-0.145815\pi\)
\(272\) 488.166i 1.79473i
\(273\) −42.2255 −0.154672
\(274\) 621.129i 2.26690i
\(275\) −183.990 122.083i −0.669053 0.443937i
\(276\) 132.283 0.479287
\(277\) 19.9293i 0.0719469i 0.999353 + 0.0359734i \(0.0114532\pi\)
−0.999353 + 0.0359734i \(0.988547\pi\)
\(278\) −520.876 −1.87366
\(279\) 16.1204 0.0577791
\(280\) −243.943 −0.871226
\(281\) 38.9019i 0.138441i −0.997601 0.0692204i \(-0.977949\pi\)
0.997601 0.0692204i \(-0.0220512\pi\)
\(282\) 60.0144i 0.212817i
\(283\) 25.5351i 0.0902301i −0.998982 0.0451151i \(-0.985635\pi\)
0.998982 0.0451151i \(-0.0143654\pi\)
\(284\) −197.842 −0.696627
\(285\) 11.0604i 0.0388083i
\(286\) −99.4748 66.0046i −0.347814 0.230785i
\(287\) −301.919 −1.05198
\(288\) 67.6880i 0.235028i
\(289\) 144.000 0.498271
\(290\) 61.2744 0.211291
\(291\) 223.012 0.766364
\(292\) 1087.62i 3.72471i
\(293\) 135.217i 0.461490i −0.973014 0.230745i \(-0.925884\pi\)
0.973014 0.230745i \(-0.0741164\pi\)
\(294\) 238.379i 0.810812i
\(295\) 158.667 0.537856
\(296\) 1146.48i 3.87323i
\(297\) 259.699 + 172.318i 0.874408 + 0.580196i
\(298\) 687.976 2.30864
\(299\) 14.0207i 0.0468920i
\(300\) −553.686 −1.84562
\(301\) −234.645 −0.779551
\(302\) −396.670 −1.31348
\(303\) 147.726i 0.487543i
\(304\) 71.6334i 0.235636i
\(305\) 57.9633i 0.190044i
\(306\) −46.7974 −0.152933
\(307\) 33.0151i 0.107541i 0.998553 + 0.0537705i \(0.0171239\pi\)
−0.998553 + 0.0537705i \(0.982876\pi\)
\(308\) 304.651 459.136i 0.989126 1.49070i
\(309\) 81.9387 0.265174
\(310\) 126.876i 0.409277i
\(311\) −178.502 −0.573961 −0.286980 0.957936i \(-0.592651\pi\)
−0.286980 + 0.957936i \(0.592651\pi\)
\(312\) −176.927 −0.567075
\(313\) 237.007 0.757209 0.378605 0.925558i \(-0.376404\pi\)
0.378605 + 0.925558i \(0.376404\pi\)
\(314\) 434.881i 1.38497i
\(315\) 11.9006i 0.0377798i
\(316\) 136.415i 0.431692i
\(317\) −585.587 −1.84728 −0.923638 0.383266i \(-0.874799\pi\)
−0.923638 + 0.383266i \(0.874799\pi\)
\(318\) 944.228i 2.96927i
\(319\) −45.2277 + 68.1622i −0.141780 + 0.213675i
\(320\) −172.815 −0.540046
\(321\) 428.493i 1.33487i
\(322\) 91.1800 0.283168
\(323\) −21.2772 −0.0658738
\(324\) 689.366 2.12767
\(325\) 58.6853i 0.180570i
\(326\) 305.042i 0.935711i
\(327\) 119.863i 0.366553i
\(328\) −1265.06 −3.85689
\(329\) 29.3596i 0.0892389i
\(330\) −141.320 + 212.983i −0.428244 + 0.645402i
\(331\) 167.197 0.505126 0.252563 0.967580i \(-0.418726\pi\)
0.252563 + 0.967580i \(0.418726\pi\)
\(332\) 845.632i 2.54708i
\(333\) −55.9302 −0.167959
\(334\) −1203.08 −3.60205
\(335\) 46.1253 0.137688
\(336\) 585.533i 1.74266i
\(337\) 437.087i 1.29699i −0.761217 0.648497i \(-0.775398\pi\)
0.761217 0.648497i \(-0.224602\pi\)
\(338\) 595.641i 1.76225i
\(339\) 391.726 1.15553
\(340\) 261.412i 0.768858i
\(341\) −141.138 93.6493i −0.413894 0.274631i
\(342\) −6.86704 −0.0200791
\(343\) 367.572i 1.07164i
\(344\) −983.177 −2.85807
\(345\) −30.0194 −0.0870127
\(346\) −767.852 −2.21923
\(347\) 119.686i 0.344918i 0.985017 + 0.172459i \(0.0551712\pi\)
−0.985017 + 0.172459i \(0.944829\pi\)
\(348\) 205.123i 0.589433i
\(349\) 20.2005i 0.0578811i −0.999581 0.0289406i \(-0.990787\pi\)
0.999581 0.0289406i \(-0.00921335\pi\)
\(350\) −381.644 −1.09041
\(351\) 82.8336i 0.235993i
\(352\) 393.225 592.625i 1.11712 1.68360i
\(353\) −428.808 −1.21475 −0.607377 0.794414i \(-0.707778\pi\)
−0.607377 + 0.794414i \(0.707778\pi\)
\(354\) 748.382i 2.11407i
\(355\) 44.8968 0.126470
\(356\) 291.912 0.819977
\(357\) 173.921 0.487173
\(358\) 394.239i 1.10123i
\(359\) 498.002i 1.38719i 0.720364 + 0.693596i \(0.243975\pi\)
−0.720364 + 0.693596i \(0.756025\pi\)
\(360\) 49.8644i 0.138512i
\(361\) 357.878 0.991351
\(362\) 1140.42i 3.15034i
\(363\) −132.613 314.413i −0.365325 0.866150i
\(364\) −146.446 −0.402324
\(365\) 246.816i 0.676207i
\(366\) −273.394 −0.746978
\(367\) 577.389 1.57327 0.786634 0.617420i \(-0.211822\pi\)
0.786634 + 0.617420i \(0.211822\pi\)
\(368\) 194.423 0.528323
\(369\) 61.7152i 0.167250i
\(370\) 440.201i 1.18973i
\(371\) 461.925i 1.24508i
\(372\) −424.731 −1.14175
\(373\) 402.439i 1.07893i 0.842009 + 0.539463i \(0.181373\pi\)
−0.842009 + 0.539463i \(0.818627\pi\)
\(374\) 409.723 + 271.864i 1.09552 + 0.726908i
\(375\) 282.136 0.752363
\(376\) 123.019i 0.327177i
\(377\) 21.7410 0.0576685
\(378\) 538.686 1.42510
\(379\) 253.217 0.668120 0.334060 0.942552i \(-0.391581\pi\)
0.334060 + 0.942552i \(0.391581\pi\)
\(380\) 38.3595i 0.100946i
\(381\) 83.2991i 0.218633i
\(382\) 322.465i 0.844150i
\(383\) −597.161 −1.55917 −0.779584 0.626298i \(-0.784570\pi\)
−0.779584 + 0.626298i \(0.784570\pi\)
\(384\) 85.7555i 0.223322i
\(385\) −69.1353 + 104.193i −0.179572 + 0.270631i
\(386\) 1185.95 3.07242
\(387\) 47.9637i 0.123937i
\(388\) 773.448 1.99342
\(389\) −606.242 −1.55846 −0.779231 0.626737i \(-0.784390\pi\)
−0.779231 + 0.626737i \(0.784390\pi\)
\(390\) 67.9329 0.174187
\(391\) 57.7494i 0.147697i
\(392\) 488.633i 1.24651i
\(393\) 552.248i 1.40521i
\(394\) 955.618 2.42543
\(395\) 30.9569i 0.0783720i
\(396\) 93.8520 + 62.2737i 0.237000 + 0.157257i
\(397\) 62.0969 0.156415 0.0782077 0.996937i \(-0.475080\pi\)
0.0782077 + 0.996937i \(0.475080\pi\)
\(398\) 773.931i 1.94455i
\(399\) 25.5211 0.0639627
\(400\) −813.780 −2.03445
\(401\) 440.712 1.09903 0.549516 0.835483i \(-0.314812\pi\)
0.549516 + 0.835483i \(0.314812\pi\)
\(402\) 217.558i 0.541189i
\(403\) 45.0173i 0.111706i
\(404\) 512.341i 1.26817i
\(405\) −156.440 −0.386271
\(406\) 141.387i 0.348244i
\(407\) 489.683 + 324.920i 1.20315 + 0.798329i
\(408\) 728.740 1.78613
\(409\) 550.963i 1.34710i 0.739142 + 0.673549i \(0.235231\pi\)
−0.739142 + 0.673549i \(0.764769\pi\)
\(410\) 485.731 1.18471
\(411\) 471.861 1.14808
\(412\) 284.179 0.689755
\(413\) 366.116i 0.886478i
\(414\) 18.6381i 0.0450196i
\(415\) 191.902i 0.462414i
\(416\) −189.024 −0.454384
\(417\) 395.700i 0.948922i
\(418\) 60.1227 + 39.8932i 0.143834 + 0.0954383i
\(419\) −380.148 −0.907274 −0.453637 0.891187i \(-0.649874\pi\)
−0.453637 + 0.891187i \(0.649874\pi\)
\(420\) 313.552i 0.746551i
\(421\) 753.520 1.78983 0.894917 0.446232i \(-0.147234\pi\)
0.894917 + 0.446232i \(0.147234\pi\)
\(422\) 864.123 2.04769
\(423\) −6.00140 −0.0141877
\(424\) 1935.49i 4.56485i
\(425\) 241.717i 0.568745i
\(426\) 211.764i 0.497098i
\(427\) −133.747 −0.313224
\(428\) 1486.10i 3.47219i
\(429\) −50.1425 + 75.5693i −0.116882 + 0.176152i
\(430\) 377.500 0.877907
\(431\) 252.854i 0.586668i −0.956010 0.293334i \(-0.905235\pi\)
0.956010 0.293334i \(-0.0947648\pi\)
\(432\) 1148.64 2.65889
\(433\) −62.3560 −0.144009 −0.0720047 0.997404i \(-0.522940\pi\)
−0.0720047 + 0.997404i \(0.522940\pi\)
\(434\) −292.758 −0.674558
\(435\) 46.5491i 0.107009i
\(436\) 415.708i 0.953458i
\(437\) 8.47414i 0.0193916i
\(438\) −1164.15 −2.65787
\(439\) 424.263i 0.966431i −0.875501 0.483215i \(-0.839469\pi\)
0.875501 0.483215i \(-0.160531\pi\)
\(440\) −289.681 + 436.576i −0.658367 + 0.992218i
\(441\) −23.8377 −0.0540537
\(442\) 130.685i 0.295668i
\(443\) 420.565 0.949356 0.474678 0.880159i \(-0.342564\pi\)
0.474678 + 0.880159i \(0.342564\pi\)
\(444\) 1473.62 3.31896
\(445\) −66.2444 −0.148864
\(446\) 481.385i 1.07934i
\(447\) 522.643i 1.16922i
\(448\) 398.759i 0.890087i
\(449\) −508.999 −1.13363 −0.566814 0.823846i \(-0.691824\pi\)
−0.566814 + 0.823846i \(0.691824\pi\)
\(450\) 78.0119i 0.173360i
\(451\) −358.527 + 540.332i −0.794960 + 1.19808i
\(452\) 1358.58 3.00571
\(453\) 301.344i 0.665218i
\(454\) −1317.07 −2.90103
\(455\) 33.2334 0.0730405
\(456\) 106.935 0.234507
\(457\) 577.760i 1.26425i −0.774868 0.632123i \(-0.782184\pi\)
0.774868 0.632123i \(-0.217816\pi\)
\(458\) 1136.98i 2.48250i
\(459\) 341.180i 0.743312i
\(460\) −104.113 −0.226333
\(461\) 359.507i 0.779841i −0.920848 0.389921i \(-0.872502\pi\)
0.920848 0.389921i \(-0.127498\pi\)
\(462\) −491.445 326.088i −1.06373 0.705819i
\(463\) 197.014 0.425516 0.212758 0.977105i \(-0.431755\pi\)
0.212758 + 0.977105i \(0.431755\pi\)
\(464\) 301.479i 0.649739i
\(465\) 96.3853 0.207280
\(466\) −1356.44 −2.91081
\(467\) −452.306 −0.968536 −0.484268 0.874920i \(-0.660914\pi\)
−0.484268 + 0.874920i \(0.660914\pi\)
\(468\) 29.9350i 0.0639638i
\(469\) 106.431i 0.226933i
\(470\) 47.2342i 0.100498i
\(471\) 330.372 0.701426
\(472\) 1534.05i 3.25010i
\(473\) −278.639 + 419.935i −0.589090 + 0.887811i
\(474\) −146.014 −0.308046
\(475\) 35.4695i 0.0746726i
\(476\) 603.191 1.26721
\(477\) 94.4220 0.197950
\(478\) 1499.42 3.13685
\(479\) 165.332i 0.345161i 0.984995 + 0.172581i \(0.0552105\pi\)
−0.984995 + 0.172581i \(0.944789\pi\)
\(480\) 404.713i 0.843153i
\(481\) 156.189i 0.324718i
\(482\) −1107.14 −2.29697
\(483\) 69.2679i 0.143412i
\(484\) −459.927 1090.44i −0.950263 2.25298i
\(485\) −175.521 −0.361899
\(486\) 208.752i 0.429531i
\(487\) 397.583 0.816391 0.408196 0.912894i \(-0.366158\pi\)
0.408196 + 0.912894i \(0.366158\pi\)
\(488\) −560.408 −1.14838
\(489\) 231.735 0.473896
\(490\) 187.615i 0.382888i
\(491\) 261.902i 0.533405i −0.963779 0.266703i \(-0.914066\pi\)
0.963779 0.266703i \(-0.0859341\pi\)
\(492\) 1626.04i 3.30496i
\(493\) −89.5483 −0.181639
\(494\) 19.1767i 0.0388193i
\(495\) −21.2981 14.1319i −0.0430265 0.0285494i
\(496\) −624.248 −1.25856
\(497\) 103.597i 0.208444i
\(498\) −905.137 −1.81754
\(499\) −197.738 −0.396268 −0.198134 0.980175i \(-0.563488\pi\)
−0.198134 + 0.980175i \(0.563488\pi\)
\(500\) 978.503 1.95701
\(501\) 913.962i 1.82427i
\(502\) 1063.92i 2.11936i
\(503\) 802.955i 1.59633i −0.602438 0.798166i \(-0.705804\pi\)
0.602438 0.798166i \(-0.294196\pi\)
\(504\) 115.059 0.228292
\(505\) 116.267i 0.230232i
\(506\) 108.276 163.181i 0.213984 0.322493i
\(507\) −452.498 −0.892500
\(508\) 288.898i 0.568696i
\(509\) −662.471 −1.30151 −0.650757 0.759286i \(-0.725548\pi\)
−0.650757 + 0.759286i \(0.725548\pi\)
\(510\) −279.806 −0.548640
\(511\) −569.512 −1.11451
\(512\) 858.716i 1.67718i
\(513\) 50.0647i 0.0975921i
\(514\) 1512.51i 2.94262i
\(515\) −64.4896 −0.125222
\(516\) 1263.72i 2.44908i
\(517\) 52.5438 + 34.8644i 0.101632 + 0.0674360i
\(518\) 1015.74 1.96088
\(519\) 583.324i 1.12394i
\(520\) 139.250 0.267789
\(521\) 39.6154 0.0760372 0.0380186 0.999277i \(-0.487895\pi\)
0.0380186 + 0.999277i \(0.487895\pi\)
\(522\) −28.9009 −0.0553657
\(523\) 401.452i 0.767595i −0.923417 0.383798i \(-0.874616\pi\)
0.923417 0.383798i \(-0.125384\pi\)
\(524\) 1915.30i 3.65516i
\(525\) 289.929i 0.552245i
\(526\) 453.549 0.862260
\(527\) 185.420i 0.351841i
\(528\) −1047.91 695.318i −1.98467 1.31689i
\(529\) 23.0000 0.0434783
\(530\) 743.151i 1.40217i
\(531\) −74.8377 −0.140937
\(532\) 88.5122 0.166376
\(533\) 172.344 0.323348
\(534\) 312.453i 0.585118i
\(535\) 337.244i 0.630362i
\(536\) 445.955i 0.832005i
\(537\) −299.497 −0.557722
\(538\) 951.597i 1.76877i
\(539\) 208.705 + 138.482i 0.387208 + 0.256924i
\(540\) −615.094 −1.13906
\(541\) 513.423i 0.949027i −0.880248 0.474513i \(-0.842624\pi\)
0.880248 0.474513i \(-0.157376\pi\)
\(542\) −889.799 −1.64169
\(543\) 866.359 1.59551
\(544\) 778.563 1.43118
\(545\) 94.3377i 0.173097i
\(546\) 156.751i 0.287090i
\(547\) 1024.91i 1.87369i 0.349750 + 0.936843i \(0.386266\pi\)
−0.349750 + 0.936843i \(0.613734\pi\)
\(548\) 1636.51 2.98633
\(549\) 27.3392i 0.0497981i
\(550\) −453.201 + 683.014i −0.824001 + 1.24184i
\(551\) −13.1403 −0.0238481
\(552\) 290.237i 0.525791i
\(553\) −71.4312 −0.129170
\(554\) 73.9823 0.133542
\(555\) −334.413 −0.602545
\(556\) 1372.37i 2.46828i
\(557\) 611.991i 1.09873i −0.835584 0.549363i \(-0.814870\pi\)
0.835584 0.549363i \(-0.185130\pi\)
\(558\) 59.8427i 0.107245i
\(559\) 133.942 0.239611
\(560\) 460.842i 0.822932i
\(561\) 206.530 311.259i 0.368146 0.554830i
\(562\) −144.413 −0.256963
\(563\) 718.045i 1.27539i 0.770289 + 0.637695i \(0.220112\pi\)
−0.770289 + 0.637695i \(0.779888\pi\)
\(564\) 158.122 0.280358
\(565\) −308.307 −0.545676
\(566\) −94.7926 −0.167478
\(567\) 360.975i 0.636641i
\(568\) 434.077i 0.764220i
\(569\) 757.312i 1.33095i −0.746419 0.665476i \(-0.768228\pi\)
0.746419 0.665476i \(-0.231772\pi\)
\(570\) −41.0587 −0.0720329
\(571\) 383.124i 0.670971i −0.942045 0.335485i \(-0.891100\pi\)
0.942045 0.335485i \(-0.108900\pi\)
\(572\) −173.904 + 262.089i −0.304028 + 0.458198i
\(573\) −244.971 −0.427524
\(574\) 1120.80i 1.95260i
\(575\) −96.2691 −0.167425
\(576\) 81.5103 0.141511
\(577\) 749.516 1.29899 0.649494 0.760367i \(-0.274981\pi\)
0.649494 + 0.760367i \(0.274981\pi\)
\(578\) 534.564i 0.924851i
\(579\) 900.949i 1.55604i
\(580\) 161.441i 0.278347i
\(581\) −442.801 −0.762137
\(582\) 827.874i 1.42246i
\(583\) −826.689 548.533i −1.41799 0.940880i
\(584\) −2386.29 −4.08612
\(585\) 6.79324i 0.0116124i
\(586\) −501.957 −0.856582
\(587\) −427.646 −0.728528 −0.364264 0.931296i \(-0.618679\pi\)
−0.364264 + 0.931296i \(0.618679\pi\)
\(588\) 628.063 1.06813
\(589\) 27.2085i 0.0461944i
\(590\) 589.012i 0.998326i
\(591\) 725.967i 1.22837i
\(592\) 2165.85 3.65853
\(593\) 1117.61i 1.88468i −0.334663 0.942338i \(-0.608623\pi\)
0.334663 0.942338i \(-0.391377\pi\)
\(594\) 639.687 964.066i 1.07691 1.62301i
\(595\) −136.884 −0.230057
\(596\) 1812.63i 3.04132i
\(597\) −587.942 −0.984828
\(598\) −52.0483 −0.0870373
\(599\) 603.509 1.00753 0.503763 0.863842i \(-0.331948\pi\)
0.503763 + 0.863842i \(0.331948\pi\)
\(600\) 1214.82i 2.02470i
\(601\) 248.929i 0.414191i −0.978321 0.207096i \(-0.933599\pi\)
0.978321 0.207096i \(-0.0664011\pi\)
\(602\) 871.058i 1.44694i
\(603\) −21.7556 −0.0360790
\(604\) 1045.12i 1.73033i
\(605\) 104.373 + 247.458i 0.172517 + 0.409021i
\(606\) 548.393 0.904939
\(607\) 3.45150i 0.00568616i 0.999996 + 0.00284308i \(0.000904982\pi\)
−0.999996 + 0.00284308i \(0.999095\pi\)
\(608\) 114.246 0.187905
\(609\) 107.409 0.176370
\(610\) 215.174 0.352744
\(611\) 16.7594i 0.0274294i
\(612\) 123.298i 0.201468i
\(613\) 334.538i 0.545738i −0.962051 0.272869i \(-0.912027\pi\)
0.962051 0.272869i \(-0.0879726\pi\)
\(614\) 122.560 0.199609
\(615\) 369.001i 0.600002i
\(616\) −1007.37 668.422i −1.63534 1.08510i
\(617\) −566.449 −0.918070 −0.459035 0.888418i \(-0.651805\pi\)
−0.459035 + 0.888418i \(0.651805\pi\)
\(618\) 304.176i 0.492195i
\(619\) −571.422 −0.923137 −0.461569 0.887104i \(-0.652713\pi\)
−0.461569 + 0.887104i \(0.652713\pi\)
\(620\) 334.283 0.539166
\(621\) 135.883 0.218813
\(622\) 662.642i 1.06534i
\(623\) 152.855i 0.245353i
\(624\) 334.240i 0.535641i
\(625\) 279.783 0.447653
\(626\) 879.826i 1.40547i
\(627\) 30.3062 45.6742i 0.0483352 0.0728455i
\(628\) 1145.79 1.82451
\(629\) 643.323i 1.02277i
\(630\) −44.1780 −0.0701239
\(631\) 166.216 0.263417 0.131708 0.991289i \(-0.457954\pi\)
0.131708 + 0.991289i \(0.457954\pi\)
\(632\) −299.302 −0.473578
\(633\) 656.459i 1.03706i
\(634\) 2173.84i 3.42877i
\(635\) 65.5603i 0.103245i
\(636\) −2487.78 −3.91161
\(637\) 66.5685i 0.104503i
\(638\) 253.035 + 167.896i 0.396606 + 0.263160i
\(639\) −21.1762 −0.0331396
\(640\) 67.4936i 0.105459i
\(641\) 627.233 0.978523 0.489261 0.872137i \(-0.337266\pi\)
0.489261 + 0.872137i \(0.337266\pi\)
\(642\) 1590.67 2.47768
\(643\) 604.826 0.940631 0.470315 0.882498i \(-0.344140\pi\)
0.470315 + 0.882498i \(0.344140\pi\)
\(644\) 240.234i 0.373035i
\(645\) 286.780i 0.444620i
\(646\) 78.9863i 0.122270i
\(647\) 514.851 0.795751 0.397876 0.917439i \(-0.369748\pi\)
0.397876 + 0.917439i \(0.369748\pi\)
\(648\) 1512.51i 2.33412i
\(649\) 655.223 + 434.760i 1.00959 + 0.669893i
\(650\) 217.854 0.335160
\(651\) 222.403i 0.341633i
\(652\) 803.702 1.23267
\(653\) −764.189 −1.17027 −0.585137 0.810934i \(-0.698959\pi\)
−0.585137 + 0.810934i \(0.698959\pi\)
\(654\) −444.960 −0.680367
\(655\) 434.645i 0.663580i
\(656\) 2389.87i 3.64309i
\(657\) 116.414i 0.177190i
\(658\) 108.990 0.165638
\(659\) 527.152i 0.799928i 0.916531 + 0.399964i \(0.130977\pi\)
−0.916531 + 0.399964i \(0.869023\pi\)
\(660\) 561.151 + 372.341i 0.850229 + 0.564153i
\(661\) −829.561 −1.25501 −0.627504 0.778613i \(-0.715924\pi\)
−0.627504 + 0.778613i \(0.715924\pi\)
\(662\) 620.675i 0.937576i
\(663\) −99.2793 −0.149743
\(664\) −1855.37 −2.79423
\(665\) −20.0863 −0.0302050
\(666\) 207.627i 0.311752i
\(667\) 35.6646i 0.0534702i
\(668\) 3169.80i 4.74520i
\(669\) −365.700 −0.546636
\(670\) 171.228i 0.255565i
\(671\) −158.824 + 239.362i −0.236697 + 0.356724i
\(672\) −933.851 −1.38966
\(673\) 1094.63i 1.62649i 0.581920 + 0.813246i \(0.302302\pi\)
−0.581920 + 0.813246i \(0.697698\pi\)
\(674\) −1622.57 −2.40738
\(675\) −568.752 −0.842596
\(676\) −1569.35 −2.32152
\(677\) 631.668i 0.933040i −0.884511 0.466520i \(-0.845508\pi\)
0.884511 0.466520i \(-0.154492\pi\)
\(678\) 1454.18i 2.14481i
\(679\) 405.004i 0.596471i
\(680\) −573.552 −0.843459
\(681\) 1000.55i 1.46924i
\(682\) −347.649 + 523.938i −0.509749 + 0.768238i
\(683\) 124.032 0.181599 0.0907993 0.995869i \(-0.471058\pi\)
0.0907993 + 0.995869i \(0.471058\pi\)
\(684\) 18.0928i 0.0264514i
\(685\) −371.377 −0.542156
\(686\) 1364.52 1.98909
\(687\) −863.747 −1.25727
\(688\) 1857.36i 2.69965i
\(689\) 263.681i 0.382701i
\(690\) 111.439i 0.161506i
\(691\) 720.430 1.04259 0.521296 0.853376i \(-0.325449\pi\)
0.521296 + 0.853376i \(0.325449\pi\)
\(692\) 2023.08i 2.92353i
\(693\) 32.6086 49.1441i 0.0470542 0.0709150i
\(694\) 444.305 0.640209
\(695\) 311.435i 0.448108i
\(696\) 450.051 0.646626
\(697\) −709.862 −1.01845
\(698\) −74.9892 −0.107434
\(699\) 1030.46i 1.47419i
\(700\) 1005.53i 1.43647i
\(701\) 765.277i 1.09169i 0.837885 + 0.545847i \(0.183792\pi\)
−0.837885 + 0.545847i \(0.816208\pi\)
\(702\) −307.498 −0.438032
\(703\) 94.4010i 0.134283i
\(704\) −713.644 473.524i −1.01370 0.672620i
\(705\) −35.8830 −0.0508979
\(706\) 1591.84i 2.25473i
\(707\) 268.279 0.379461
\(708\) 1971.78 2.78500
\(709\) −181.165 −0.255522 −0.127761 0.991805i \(-0.540779\pi\)
−0.127761 + 0.991805i \(0.540779\pi\)
\(710\) 166.668i 0.234743i
\(711\) 14.6013i 0.0205362i
\(712\) 640.472i 0.899539i
\(713\) −73.8477 −0.103573
\(714\) 645.636i 0.904252i
\(715\) 39.4645 59.4766i 0.0551951 0.0831840i
\(716\) −1038.71 −1.45072
\(717\) 1139.08i 1.58867i
\(718\) 1848.70 2.57480
\(719\) 381.476 0.530565 0.265283 0.964171i \(-0.414535\pi\)
0.265283 + 0.964171i \(0.414535\pi\)
\(720\) −94.2007 −0.130834
\(721\) 148.806i 0.206388i
\(722\) 1328.53i 1.84007i
\(723\) 841.075i 1.16331i
\(724\) 3004.70 4.15014
\(725\) 149.278i 0.205901i
\(726\) −1167.18 + 492.291i −1.60768 + 0.678087i
\(727\) −60.3143 −0.0829633 −0.0414816 0.999139i \(-0.513208\pi\)
−0.0414816 + 0.999139i \(0.513208\pi\)
\(728\) 321.311i 0.441362i
\(729\) 792.923 1.08769
\(730\) 916.240 1.25512
\(731\) −551.690 −0.754706
\(732\) 720.318i 0.984041i
\(733\) 886.156i 1.20894i 0.796626 + 0.604472i \(0.206616\pi\)
−0.796626 + 0.604472i \(0.793384\pi\)
\(734\) 2143.41i 2.92018i
\(735\) −142.528 −0.193916
\(736\) 310.080i 0.421304i
\(737\) 190.476 + 126.387i 0.258448 + 0.171488i
\(738\) −229.102 −0.310436
\(739\) 531.318i 0.718968i 0.933151 + 0.359484i \(0.117047\pi\)
−0.933151 + 0.359484i \(0.882953\pi\)
\(740\) −1159.81 −1.56731
\(741\) −14.5682 −0.0196602
\(742\) −1714.78 −2.31102
\(743\) 181.095i 0.243735i −0.992546 0.121868i \(-0.961112\pi\)
0.992546 0.121868i \(-0.0388883\pi\)
\(744\) 931.884i 1.25253i
\(745\) 411.345i 0.552141i
\(746\) 1493.95 2.00262
\(747\) 90.5130i 0.121169i
\(748\) 716.287 1079.51i 0.957602 1.44319i
\(749\) 778.170 1.03894
\(750\) 1047.36i 1.39648i
\(751\) 452.551 0.602597 0.301299 0.953530i \(-0.402580\pi\)
0.301299 + 0.953530i \(0.402580\pi\)
\(752\) 232.399 0.309041
\(753\) −808.240 −1.07336
\(754\) 80.7079i 0.107040i
\(755\) 237.172i 0.314135i
\(756\) 1419.29i 1.87737i
\(757\) −387.825 −0.512318 −0.256159 0.966635i \(-0.582457\pi\)
−0.256159 + 0.966635i \(0.582457\pi\)
\(758\) 940.004i 1.24011i
\(759\) −123.966 82.2552i −0.163328 0.108373i
\(760\) −84.1630 −0.110741
\(761\) 133.741i 0.175743i −0.996132 0.0878717i \(-0.971993\pi\)
0.996132 0.0878717i \(-0.0280066\pi\)
\(762\) 309.227 0.405809
\(763\) −217.679 −0.285293
\(764\) −849.608 −1.11205
\(765\) 27.9804i 0.0365757i
\(766\) 2216.81i 2.89401i
\(767\) 208.990i 0.272477i
\(768\) 559.948 0.729099
\(769\) 1434.15i 1.86495i 0.361234 + 0.932475i \(0.382355\pi\)
−0.361234 + 0.932475i \(0.617645\pi\)
\(770\) 386.790 + 256.647i 0.502325 + 0.333308i
\(771\) −1149.03 −1.49031
\(772\) 3124.67i 4.04750i
\(773\) 270.299 0.349676 0.174838 0.984597i \(-0.444060\pi\)
0.174838 + 0.984597i \(0.444060\pi\)
\(774\) −178.053 −0.230043
\(775\) 309.098 0.398836
\(776\) 1696.99i 2.18684i
\(777\) 771.637i 0.993098i
\(778\) 2250.52i 2.89269i
\(779\) −104.165 −0.133716
\(780\) 178.985i 0.229468i
\(781\) 185.403 + 123.021i 0.237392 + 0.157517i
\(782\) 214.380 0.274143
\(783\) 210.704i 0.269099i
\(784\) 923.094 1.17742
\(785\) −260.018 −0.331233
\(786\) −2050.08 −2.60824
\(787\) 820.972i 1.04317i 0.853200 + 0.521583i \(0.174658\pi\)
−0.853200 + 0.521583i \(0.825342\pi\)
\(788\) 2517.79i 3.19517i
\(789\) 344.553i 0.436696i
\(790\) 114.920 0.145468
\(791\) 711.399i 0.899367i
\(792\) 136.632 205.917i 0.172515 0.259996i
\(793\) 76.3467 0.0962758
\(794\) 230.519i 0.290326i
\(795\) 564.559 0.710137
\(796\) −2039.10 −2.56168
\(797\) 696.476 0.873872 0.436936 0.899493i \(-0.356064\pi\)
0.436936 + 0.899493i \(0.356064\pi\)
\(798\) 94.7405i 0.118722i
\(799\) 69.0295i 0.0863949i
\(800\) 1297.88i 1.62234i
\(801\) 31.2451 0.0390076
\(802\) 1636.03i 2.03994i
\(803\) −676.293 + 1019.23i −0.842208 + 1.26928i
\(804\) 573.206 0.712943
\(805\) 54.5171i 0.0677231i
\(806\) 167.115 0.207339
\(807\) −722.911 −0.895801
\(808\) 1124.11 1.39122
\(809\) 494.088i 0.610739i 0.952234 + 0.305369i \(0.0987800\pi\)
−0.952234 + 0.305369i \(0.901220\pi\)
\(810\) 580.743i 0.716966i
\(811\) 1323.70i 1.63218i −0.577926 0.816089i \(-0.696138\pi\)
0.577926 0.816089i \(-0.303862\pi\)
\(812\) 372.516 0.458763
\(813\) 675.964i 0.831445i
\(814\) 1206.18 1817.82i 1.48180 2.23320i
\(815\) −182.386 −0.223787
\(816\) 1376.69i 1.68712i
\(817\) −80.9549 −0.0990880
\(818\) 2045.31 2.50038
\(819\) −15.6750 −0.0191392
\(820\) 1279.77i 1.56069i
\(821\) 1347.93i 1.64182i 0.571060 + 0.820908i \(0.306532\pi\)
−0.571060 + 0.820908i \(0.693468\pi\)
\(822\) 1751.66i 2.13098i
\(823\) −121.479 −0.147605 −0.0738025 0.997273i \(-0.523513\pi\)
−0.0738025 + 0.997273i \(0.523513\pi\)
\(824\) 623.506i 0.756682i
\(825\) 518.874 + 344.289i 0.628938 + 0.417320i
\(826\) 1359.11 1.64541
\(827\) 98.2407i 0.118792i 0.998235 + 0.0593958i \(0.0189174\pi\)
−0.998235 + 0.0593958i \(0.981083\pi\)
\(828\) 49.1063 0.0593071
\(829\) 431.135 0.520067 0.260033 0.965600i \(-0.416266\pi\)
0.260033 + 0.965600i \(0.416266\pi\)
\(830\) 712.385 0.858296
\(831\) 56.2031i 0.0676331i
\(832\) 227.624i 0.273586i
\(833\) 274.187i 0.329156i
\(834\) 1468.94 1.76131
\(835\) 719.331i 0.861474i
\(836\) 105.108 158.407i 0.125727 0.189482i
\(837\) −436.288 −0.521252
\(838\) 1411.20i 1.68401i
\(839\) 1585.87 1.89019 0.945095 0.326795i \(-0.105969\pi\)
0.945095 + 0.326795i \(0.105969\pi\)
\(840\) 687.950 0.818989
\(841\) 785.697 0.934242
\(842\) 2797.25i 3.32215i
\(843\) 109.708i 0.130140i
\(844\) 2276.73i 2.69755i
\(845\) 356.137 0.421464
\(846\) 22.2786i 0.0263341i
\(847\) −570.993 + 240.833i −0.674136 + 0.284337i
\(848\) −3656.42 −4.31181
\(849\) 72.0123i 0.0848201i
\(850\) −897.311 −1.05566
\(851\) 256.218 0.301078
\(852\) 557.939 0.654858
\(853\) 82.0178i 0.0961522i 0.998844 + 0.0480761i \(0.0153090\pi\)
−0.998844 + 0.0480761i \(0.984691\pi\)
\(854\) 496.501i 0.581382i
\(855\) 4.10584i 0.00480215i
\(856\) 3260.58 3.80909
\(857\) 505.321i 0.589640i 0.955553 + 0.294820i \(0.0952597\pi\)
−0.955553 + 0.294820i \(0.904740\pi\)
\(858\) 280.531 + 186.141i 0.326960 + 0.216948i
\(859\) 747.706 0.870438 0.435219 0.900325i \(-0.356671\pi\)
0.435219 + 0.900325i \(0.356671\pi\)
\(860\) 994.609i 1.15652i
\(861\) 851.448 0.988906
\(862\) −938.655 −1.08893
\(863\) −817.340 −0.947092 −0.473546 0.880769i \(-0.657026\pi\)
−0.473546 + 0.880769i \(0.657026\pi\)
\(864\) 1831.94i 2.12030i
\(865\) 459.103i 0.530755i
\(866\) 231.481i 0.267299i
\(867\) −406.099 −0.468395
\(868\) 771.338i 0.888638i
\(869\) −84.8242 + 127.838i −0.0976113 + 0.147109i
\(870\) −172.801 −0.198622
\(871\) 60.7543i 0.0697523i
\(872\) −912.087 −1.04597
\(873\) 82.7868 0.0948302
\(874\) 31.4581 0.0359932
\(875\) 512.377i 0.585574i
\(876\) 3067.21i 3.50139i
\(877\) 679.794i 0.775135i −0.921841 0.387568i \(-0.873315\pi\)
0.921841 0.387568i \(-0.126685\pi\)
\(878\) −1574.97 −1.79381
\(879\) 381.328i 0.433820i
\(880\) 824.752 + 547.248i 0.937218 + 0.621872i
\(881\) −151.442 −0.171898 −0.0859488 0.996300i \(-0.527392\pi\)
−0.0859488 + 0.996300i \(0.527392\pi\)
\(882\) 88.4912i 0.100330i
\(883\) 938.406 1.06275 0.531374 0.847138i \(-0.321676\pi\)
0.531374 + 0.847138i \(0.321676\pi\)
\(884\) −344.320 −0.389502
\(885\) −447.462 −0.505607
\(886\) 1561.24i 1.76212i
\(887\) 1176.26i 1.32611i 0.748573 + 0.663053i \(0.230740\pi\)
−0.748573 + 0.663053i \(0.769260\pi\)
\(888\) 3233.21i 3.64100i
\(889\) 151.276 0.170165
\(890\) 245.915i 0.276309i
\(891\) −646.024 428.656i −0.725055 0.481096i
\(892\) −1268.32 −1.42188
\(893\) 10.1294i 0.0113431i
\(894\) −1940.18 −2.17022
\(895\) 235.718 0.263372
\(896\) −155.737 −0.173814
\(897\) 39.5402i 0.0440805i
\(898\) 1889.53i 2.10415i
\(899\) 114.511i 0.127376i
\(900\) −205.540 −0.228378
\(901\) 1086.06i 1.20540i
\(902\) 2005.84 + 1330.94i 2.22377 + 1.47554i
\(903\) 661.728 0.732810
\(904\) 2980.81i 3.29736i
\(905\) −681.866 −0.753443
\(906\) 1118.66 1.23472
\(907\) −764.106 −0.842455 −0.421227 0.906955i \(-0.638401\pi\)
−0.421227 + 0.906955i \(0.638401\pi\)
\(908\) 3470.11i 3.82171i
\(909\) 54.8389i 0.0603288i
\(910\) 123.371i 0.135572i
\(911\) 350.637 0.384892 0.192446 0.981308i \(-0.438358\pi\)
0.192446 + 0.981308i \(0.438358\pi\)
\(912\) 202.015i 0.221508i
\(913\) −525.824 + 792.465i −0.575930 + 0.867979i
\(914\) −2144.79 −2.34659
\(915\) 163.464i 0.178649i
\(916\) −2995.64 −3.27035
\(917\) −1002.92 −1.09369
\(918\) 1266.54 1.37968
\(919\) 696.005i 0.757350i 0.925530 + 0.378675i \(0.123620\pi\)
−0.925530 + 0.378675i \(0.876380\pi\)
\(920\) 228.430i 0.248294i
\(921\) 93.1067i 0.101093i
\(922\) −1334.58 −1.44748
\(923\) 59.1361i 0.0640695i
\(924\) −859.154 + 1294.82i −0.929820 + 1.40132i
\(925\) −1072.43 −1.15938
\(926\) 731.363i 0.789809i
\(927\) 30.4174 0.0328127
\(928\) 480.821 0.518126
\(929\) −1697.97 −1.82774 −0.913868 0.406012i \(-0.866919\pi\)
−0.913868 + 0.406012i \(0.866919\pi\)
\(930\) 357.806i 0.384737i
\(931\) 40.2341i 0.0432160i
\(932\) 3573.84i 3.83459i
\(933\) 503.398 0.539547
\(934\) 1679.07i 1.79772i
\(935\) −162.549 + 244.976i −0.173849 + 0.262006i
\(936\) −65.6792 −0.0701701
\(937\) 1484.61i 1.58443i −0.610240 0.792217i \(-0.708927\pi\)
0.610240 0.792217i \(-0.291073\pi\)
\(938\) 395.099 0.421214
\(939\) −668.388 −0.711808
\(940\) −124.449 −0.132393
\(941\) 472.563i 0.502192i −0.967962 0.251096i \(-0.919209\pi\)
0.967962 0.251096i \(-0.0807910\pi\)
\(942\) 1226.42i 1.30193i
\(943\) 282.719i 0.299808i
\(944\) 2898.03 3.06994
\(945\) 322.084i 0.340829i
\(946\) 1558.90 + 1034.38i 1.64789 + 1.09342i
\(947\) −1719.70 −1.81595 −0.907973 0.419030i \(-0.862370\pi\)
−0.907973 + 0.419030i \(0.862370\pi\)
\(948\) 384.706i 0.405808i
\(949\) 325.095 0.342566
\(950\) −131.671 −0.138601
\(951\) 1651.43 1.73652
\(952\) 1323.44i 1.39016i
\(953\) 1271.44i 1.33414i 0.744994 + 0.667071i \(0.232452\pi\)
−0.744994 + 0.667071i \(0.767548\pi\)
\(954\) 350.517i 0.367419i
\(955\) 192.804 0.201889
\(956\) 3950.55i 4.13237i
\(957\) 127.548 192.226i 0.133279 0.200863i
\(958\) 613.753 0.640661
\(959\) 856.930i 0.893566i
\(960\) 487.359 0.507665
\(961\) −723.892 −0.753269
\(962\) −579.813 −0.602716
\(963\) 159.066i 0.165177i
\(964\) 2917.01i 3.02594i
\(965\) 709.089i 0.734808i
\(966\) −257.139 −0.266190
\(967\) 744.849i 0.770267i −0.922861 0.385134i \(-0.874155\pi\)
0.922861 0.385134i \(-0.125845\pi\)
\(968\) −2392.50 + 1009.11i −2.47159 + 1.04247i
\(969\) 60.0045 0.0619242
\(970\) 651.576i 0.671728i
\(971\) −471.281 −0.485357 −0.242678 0.970107i \(-0.578026\pi\)
−0.242678 + 0.970107i \(0.578026\pi\)
\(972\) 550.004 0.565848
\(973\) 718.617 0.738558
\(974\) 1475.92i 1.51532i
\(975\) 165.500i 0.169744i
\(976\) 1058.69i 1.08472i
\(977\) 1666.47 1.70570 0.852849 0.522158i \(-0.174873\pi\)
0.852849 + 0.522158i \(0.174873\pi\)
\(978\) 860.256i 0.879608i
\(979\) −273.559 181.514i −0.279426 0.185408i
\(980\) −494.315 −0.504403
\(981\) 44.4957i 0.0453575i
\(982\) −972.243 −0.990065
\(983\) −198.420 −0.201852 −0.100926 0.994894i \(-0.532180\pi\)
−0.100926 + 0.994894i \(0.532180\pi\)
\(984\) 3567.62 3.62563
\(985\) 571.370i 0.580071i
\(986\) 332.425i 0.337145i
\(987\) 82.7978i 0.0838883i
\(988\) −50.5254 −0.0511391
\(989\) 219.723i 0.222167i
\(990\) −52.4612 + 79.0637i −0.0529911 + 0.0798624i
\(991\) 1482.44 1.49590 0.747951 0.663754i \(-0.231038\pi\)
0.747951 + 0.663754i \(0.231038\pi\)
\(992\) 995.596i 1.00363i
\(993\) −471.516 −0.474840
\(994\) 384.576 0.386897
\(995\) 462.738 0.465063
\(996\) 2384.79i 2.39437i
\(997\) 1521.12i 1.52570i −0.646576 0.762850i \(-0.723799\pi\)
0.646576 0.762850i \(-0.276201\pi\)
\(998\) 734.051i 0.735522i
\(999\) 1513.72 1.51523
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.2 44
11.10 odd 2 inner 253.3.c.a.208.43 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.2 44 1.1 even 1 trivial
253.3.c.a.208.43 yes 44 11.10 odd 2 inner