Properties

Label 253.3.c.a.208.13
Level $253$
Weight $3$
Character 253.208
Analytic conductor $6.894$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [253,3,Mod(208,253)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("253.208"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(253, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 208.13
Character \(\chi\) \(=\) 253.208
Dual form 253.3.c.a.208.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.11822i q^{2} -0.499687 q^{3} -0.486856 q^{4} -0.611405 q^{5} +1.05845i q^{6} +3.26188i q^{7} -7.44161i q^{8} -8.75031 q^{9} +1.29509i q^{10} +(-10.9328 - 1.21414i) q^{11} +0.243276 q^{12} -21.2612i q^{13} +6.90937 q^{14} +0.305511 q^{15} -17.7104 q^{16} +1.07517i q^{17} +18.5351i q^{18} -28.1608i q^{19} +0.297666 q^{20} -1.62992i q^{21} +(-2.57182 + 23.1581i) q^{22} +4.79583 q^{23} +3.71848i q^{24} -24.6262 q^{25} -45.0358 q^{26} +8.86960 q^{27} -1.58806i q^{28} +27.8324i q^{29} -0.647140i q^{30} -6.55859 q^{31} +7.74806i q^{32} +(5.46297 + 0.606691i) q^{33} +2.27744 q^{34} -1.99433i q^{35} +4.26014 q^{36} +30.1465 q^{37} -59.6508 q^{38} +10.6239i q^{39} +4.54984i q^{40} +58.5480i q^{41} -3.45253 q^{42} -33.3823i q^{43} +(5.32269 + 0.591112i) q^{44} +5.34998 q^{45} -10.1586i q^{46} +28.9005 q^{47} +8.84966 q^{48} +38.3602 q^{49} +52.1637i q^{50} -0.537248i q^{51} +10.3511i q^{52} +36.5963 q^{53} -18.7878i q^{54} +(6.68436 + 0.742331i) q^{55} +24.2736 q^{56} +14.0716i q^{57} +58.9551 q^{58} -83.1044 q^{59} -0.148740 q^{60} -88.8156i q^{61} +13.8925i q^{62} -28.5424i q^{63} -54.4295 q^{64} +12.9992i q^{65} +(1.28510 - 11.5718i) q^{66} -42.3460 q^{67} -0.523452i q^{68} -2.39642 q^{69} -4.22442 q^{70} +117.091 q^{71} +65.1164i q^{72} -23.2535i q^{73} -63.8569i q^{74} +12.3054 q^{75} +13.7103i q^{76} +(3.96038 - 35.6614i) q^{77} +22.5038 q^{78} -38.1352i q^{79} +10.8282 q^{80} +74.3208 q^{81} +124.018 q^{82} +12.0032i q^{83} +0.793535i q^{84} -0.657363i q^{85} -70.7111 q^{86} -13.9075i q^{87} +(-9.03517 + 81.3576i) q^{88} +61.3905 q^{89} -11.3324i q^{90} +69.3513 q^{91} -2.33488 q^{92} +3.27725 q^{93} -61.2177i q^{94} +17.2176i q^{95} -3.87161i q^{96} -105.559 q^{97} -81.2552i q^{98} +(95.6653 + 10.6241i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 8 q^{3} - 88 q^{4} + 100 q^{9} + 8 q^{14} - 8 q^{15} + 72 q^{16} - 40 q^{20} - 76 q^{22} + 268 q^{25} - 40 q^{26} + 32 q^{27} + 72 q^{31} - 90 q^{33} + 60 q^{34} - 312 q^{36} + 4 q^{37} + 40 q^{38}+ \cdots + 494 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.11822i 1.05911i −0.848276 0.529555i \(-0.822359\pi\)
0.848276 0.529555i \(-0.177641\pi\)
\(3\) −0.499687 −0.166562 −0.0832812 0.996526i \(-0.526540\pi\)
−0.0832812 + 0.996526i \(0.526540\pi\)
\(4\) −0.486856 −0.121714
\(5\) −0.611405 −0.122281 −0.0611405 0.998129i \(-0.519474\pi\)
−0.0611405 + 0.998129i \(0.519474\pi\)
\(6\) 1.05845i 0.176408i
\(7\) 3.26188i 0.465982i 0.972479 + 0.232991i \(0.0748513\pi\)
−0.972479 + 0.232991i \(0.925149\pi\)
\(8\) 7.44161i 0.930202i
\(9\) −8.75031 −0.972257
\(10\) 1.29509i 0.129509i
\(11\) −10.9328 1.21414i −0.993890 0.110376i
\(12\) 0.243276 0.0202730
\(13\) 21.2612i 1.63547i −0.575592 0.817737i \(-0.695228\pi\)
0.575592 0.817737i \(-0.304772\pi\)
\(14\) 6.90937 0.493527
\(15\) 0.305511 0.0203674
\(16\) −17.7104 −1.10690
\(17\) 1.07517i 0.0632452i 0.999500 + 0.0316226i \(0.0100675\pi\)
−0.999500 + 0.0316226i \(0.989933\pi\)
\(18\) 18.5351i 1.02973i
\(19\) 28.1608i 1.48215i −0.671423 0.741074i \(-0.734317\pi\)
0.671423 0.741074i \(-0.265683\pi\)
\(20\) 0.297666 0.0148833
\(21\) 1.62992i 0.0776152i
\(22\) −2.57182 + 23.1581i −0.116901 + 1.05264i
\(23\) 4.79583 0.208514
\(24\) 3.71848i 0.154937i
\(25\) −24.6262 −0.985047
\(26\) −45.0358 −1.73215
\(27\) 8.86960 0.328504
\(28\) 1.58806i 0.0567166i
\(29\) 27.8324i 0.959736i 0.877341 + 0.479868i \(0.159316\pi\)
−0.877341 + 0.479868i \(0.840684\pi\)
\(30\) 0.647140i 0.0215713i
\(31\) −6.55859 −0.211568 −0.105784 0.994389i \(-0.533735\pi\)
−0.105784 + 0.994389i \(0.533735\pi\)
\(32\) 7.74806i 0.242127i
\(33\) 5.46297 + 0.606691i 0.165545 + 0.0183846i
\(34\) 2.27744 0.0669837
\(35\) 1.99433i 0.0569808i
\(36\) 4.26014 0.118337
\(37\) 30.1465 0.814770 0.407385 0.913256i \(-0.366441\pi\)
0.407385 + 0.913256i \(0.366441\pi\)
\(38\) −59.6508 −1.56976
\(39\) 10.6239i 0.272409i
\(40\) 4.54984i 0.113746i
\(41\) 58.5480i 1.42800i 0.700145 + 0.714001i \(0.253119\pi\)
−0.700145 + 0.714001i \(0.746881\pi\)
\(42\) −3.45253 −0.0822030
\(43\) 33.3823i 0.776333i −0.921589 0.388167i \(-0.873108\pi\)
0.921589 0.388167i \(-0.126892\pi\)
\(44\) 5.32269 + 0.591112i 0.120970 + 0.0134344i
\(45\) 5.34998 0.118888
\(46\) 10.1586i 0.220840i
\(47\) 28.9005 0.614905 0.307453 0.951563i \(-0.400523\pi\)
0.307453 + 0.951563i \(0.400523\pi\)
\(48\) 8.84966 0.184368
\(49\) 38.3602 0.782860
\(50\) 52.1637i 1.04327i
\(51\) 0.537248i 0.0105343i
\(52\) 10.3511i 0.199060i
\(53\) 36.5963 0.690497 0.345248 0.938511i \(-0.387795\pi\)
0.345248 + 0.938511i \(0.387795\pi\)
\(54\) 18.7878i 0.347922i
\(55\) 6.68436 + 0.742331i 0.121534 + 0.0134969i
\(56\) 24.2736 0.433458
\(57\) 14.0716i 0.246870i
\(58\) 58.9551 1.01647
\(59\) −83.1044 −1.40855 −0.704274 0.709928i \(-0.748727\pi\)
−0.704274 + 0.709928i \(0.748727\pi\)
\(60\) −0.148740 −0.00247900
\(61\) 88.8156i 1.45599i −0.685581 0.727996i \(-0.740452\pi\)
0.685581 0.727996i \(-0.259548\pi\)
\(62\) 13.8925i 0.224073i
\(63\) 28.5424i 0.453055i
\(64\) −54.4295 −0.850461
\(65\) 12.9992i 0.199987i
\(66\) 1.28510 11.5718i 0.0194713 0.175330i
\(67\) −42.3460 −0.632030 −0.316015 0.948754i \(-0.602345\pi\)
−0.316015 + 0.948754i \(0.602345\pi\)
\(68\) 0.523452i 0.00769783i
\(69\) −2.39642 −0.0347307
\(70\) −4.22442 −0.0603489
\(71\) 117.091 1.64917 0.824583 0.565742i \(-0.191410\pi\)
0.824583 + 0.565742i \(0.191410\pi\)
\(72\) 65.1164i 0.904395i
\(73\) 23.2535i 0.318542i −0.987235 0.159271i \(-0.949086\pi\)
0.987235 0.159271i \(-0.0509143\pi\)
\(74\) 63.8569i 0.862931i
\(75\) 12.3054 0.164072
\(76\) 13.7103i 0.180398i
\(77\) 3.96038 35.6614i 0.0514335 0.463135i
\(78\) 22.5038 0.288511
\(79\) 38.1352i 0.482723i −0.970435 0.241362i \(-0.922406\pi\)
0.970435 0.241362i \(-0.0775940\pi\)
\(80\) 10.8282 0.135353
\(81\) 74.3208 0.917541
\(82\) 124.018 1.51241
\(83\) 12.0032i 0.144617i 0.997382 + 0.0723085i \(0.0230366\pi\)
−0.997382 + 0.0723085i \(0.976963\pi\)
\(84\) 0.793535i 0.00944685i
\(85\) 0.657363i 0.00773369i
\(86\) −70.7111 −0.822222
\(87\) 13.9075i 0.159856i
\(88\) −9.03517 + 81.3576i −0.102672 + 0.924518i
\(89\) 61.3905 0.689780 0.344890 0.938643i \(-0.387916\pi\)
0.344890 + 0.938643i \(0.387916\pi\)
\(90\) 11.3324i 0.125916i
\(91\) 69.3513 0.762103
\(92\) −2.33488 −0.0253791
\(93\) 3.27725 0.0352392
\(94\) 61.2177i 0.651252i
\(95\) 17.2176i 0.181238i
\(96\) 3.87161i 0.0403293i
\(97\) −105.559 −1.08824 −0.544119 0.839008i \(-0.683136\pi\)
−0.544119 + 0.839008i \(0.683136\pi\)
\(98\) 81.2552i 0.829135i
\(99\) 95.6653 + 10.6241i 0.966316 + 0.107314i
\(100\) 11.9894 0.119894
\(101\) 108.396i 1.07323i −0.843829 0.536613i \(-0.819704\pi\)
0.843829 0.536613i \(-0.180296\pi\)
\(102\) −1.13801 −0.0111570
\(103\) −17.8607 −0.173405 −0.0867025 0.996234i \(-0.527633\pi\)
−0.0867025 + 0.996234i \(0.527633\pi\)
\(104\) −158.217 −1.52132
\(105\) 0.996540i 0.00949086i
\(106\) 77.5191i 0.731312i
\(107\) 45.8343i 0.428358i −0.976794 0.214179i \(-0.931292\pi\)
0.976794 0.214179i \(-0.0687075\pi\)
\(108\) −4.31822 −0.0399835
\(109\) 143.578i 1.31723i −0.752479 0.658617i \(-0.771142\pi\)
0.752479 0.658617i \(-0.228858\pi\)
\(110\) 1.57242 14.1589i 0.0142947 0.128718i
\(111\) −15.0638 −0.135710
\(112\) 57.7691i 0.515796i
\(113\) 156.329 1.38345 0.691723 0.722163i \(-0.256852\pi\)
0.691723 + 0.722163i \(0.256852\pi\)
\(114\) 29.8067 0.261463
\(115\) −2.93219 −0.0254973
\(116\) 13.5503i 0.116813i
\(117\) 186.042i 1.59010i
\(118\) 176.033i 1.49181i
\(119\) −3.50707 −0.0294712
\(120\) 2.27350i 0.0189458i
\(121\) 118.052 + 26.5479i 0.975634 + 0.219404i
\(122\) −188.131 −1.54206
\(123\) 29.2557i 0.237851i
\(124\) 3.19309 0.0257507
\(125\) 30.3417 0.242733
\(126\) −60.4592 −0.479835
\(127\) 218.705i 1.72209i 0.508532 + 0.861043i \(0.330188\pi\)
−0.508532 + 0.861043i \(0.669812\pi\)
\(128\) 146.286i 1.14286i
\(129\) 16.6807i 0.129308i
\(130\) 27.5351 0.211809
\(131\) 59.0313i 0.450620i −0.974287 0.225310i \(-0.927660\pi\)
0.974287 0.225310i \(-0.0723395\pi\)
\(132\) −2.65968 0.295371i −0.0201491 0.00223766i
\(133\) 91.8571 0.690655
\(134\) 89.6982i 0.669390i
\(135\) −5.42292 −0.0401698
\(136\) 8.00099 0.0588308
\(137\) −210.703 −1.53798 −0.768990 0.639261i \(-0.779241\pi\)
−0.768990 + 0.639261i \(0.779241\pi\)
\(138\) 5.07614i 0.0367836i
\(139\) 64.9424i 0.467211i 0.972331 + 0.233606i \(0.0750525\pi\)
−0.972331 + 0.233606i \(0.924947\pi\)
\(140\) 0.970950i 0.00693535i
\(141\) −14.4412 −0.102420
\(142\) 248.024i 1.74665i
\(143\) −25.8141 + 232.444i −0.180518 + 1.62548i
\(144\) 154.971 1.07619
\(145\) 17.0168i 0.117357i
\(146\) −49.2561 −0.337371
\(147\) −19.1681 −0.130395
\(148\) −14.6770 −0.0991689
\(149\) 99.6338i 0.668683i 0.942452 + 0.334341i \(0.108514\pi\)
−0.942452 + 0.334341i \(0.891486\pi\)
\(150\) 26.0655i 0.173770i
\(151\) 6.57200i 0.0435232i −0.999763 0.0217616i \(-0.993073\pi\)
0.999763 0.0217616i \(-0.00692748\pi\)
\(152\) −209.562 −1.37870
\(153\) 9.40806i 0.0614906i
\(154\) −75.5387 8.38895i −0.490511 0.0544737i
\(155\) 4.00995 0.0258707
\(156\) 5.17232i 0.0331559i
\(157\) 205.373 1.30811 0.654053 0.756448i \(-0.273067\pi\)
0.654053 + 0.756448i \(0.273067\pi\)
\(158\) −80.7786 −0.511257
\(159\) −18.2867 −0.115011
\(160\) 4.73720i 0.0296075i
\(161\) 15.6434i 0.0971641i
\(162\) 157.428i 0.971776i
\(163\) −184.127 −1.12961 −0.564806 0.825224i \(-0.691049\pi\)
−0.564806 + 0.825224i \(0.691049\pi\)
\(164\) 28.5045i 0.173808i
\(165\) −3.34009 0.370934i −0.0202430 0.00224808i
\(166\) 25.4254 0.153165
\(167\) 35.3214i 0.211505i 0.994392 + 0.105753i \(0.0337252\pi\)
−0.994392 + 0.105753i \(0.966275\pi\)
\(168\) −12.1292 −0.0721977
\(169\) −283.037 −1.67478
\(170\) −1.39244 −0.00819082
\(171\) 246.416i 1.44103i
\(172\) 16.2524i 0.0944906i
\(173\) 173.845i 1.00488i 0.864611 + 0.502442i \(0.167565\pi\)
−0.864611 + 0.502442i \(0.832435\pi\)
\(174\) −29.4591 −0.169305
\(175\) 80.3276i 0.459015i
\(176\) 193.624 + 21.5029i 1.10014 + 0.122176i
\(177\) 41.5262 0.234611
\(178\) 130.038i 0.730553i
\(179\) −219.209 −1.22463 −0.612315 0.790614i \(-0.709762\pi\)
−0.612315 + 0.790614i \(0.709762\pi\)
\(180\) −2.60467 −0.0144704
\(181\) 331.346 1.83064 0.915321 0.402726i \(-0.131937\pi\)
0.915321 + 0.402726i \(0.131937\pi\)
\(182\) 146.901i 0.807150i
\(183\) 44.3800i 0.242514i
\(184\) 35.6887i 0.193960i
\(185\) −18.4317 −0.0996309
\(186\) 6.94193i 0.0373222i
\(187\) 1.30541 11.7546i 0.00698078 0.0628588i
\(188\) −14.0704 −0.0748425
\(189\) 28.9316i 0.153077i
\(190\) 36.4708 0.191951
\(191\) −353.382 −1.85017 −0.925083 0.379765i \(-0.876005\pi\)
−0.925083 + 0.379765i \(0.876005\pi\)
\(192\) 27.1977 0.141655
\(193\) 160.977i 0.834079i −0.908888 0.417039i \(-0.863068\pi\)
0.908888 0.417039i \(-0.136932\pi\)
\(194\) 223.598i 1.15256i
\(195\) 6.49552i 0.0333104i
\(196\) −18.6759 −0.0952850
\(197\) 282.614i 1.43459i −0.696770 0.717295i \(-0.745380\pi\)
0.696770 0.717295i \(-0.254620\pi\)
\(198\) 22.5042 202.640i 0.113658 1.02344i
\(199\) −49.8399 −0.250452 −0.125226 0.992128i \(-0.539966\pi\)
−0.125226 + 0.992128i \(0.539966\pi\)
\(200\) 183.259i 0.916293i
\(201\) 21.1598 0.105273
\(202\) −229.606 −1.13666
\(203\) −90.7857 −0.447220
\(204\) 0.261562i 0.00128217i
\(205\) 35.7965i 0.174617i
\(206\) 37.8329i 0.183655i
\(207\) −41.9650 −0.202730
\(208\) 376.544i 1.81031i
\(209\) −34.1912 + 307.876i −0.163594 + 1.47309i
\(210\) 2.11089 0.0100519
\(211\) 330.637i 1.56700i −0.621391 0.783500i \(-0.713432\pi\)
0.621391 0.783500i \(-0.286568\pi\)
\(212\) −17.8171 −0.0840431
\(213\) −58.5087 −0.274689
\(214\) −97.0871 −0.453678
\(215\) 20.4101i 0.0949308i
\(216\) 66.0042i 0.305575i
\(217\) 21.3933i 0.0985868i
\(218\) −304.131 −1.39509
\(219\) 11.6195i 0.0530571i
\(220\) −3.25432 0.361408i −0.0147924 0.00164277i
\(221\) 22.8594 0.103436
\(222\) 31.9085i 0.143732i
\(223\) 246.837 1.10689 0.553446 0.832885i \(-0.313313\pi\)
0.553446 + 0.832885i \(0.313313\pi\)
\(224\) −25.2732 −0.112827
\(225\) 215.487 0.957719
\(226\) 331.140i 1.46522i
\(227\) 339.183i 1.49420i −0.664714 0.747098i \(-0.731446\pi\)
0.664714 0.747098i \(-0.268554\pi\)
\(228\) 6.85084i 0.0300475i
\(229\) 243.049 1.06135 0.530676 0.847575i \(-0.321938\pi\)
0.530676 + 0.847575i \(0.321938\pi\)
\(230\) 6.21103i 0.0270045i
\(231\) −1.97895 + 17.8196i −0.00856689 + 0.0771409i
\(232\) 207.118 0.892748
\(233\) 67.3715i 0.289148i 0.989494 + 0.144574i \(0.0461812\pi\)
−0.989494 + 0.144574i \(0.953819\pi\)
\(234\) 394.078 1.68409
\(235\) −17.6699 −0.0751912
\(236\) 40.4598 0.171440
\(237\) 19.0557i 0.0804036i
\(238\) 7.42874i 0.0312132i
\(239\) 329.032i 1.37670i −0.725377 0.688352i \(-0.758334\pi\)
0.725377 0.688352i \(-0.241666\pi\)
\(240\) −5.41072 −0.0225447
\(241\) 88.6880i 0.368000i 0.982926 + 0.184000i \(0.0589047\pi\)
−0.982926 + 0.184000i \(0.941095\pi\)
\(242\) 56.2343 250.060i 0.232373 1.03330i
\(243\) −116.964 −0.481332
\(244\) 43.2404i 0.177215i
\(245\) −23.4536 −0.0957289
\(246\) −61.9700 −0.251911
\(247\) −598.732 −2.42402
\(248\) 48.8065i 0.196800i
\(249\) 5.99785i 0.0240878i
\(250\) 64.2704i 0.257081i
\(251\) −26.8660 −0.107036 −0.0535178 0.998567i \(-0.517043\pi\)
−0.0535178 + 0.998567i \(0.517043\pi\)
\(252\) 13.8961i 0.0551431i
\(253\) −52.4318 5.82281i −0.207240 0.0230151i
\(254\) 463.265 1.82388
\(255\) 0.328476i 0.00128814i
\(256\) 92.1477 0.359952
\(257\) 204.281 0.794867 0.397433 0.917631i \(-0.369901\pi\)
0.397433 + 0.917631i \(0.369901\pi\)
\(258\) 35.3334 0.136951
\(259\) 98.3342i 0.379669i
\(260\) 6.32873i 0.0243413i
\(261\) 243.542i 0.933110i
\(262\) −125.041 −0.477256
\(263\) 359.755i 1.36789i 0.729533 + 0.683946i \(0.239738\pi\)
−0.729533 + 0.683946i \(0.760262\pi\)
\(264\) 4.51476 40.6533i 0.0171014 0.153990i
\(265\) −22.3752 −0.0844346
\(266\) 194.574i 0.731479i
\(267\) −30.6760 −0.114891
\(268\) 20.6164 0.0769269
\(269\) −160.244 −0.595703 −0.297852 0.954612i \(-0.596270\pi\)
−0.297852 + 0.954612i \(0.596270\pi\)
\(270\) 11.4869i 0.0425442i
\(271\) 148.817i 0.549142i −0.961567 0.274571i \(-0.911464\pi\)
0.961567 0.274571i \(-0.0885358\pi\)
\(272\) 19.0417i 0.0700061i
\(273\) −34.6540 −0.126938
\(274\) 446.316i 1.62889i
\(275\) 269.233 + 29.8997i 0.979029 + 0.108726i
\(276\) 1.16671 0.00422721
\(277\) 258.524i 0.933300i 0.884442 + 0.466650i \(0.154539\pi\)
−0.884442 + 0.466650i \(0.845461\pi\)
\(278\) 137.562 0.494828
\(279\) 57.3897 0.205698
\(280\) −14.8410 −0.0530036
\(281\) 223.525i 0.795463i −0.917502 0.397731i \(-0.869798\pi\)
0.917502 0.397731i \(-0.130202\pi\)
\(282\) 30.5897i 0.108474i
\(283\) 16.5565i 0.0585034i 0.999572 + 0.0292517i \(0.00931244\pi\)
−0.999572 + 0.0292517i \(0.990688\pi\)
\(284\) −57.0063 −0.200726
\(285\) 8.60344i 0.0301875i
\(286\) 492.367 + 54.6798i 1.72156 + 0.191188i
\(287\) −190.977 −0.665424
\(288\) 67.7980i 0.235410i
\(289\) 287.844 0.996000
\(290\) −36.0454 −0.124294
\(291\) 52.7466 0.181260
\(292\) 11.3211i 0.0387710i
\(293\) 35.7607i 0.122050i 0.998136 + 0.0610251i \(0.0194370\pi\)
−0.998136 + 0.0610251i \(0.980563\pi\)
\(294\) 40.6022i 0.138103i
\(295\) 50.8104 0.172239
\(296\) 224.339i 0.757900i
\(297\) −96.9695 10.7689i −0.326497 0.0362591i
\(298\) 211.046 0.708209
\(299\) 101.965i 0.341020i
\(300\) −5.99095 −0.0199698
\(301\) 108.889 0.361758
\(302\) −13.9209 −0.0460959
\(303\) 54.1640i 0.178759i
\(304\) 498.739i 1.64059i
\(305\) 54.3023i 0.178040i
\(306\) −19.9284 −0.0651253
\(307\) 514.466i 1.67578i 0.545836 + 0.837892i \(0.316212\pi\)
−0.545836 + 0.837892i \(0.683788\pi\)
\(308\) −1.92813 + 17.3620i −0.00626017 + 0.0563700i
\(309\) 8.92478 0.0288828
\(310\) 8.49397i 0.0273999i
\(311\) 314.121 1.01003 0.505017 0.863109i \(-0.331486\pi\)
0.505017 + 0.863109i \(0.331486\pi\)
\(312\) 79.0592 0.253395
\(313\) 313.193 1.00062 0.500309 0.865847i \(-0.333220\pi\)
0.500309 + 0.865847i \(0.333220\pi\)
\(314\) 435.025i 1.38543i
\(315\) 17.4510i 0.0554000i
\(316\) 18.5663i 0.0587542i
\(317\) −444.166 −1.40116 −0.700578 0.713576i \(-0.747074\pi\)
−0.700578 + 0.713576i \(0.747074\pi\)
\(318\) 38.7353i 0.121809i
\(319\) 33.7924 304.285i 0.105932 0.953872i
\(320\) 33.2784 0.103995
\(321\) 22.9028i 0.0713483i
\(322\) 33.1362 0.102907
\(323\) 30.2776 0.0937388
\(324\) −36.1835 −0.111677
\(325\) 523.581i 1.61102i
\(326\) 390.021i 1.19638i
\(327\) 71.7443i 0.219402i
\(328\) 435.692 1.32833
\(329\) 94.2700i 0.286535i
\(330\) −0.785719 + 7.07504i −0.00238097 + 0.0214395i
\(331\) 45.3969 0.137151 0.0685753 0.997646i \(-0.478155\pi\)
0.0685753 + 0.997646i \(0.478155\pi\)
\(332\) 5.84383i 0.0176019i
\(333\) −263.791 −0.792166
\(334\) 74.8185 0.224007
\(335\) 25.8906 0.0772853
\(336\) 28.8665i 0.0859122i
\(337\) 612.935i 1.81880i −0.415924 0.909399i \(-0.636542\pi\)
0.415924 0.909399i \(-0.363458\pi\)
\(338\) 599.535i 1.77377i
\(339\) −78.1158 −0.230430
\(340\) 0.320041i 0.000941298i
\(341\) 71.7037 + 7.96306i 0.210275 + 0.0233521i
\(342\) 521.963 1.52621
\(343\) 284.958i 0.830782i
\(344\) −248.418 −0.722146
\(345\) 1.46518 0.00424690
\(346\) 368.242 1.06428
\(347\) 364.149i 1.04942i 0.851281 + 0.524710i \(0.175826\pi\)
−0.851281 + 0.524710i \(0.824174\pi\)
\(348\) 6.77093i 0.0194567i
\(349\) 322.845i 0.925058i −0.886604 0.462529i \(-0.846942\pi\)
0.886604 0.462529i \(-0.153058\pi\)
\(350\) −170.152 −0.486147
\(351\) 188.578i 0.537260i
\(352\) 9.40724 84.7079i 0.0267251 0.240648i
\(353\) −154.512 −0.437711 −0.218856 0.975757i \(-0.570232\pi\)
−0.218856 + 0.975757i \(0.570232\pi\)
\(354\) 87.9616i 0.248479i
\(355\) −71.5898 −0.201661
\(356\) −29.8883 −0.0839559
\(357\) 1.75244 0.00490879
\(358\) 464.333i 1.29702i
\(359\) 660.474i 1.83976i −0.392199 0.919880i \(-0.628285\pi\)
0.392199 0.919880i \(-0.371715\pi\)
\(360\) 39.8125i 0.110590i
\(361\) −432.031 −1.19676
\(362\) 701.864i 1.93885i
\(363\) −58.9889 13.2656i −0.162504 0.0365445i
\(364\) −33.7641 −0.0927585
\(365\) 14.2173i 0.0389516i
\(366\) 94.0066 0.256849
\(367\) −505.697 −1.37792 −0.688961 0.724798i \(-0.741933\pi\)
−0.688961 + 0.724798i \(0.741933\pi\)
\(368\) −84.9361 −0.230805
\(369\) 512.314i 1.38838i
\(370\) 39.0424i 0.105520i
\(371\) 119.373i 0.321759i
\(372\) −1.59555 −0.00428910
\(373\) 200.489i 0.537504i −0.963209 0.268752i \(-0.913389\pi\)
0.963209 0.268752i \(-0.0866112\pi\)
\(374\) −24.8988 2.76514i −0.0665744 0.00739342i
\(375\) −15.1614 −0.0404303
\(376\) 215.067i 0.571986i
\(377\) 591.748 1.56962
\(378\) 61.2834 0.162125
\(379\) −328.794 −0.867529 −0.433765 0.901026i \(-0.642815\pi\)
−0.433765 + 0.901026i \(0.642815\pi\)
\(380\) 8.38251i 0.0220592i
\(381\) 109.284i 0.286835i
\(382\) 748.540i 1.95953i
\(383\) −512.859 −1.33906 −0.669529 0.742786i \(-0.733504\pi\)
−0.669529 + 0.742786i \(0.733504\pi\)
\(384\) 73.0972i 0.190357i
\(385\) −2.42139 + 21.8036i −0.00628933 + 0.0566326i
\(386\) −340.985 −0.883381
\(387\) 292.106i 0.754796i
\(388\) 51.3921 0.132454
\(389\) 442.677 1.13799 0.568993 0.822342i \(-0.307333\pi\)
0.568993 + 0.822342i \(0.307333\pi\)
\(390\) −13.7589 −0.0352794
\(391\) 5.15633i 0.0131875i
\(392\) 285.461i 0.728218i
\(393\) 29.4972i 0.0750564i
\(394\) −598.639 −1.51939
\(395\) 23.3160i 0.0590279i
\(396\) −46.5752 5.17241i −0.117614 0.0130616i
\(397\) 309.841 0.780455 0.390228 0.920718i \(-0.372396\pi\)
0.390228 + 0.920718i \(0.372396\pi\)
\(398\) 105.572i 0.265256i
\(399\) −45.8998 −0.115037
\(400\) 436.139 1.09035
\(401\) 217.187 0.541614 0.270807 0.962634i \(-0.412710\pi\)
0.270807 + 0.962634i \(0.412710\pi\)
\(402\) 44.8211i 0.111495i
\(403\) 139.443i 0.346013i
\(404\) 52.7731i 0.130626i
\(405\) −45.4401 −0.112198
\(406\) 192.304i 0.473656i
\(407\) −329.585 36.6021i −0.809792 0.0899314i
\(408\) −3.99799 −0.00979900
\(409\) 565.456i 1.38253i 0.722600 + 0.691266i \(0.242947\pi\)
−0.722600 + 0.691266i \(0.757053\pi\)
\(410\) −75.8250 −0.184939
\(411\) 105.286 0.256170
\(412\) 8.69560 0.0211058
\(413\) 271.076i 0.656359i
\(414\) 88.8912i 0.214713i
\(415\) 7.33882i 0.0176839i
\(416\) 164.733 0.395993
\(417\) 32.4509i 0.0778199i
\(418\) 652.149 + 72.4245i 1.56017 + 0.173264i
\(419\) −629.101 −1.50143 −0.750717 0.660624i \(-0.770292\pi\)
−0.750717 + 0.660624i \(0.770292\pi\)
\(420\) 0.485171i 0.00115517i
\(421\) −323.129 −0.767528 −0.383764 0.923431i \(-0.625372\pi\)
−0.383764 + 0.923431i \(0.625372\pi\)
\(422\) −700.362 −1.65963
\(423\) −252.889 −0.597846
\(424\) 272.336i 0.642301i
\(425\) 26.4773i 0.0622996i
\(426\) 123.934i 0.290926i
\(427\) 289.705 0.678467
\(428\) 22.3147i 0.0521371i
\(429\) 12.8990 116.149i 0.0300675 0.270744i
\(430\) 43.2331 0.100542
\(431\) 49.8931i 0.115761i −0.998324 0.0578806i \(-0.981566\pi\)
0.998324 0.0578806i \(-0.0184343\pi\)
\(432\) −157.084 −0.363621
\(433\) −590.727 −1.36427 −0.682133 0.731228i \(-0.738947\pi\)
−0.682133 + 0.731228i \(0.738947\pi\)
\(434\) −45.3158 −0.104414
\(435\) 8.50309i 0.0195473i
\(436\) 69.9020i 0.160326i
\(437\) 135.054i 0.309049i
\(438\) 24.6126 0.0561933
\(439\) 403.320i 0.918724i −0.888249 0.459362i \(-0.848078\pi\)
0.888249 0.459362i \(-0.151922\pi\)
\(440\) 5.52414 49.7424i 0.0125549 0.113051i
\(441\) −335.663 −0.761141
\(442\) 48.4211i 0.109550i
\(443\) 741.896 1.67471 0.837355 0.546660i \(-0.184101\pi\)
0.837355 + 0.546660i \(0.184101\pi\)
\(444\) 7.33391 0.0165178
\(445\) −37.5344 −0.0843470
\(446\) 522.855i 1.17232i
\(447\) 49.7857i 0.111377i
\(448\) 177.542i 0.396300i
\(449\) 233.596 0.520259 0.260130 0.965574i \(-0.416235\pi\)
0.260130 + 0.965574i \(0.416235\pi\)
\(450\) 456.448i 1.01433i
\(451\) 71.0856 640.093i 0.157618 1.41928i
\(452\) −76.1098 −0.168385
\(453\) 3.28395i 0.00724933i
\(454\) −718.463 −1.58252
\(455\) −42.4017 −0.0931906
\(456\) 104.715 0.229639
\(457\) 152.527i 0.333757i −0.985977 0.166879i \(-0.946631\pi\)
0.985977 0.166879i \(-0.0533688\pi\)
\(458\) 514.832i 1.12409i
\(459\) 9.53632i 0.0207763i
\(460\) 1.42756 0.00310338
\(461\) 611.144i 1.32569i 0.748756 + 0.662846i \(0.230652\pi\)
−0.748756 + 0.662846i \(0.769348\pi\)
\(462\) 37.7457 + 4.19185i 0.0817007 + 0.00907327i
\(463\) 15.9892 0.0345338 0.0172669 0.999851i \(-0.494503\pi\)
0.0172669 + 0.999851i \(0.494503\pi\)
\(464\) 492.922i 1.06233i
\(465\) −2.00372 −0.00430908
\(466\) 142.708 0.306239
\(467\) −4.89271 −0.0104769 −0.00523845 0.999986i \(-0.501667\pi\)
−0.00523845 + 0.999986i \(0.501667\pi\)
\(468\) 90.5756i 0.193538i
\(469\) 138.128i 0.294515i
\(470\) 37.4288i 0.0796357i
\(471\) −102.622 −0.217881
\(472\) 618.430i 1.31023i
\(473\) −40.5309 + 364.962i −0.0856889 + 0.771590i
\(474\) 40.3641 0.0851562
\(475\) 693.493i 1.45999i
\(476\) 1.70744 0.00358705
\(477\) −320.229 −0.671340
\(478\) −696.963 −1.45808
\(479\) 59.2560i 0.123708i −0.998085 0.0618538i \(-0.980299\pi\)
0.998085 0.0618538i \(-0.0197013\pi\)
\(480\) 2.36712i 0.00493150i
\(481\) 640.950i 1.33254i
\(482\) 187.861 0.389753
\(483\) 7.81681i 0.0161839i
\(484\) −57.4742 12.9250i −0.118748 0.0267045i
\(485\) 64.5394 0.133071
\(486\) 247.755i 0.509783i
\(487\) −582.522 −1.19614 −0.598072 0.801442i \(-0.704066\pi\)
−0.598072 + 0.801442i \(0.704066\pi\)
\(488\) −660.931 −1.35437
\(489\) 92.0058 0.188151
\(490\) 49.6798i 0.101387i
\(491\) 234.231i 0.477048i −0.971137 0.238524i \(-0.923336\pi\)
0.971137 0.238524i \(-0.0766636\pi\)
\(492\) 14.2433i 0.0289498i
\(493\) −29.9245 −0.0606988
\(494\) 1268.25i 2.56730i
\(495\) −58.4902 6.49563i −0.118162 0.0131225i
\(496\) 116.155 0.234184
\(497\) 381.936i 0.768482i
\(498\) −12.7048 −0.0255116
\(499\) −270.816 −0.542717 −0.271358 0.962478i \(-0.587473\pi\)
−0.271358 + 0.962478i \(0.587473\pi\)
\(500\) −14.7720 −0.0295440
\(501\) 17.6496i 0.0352288i
\(502\) 56.9080i 0.113363i
\(503\) 192.186i 0.382080i 0.981582 + 0.191040i \(0.0611861\pi\)
−0.981582 + 0.191040i \(0.938814\pi\)
\(504\) −212.402 −0.421432
\(505\) 66.2737i 0.131235i
\(506\) −12.3340 + 111.062i −0.0243755 + 0.219490i
\(507\) 141.430 0.278955
\(508\) 106.478i 0.209602i
\(509\) 20.0308 0.0393532 0.0196766 0.999806i \(-0.493736\pi\)
0.0196766 + 0.999806i \(0.493736\pi\)
\(510\) 0.695785 0.00136428
\(511\) 75.8502 0.148435
\(512\) 389.954i 0.761629i
\(513\) 249.775i 0.486891i
\(514\) 432.712i 0.841852i
\(515\) 10.9201 0.0212041
\(516\) 8.12111i 0.0157386i
\(517\) −315.964 35.0893i −0.611148 0.0678710i
\(518\) 208.293 0.402111
\(519\) 86.8681i 0.167376i
\(520\) 96.7348 0.186029
\(521\) 732.700 1.40633 0.703167 0.711025i \(-0.251769\pi\)
0.703167 + 0.711025i \(0.251769\pi\)
\(522\) −515.875 −0.988267
\(523\) 242.201i 0.463100i 0.972823 + 0.231550i \(0.0743797\pi\)
−0.972823 + 0.231550i \(0.925620\pi\)
\(524\) 28.7397i 0.0548468i
\(525\) 40.1387i 0.0764546i
\(526\) 762.041 1.44875
\(527\) 7.05160i 0.0133806i
\(528\) −96.7514 10.7447i −0.183241 0.0203499i
\(529\) 23.0000 0.0434783
\(530\) 47.3955i 0.0894255i
\(531\) 727.189 1.36947
\(532\) −44.7212 −0.0840623
\(533\) 1244.80 2.33546
\(534\) 64.9786i 0.121683i
\(535\) 28.0233i 0.0523800i
\(536\) 315.123i 0.587916i
\(537\) 109.536 0.203977
\(538\) 339.432i 0.630915i
\(539\) −419.383 46.5746i −0.778077 0.0864093i
\(540\) 2.64018 0.00488922
\(541\) 471.642i 0.871797i 0.899996 + 0.435899i \(0.143569\pi\)
−0.899996 + 0.435899i \(0.856431\pi\)
\(542\) −315.228 −0.581602
\(543\) −165.569 −0.304916
\(544\) −8.33048 −0.0153134
\(545\) 87.7845i 0.161073i
\(546\) 73.4047i 0.134441i
\(547\) 150.848i 0.275773i −0.990448 0.137886i \(-0.955969\pi\)
0.990448 0.137886i \(-0.0440309\pi\)
\(548\) 102.582 0.187194
\(549\) 777.164i 1.41560i
\(550\) 63.3340 570.294i 0.115153 1.03690i
\(551\) 783.782 1.42247
\(552\) 17.8332i 0.0323065i
\(553\) 124.392 0.224941
\(554\) 547.611 0.988467
\(555\) 9.21009 0.0165948
\(556\) 31.6176i 0.0568662i
\(557\) 225.525i 0.404893i −0.979293 0.202446i \(-0.935111\pi\)
0.979293 0.202446i \(-0.0648892\pi\)
\(558\) 121.564i 0.217857i
\(559\) −709.747 −1.26967
\(560\) 35.3203i 0.0630720i
\(561\) −0.652295 + 5.87362i −0.00116274 + 0.0104699i
\(562\) −473.475 −0.842483
\(563\) 360.017i 0.639463i −0.947508 0.319731i \(-0.896407\pi\)
0.947508 0.319731i \(-0.103593\pi\)
\(564\) 7.03080 0.0124660
\(565\) −95.5805 −0.169169
\(566\) 35.0703 0.0619616
\(567\) 242.425i 0.427558i
\(568\) 871.344i 1.53406i
\(569\) 756.606i 1.32971i 0.746971 + 0.664856i \(0.231507\pi\)
−0.746971 + 0.664856i \(0.768493\pi\)
\(570\) −18.2240 −0.0319719
\(571\) 208.680i 0.365464i 0.983163 + 0.182732i \(0.0584940\pi\)
−0.983163 + 0.182732i \(0.941506\pi\)
\(572\) 12.5677 113.167i 0.0219715 0.197844i
\(573\) 176.580 0.308168
\(574\) 404.530i 0.704757i
\(575\) −118.103 −0.205397
\(576\) 476.275 0.826866
\(577\) 61.4553 0.106508 0.0532542 0.998581i \(-0.483041\pi\)
0.0532542 + 0.998581i \(0.483041\pi\)
\(578\) 609.717i 1.05487i
\(579\) 80.4383i 0.138926i
\(580\) 8.28474i 0.0142840i
\(581\) −39.1530 −0.0673890
\(582\) 111.729i 0.191974i
\(583\) −400.100 44.4331i −0.686278 0.0762146i
\(584\) −173.044 −0.296308
\(585\) 113.747i 0.194439i
\(586\) 75.7490 0.129265
\(587\) 205.302 0.349747 0.174874 0.984591i \(-0.444048\pi\)
0.174874 + 0.984591i \(0.444048\pi\)
\(588\) 9.33209 0.0158709
\(589\) 184.695i 0.313574i
\(590\) 107.628i 0.182420i
\(591\) 141.219i 0.238949i
\(592\) −533.906 −0.901869
\(593\) 751.185i 1.26675i 0.773844 + 0.633377i \(0.218332\pi\)
−0.773844 + 0.633377i \(0.781668\pi\)
\(594\) −22.8110 + 205.403i −0.0384024 + 0.345796i
\(595\) 2.14424 0.00360376
\(596\) 48.5073i 0.0813880i
\(597\) 24.9043 0.0417158
\(598\) −215.984 −0.361178
\(599\) −445.534 −0.743797 −0.371898 0.928273i \(-0.621293\pi\)
−0.371898 + 0.928273i \(0.621293\pi\)
\(600\) 91.5719i 0.152620i
\(601\) 497.121i 0.827157i 0.910469 + 0.413578i \(0.135721\pi\)
−0.910469 + 0.413578i \(0.864279\pi\)
\(602\) 230.651i 0.383141i
\(603\) 370.541 0.614496
\(604\) 3.19962i 0.00529738i
\(605\) −72.1774 16.2315i −0.119301 0.0268289i
\(606\) 114.731 0.189325
\(607\) 493.272i 0.812639i 0.913731 + 0.406320i \(0.133188\pi\)
−0.913731 + 0.406320i \(0.866812\pi\)
\(608\) 218.192 0.358868
\(609\) 45.3645 0.0744901
\(610\) 115.024 0.188564
\(611\) 614.459i 1.00566i
\(612\) 4.58037i 0.00748427i
\(613\) 45.9183i 0.0749075i −0.999298 0.0374537i \(-0.988075\pi\)
0.999298 0.0374537i \(-0.0119247\pi\)
\(614\) 1089.75 1.77484
\(615\) 17.8871i 0.0290847i
\(616\) −265.378 29.4716i −0.430809 0.0478435i
\(617\) −114.129 −0.184974 −0.0924870 0.995714i \(-0.529482\pi\)
−0.0924870 + 0.995714i \(0.529482\pi\)
\(618\) 18.9046i 0.0305900i
\(619\) −5.04916 −0.00815697 −0.00407848 0.999992i \(-0.501298\pi\)
−0.00407848 + 0.999992i \(0.501298\pi\)
\(620\) −1.95227 −0.00314882
\(621\) 42.5371 0.0684978
\(622\) 665.376i 1.06974i
\(623\) 200.248i 0.321426i
\(624\) 188.154i 0.301529i
\(625\) 597.104 0.955366
\(626\) 663.412i 1.05976i
\(627\) 17.0849 153.842i 0.0272486 0.245362i
\(628\) −99.9869 −0.159215
\(629\) 32.4126i 0.0515303i
\(630\) 36.9650 0.0586746
\(631\) 471.546 0.747300 0.373650 0.927570i \(-0.378106\pi\)
0.373650 + 0.927570i \(0.378106\pi\)
\(632\) −283.787 −0.449030
\(633\) 165.215i 0.261003i
\(634\) 940.842i 1.48398i
\(635\) 133.717i 0.210578i
\(636\) 8.90300 0.0139984
\(637\) 815.582i 1.28035i
\(638\) −644.543 71.5797i −1.01026 0.112194i
\(639\) −1024.58 −1.60341
\(640\) 89.4399i 0.139750i
\(641\) 656.705 1.02450 0.512250 0.858836i \(-0.328812\pi\)
0.512250 + 0.858836i \(0.328812\pi\)
\(642\) 48.5132 0.0755657
\(643\) 1010.86 1.57210 0.786050 0.618162i \(-0.212123\pi\)
0.786050 + 0.618162i \(0.212123\pi\)
\(644\) 7.61609i 0.0118262i
\(645\) 10.1987i 0.0158119i
\(646\) 64.1347i 0.0992797i
\(647\) 641.187 0.991015 0.495508 0.868604i \(-0.334982\pi\)
0.495508 + 0.868604i \(0.334982\pi\)
\(648\) 553.066i 0.853498i
\(649\) 908.562 + 100.900i 1.39994 + 0.155471i
\(650\) 1109.06 1.70625
\(651\) 10.6900i 0.0164208i
\(652\) 89.6432 0.137490
\(653\) 325.626 0.498661 0.249330 0.968418i \(-0.419789\pi\)
0.249330 + 0.968418i \(0.419789\pi\)
\(654\) 151.970 0.232370
\(655\) 36.0920i 0.0551023i
\(656\) 1036.91i 1.58065i
\(657\) 203.476i 0.309704i
\(658\) 199.685 0.303472
\(659\) 344.536i 0.522816i 0.965228 + 0.261408i \(0.0841868\pi\)
−0.965228 + 0.261408i \(0.915813\pi\)
\(660\) 1.62614 + 0.180591i 0.00246385 + 0.000273623i
\(661\) −88.5609 −0.133980 −0.0669901 0.997754i \(-0.521340\pi\)
−0.0669901 + 0.997754i \(0.521340\pi\)
\(662\) 96.1606i 0.145258i
\(663\) −11.4225 −0.0172285
\(664\) 89.3232 0.134523
\(665\) −56.1619 −0.0844539
\(666\) 558.768i 0.838991i
\(667\) 133.479i 0.200119i
\(668\) 17.1964i 0.0257431i
\(669\) −123.341 −0.184367
\(670\) 54.8419i 0.0818536i
\(671\) −107.835 + 971.002i −0.160707 + 1.44710i
\(672\) 12.6287 0.0187927
\(673\) 801.545i 1.19100i −0.803354 0.595501i \(-0.796953\pi\)
0.803354 0.595501i \(-0.203047\pi\)
\(674\) −1298.33 −1.92631
\(675\) −218.425 −0.323592
\(676\) 137.798 0.203844
\(677\) 278.657i 0.411606i −0.978593 0.205803i \(-0.934019\pi\)
0.978593 0.205803i \(-0.0659806\pi\)
\(678\) 165.466i 0.244051i
\(679\) 344.321i 0.507100i
\(680\) −4.89184 −0.00719389
\(681\) 169.485i 0.248877i
\(682\) 16.8675 151.884i 0.0247324 0.222704i
\(683\) 89.2038 0.130606 0.0653029 0.997865i \(-0.479199\pi\)
0.0653029 + 0.997865i \(0.479199\pi\)
\(684\) 119.969i 0.175393i
\(685\) 128.825 0.188066
\(686\) 603.604 0.879889
\(687\) −121.449 −0.176781
\(688\) 591.214i 0.859323i
\(689\) 778.081i 1.12929i
\(690\) 3.10357i 0.00449793i
\(691\) 880.358 1.27403 0.637017 0.770850i \(-0.280168\pi\)
0.637017 + 0.770850i \(0.280168\pi\)
\(692\) 84.6374i 0.122308i
\(693\) −34.6545 + 312.049i −0.0500066 + 0.450286i
\(694\) 771.347 1.11145
\(695\) 39.7061i 0.0571311i
\(696\) −103.494 −0.148698
\(697\) −62.9490 −0.0903143
\(698\) −683.857 −0.979738
\(699\) 33.6647i 0.0481612i
\(700\) 39.1080i 0.0558685i
\(701\) 1110.02i 1.58348i −0.610860 0.791738i \(-0.709176\pi\)
0.610860 0.791738i \(-0.290824\pi\)
\(702\) −399.450 −0.569017
\(703\) 848.950i 1.20761i
\(704\) 595.066 + 66.0850i 0.845264 + 0.0938708i
\(705\) 8.82944 0.0125240
\(706\) 327.290i 0.463584i
\(707\) 353.574 0.500104
\(708\) −20.2173 −0.0285555
\(709\) 553.629 0.780860 0.390430 0.920633i \(-0.372326\pi\)
0.390430 + 0.920633i \(0.372326\pi\)
\(710\) 151.643i 0.213582i
\(711\) 333.695i 0.469331i
\(712\) 456.844i 0.641635i
\(713\) −31.4539 −0.0441149
\(714\) 3.71205i 0.00519895i
\(715\) 15.7828 142.117i 0.0220739 0.198765i
\(716\) 106.723 0.149055
\(717\) 164.413i 0.229307i
\(718\) −1399.03 −1.94851
\(719\) −90.1655 −0.125404 −0.0627020 0.998032i \(-0.519972\pi\)
−0.0627020 + 0.998032i \(0.519972\pi\)
\(720\) −94.7503 −0.131598
\(721\) 58.2595i 0.0808037i
\(722\) 915.137i 1.26750i
\(723\) 44.3163i 0.0612950i
\(724\) −161.318 −0.222815
\(725\) 685.405i 0.945386i
\(726\) −28.0995 + 124.952i −0.0387046 + 0.172110i
\(727\) −1277.14 −1.75673 −0.878365 0.477990i \(-0.841365\pi\)
−0.878365 + 0.477990i \(0.841365\pi\)
\(728\) 516.086i 0.708909i
\(729\) −610.442 −0.837369
\(730\) 30.1154 0.0412540
\(731\) 35.8917 0.0490994
\(732\) 21.6067i 0.0295173i
\(733\) 128.376i 0.175138i −0.996158 0.0875690i \(-0.972090\pi\)
0.996158 0.0875690i \(-0.0279098\pi\)
\(734\) 1071.18i 1.45937i
\(735\) 11.7195 0.0159448
\(736\) 37.1584i 0.0504870i
\(737\) 462.960 + 51.4140i 0.628169 + 0.0697613i
\(738\) −1085.19 −1.47045
\(739\) 984.333i 1.33198i −0.745961 0.665990i \(-0.768009\pi\)
0.745961 0.665990i \(-0.231991\pi\)
\(740\) 8.97358 0.0121265
\(741\) 299.179 0.403750
\(742\) 252.858 0.340779
\(743\) 4.86703i 0.00655051i 0.999995 + 0.00327525i \(0.00104255\pi\)
−0.999995 + 0.00327525i \(0.998957\pi\)
\(744\) 24.3880i 0.0327796i
\(745\) 60.9165i 0.0817672i
\(746\) −424.680 −0.569276
\(747\) 105.032i 0.140605i
\(748\) −0.635545 + 5.72279i −0.000849659 + 0.00765079i
\(749\) 149.506 0.199607
\(750\) 32.1151i 0.0428201i
\(751\) −113.224 −0.150764 −0.0753819 0.997155i \(-0.524018\pi\)
−0.0753819 + 0.997155i \(0.524018\pi\)
\(752\) −511.840 −0.680638
\(753\) 13.4246 0.0178281
\(754\) 1253.45i 1.66241i
\(755\) 4.01815i 0.00532206i
\(756\) 14.0855i 0.0186316i
\(757\) 787.825 1.04072 0.520360 0.853947i \(-0.325798\pi\)
0.520360 + 0.853947i \(0.325798\pi\)
\(758\) 696.457i 0.918809i
\(759\) 26.1995 + 2.90959i 0.0345185 + 0.00383345i
\(760\) 128.127 0.168588
\(761\) 1257.62i 1.65259i −0.563239 0.826294i \(-0.690445\pi\)
0.563239 0.826294i \(-0.309555\pi\)
\(762\) −231.488 −0.303790
\(763\) 468.335 0.613808
\(764\) 172.046 0.225191
\(765\) 5.75213i 0.00751913i
\(766\) 1086.35i 1.41821i
\(767\) 1766.90i 2.30365i
\(768\) −46.0450 −0.0599545
\(769\) 1245.32i 1.61940i −0.586846 0.809698i \(-0.699631\pi\)
0.586846 0.809698i \(-0.300369\pi\)
\(770\) 46.1847 + 5.12904i 0.0599802 + 0.00666110i
\(771\) −102.077 −0.132395
\(772\) 78.3727i 0.101519i
\(773\) 469.468 0.607332 0.303666 0.952778i \(-0.401789\pi\)
0.303666 + 0.952778i \(0.401789\pi\)
\(774\) 618.744 0.799411
\(775\) 161.513 0.208404
\(776\) 785.530i 1.01228i
\(777\) 49.1363i 0.0632385i
\(778\) 937.687i 1.20525i
\(779\) 1648.76 2.11651
\(780\) 3.16238i 0.00405434i
\(781\) −1280.13 142.165i −1.63909 0.182029i
\(782\) 10.9222 0.0139671
\(783\) 246.862i 0.315277i
\(784\) −679.374 −0.866548
\(785\) −125.566 −0.159957
\(786\) 62.4815 0.0794930
\(787\) 1220.73i 1.55112i 0.631275 + 0.775559i \(0.282532\pi\)
−0.631275 + 0.775559i \(0.717468\pi\)
\(788\) 137.592i 0.174610i
\(789\) 179.765i 0.227839i
\(790\) 49.3884 0.0625170
\(791\) 509.927i 0.644661i
\(792\) 79.0605 711.904i 0.0998239 0.898869i
\(793\) −1888.32 −2.38124
\(794\) 656.311i 0.826588i
\(795\) 11.1806 0.0140636
\(796\) 24.2648 0.0304834
\(797\) 532.395 0.667998 0.333999 0.942573i \(-0.391602\pi\)
0.333999 + 0.942573i \(0.391602\pi\)
\(798\) 97.2259i 0.121837i
\(799\) 31.0730i 0.0388898i
\(800\) 190.805i 0.238507i
\(801\) −537.186 −0.670644
\(802\) 460.050i 0.573629i
\(803\) −28.2331 + 254.226i −0.0351595 + 0.316595i
\(804\) −10.3018 −0.0128131
\(805\) 9.56446i 0.0118813i
\(806\) 295.372 0.366466
\(807\) 80.0720 0.0992218
\(808\) −806.639 −0.998316
\(809\) 905.238i 1.11896i 0.828844 + 0.559479i \(0.188999\pi\)
−0.828844 + 0.559479i \(0.811001\pi\)
\(810\) 96.2521i 0.118830i
\(811\) 529.844i 0.653321i −0.945142 0.326661i \(-0.894077\pi\)
0.945142 0.326661i \(-0.105923\pi\)
\(812\) 44.1996 0.0544330
\(813\) 74.3622i 0.0914664i
\(814\) −77.5313 + 698.134i −0.0952473 + 0.857659i
\(815\) 112.576 0.138130
\(816\) 9.51488i 0.0116604i
\(817\) −940.073 −1.15064
\(818\) 1197.76 1.46425
\(819\) −606.846 −0.740959
\(820\) 17.4278i 0.0212534i
\(821\) 970.619i 1.18224i 0.806584 + 0.591120i \(0.201314\pi\)
−0.806584 + 0.591120i \(0.798686\pi\)
\(822\) 223.018i 0.271312i
\(823\) 584.559 0.710278 0.355139 0.934813i \(-0.384433\pi\)
0.355139 + 0.934813i \(0.384433\pi\)
\(824\) 132.913i 0.161302i
\(825\) −134.532 14.9405i −0.163069 0.0181097i
\(826\) −574.199 −0.695156
\(827\) 711.039i 0.859781i −0.902881 0.429891i \(-0.858552\pi\)
0.902881 0.429891i \(-0.141448\pi\)
\(828\) 20.4309 0.0246750
\(829\) −1293.52 −1.56033 −0.780166 0.625572i \(-0.784866\pi\)
−0.780166 + 0.625572i \(0.784866\pi\)
\(830\) −15.5452 −0.0187292
\(831\) 129.181i 0.155453i
\(832\) 1157.23i 1.39091i
\(833\) 41.2437i 0.0495122i
\(834\) −68.7381 −0.0824198
\(835\) 21.5957i 0.0258631i
\(836\) 16.6462 149.891i 0.0199117 0.179296i
\(837\) −58.1721 −0.0695008
\(838\) 1332.57i 1.59018i
\(839\) −811.091 −0.966735 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(840\) 7.41586 0.00882841
\(841\) 66.3600 0.0789060
\(842\) 684.459i 0.812897i
\(843\) 111.693i 0.132494i
\(844\) 160.973i 0.190726i
\(845\) 173.050 0.204793
\(846\) 535.674i 0.633185i
\(847\) −86.5960 + 385.070i −0.102238 + 0.454628i
\(848\) −648.135 −0.764311
\(849\) 8.27306i 0.00974447i
\(850\) −56.0848 −0.0659821
\(851\) 144.578 0.169891
\(852\) 28.4853 0.0334335
\(853\) 662.420i 0.776577i 0.921538 + 0.388288i \(0.126934\pi\)
−0.921538 + 0.388288i \(0.873066\pi\)
\(854\) 613.660i 0.718571i
\(855\) 150.660i 0.176210i
\(856\) −341.081 −0.398459
\(857\) 538.833i 0.628744i 0.949300 + 0.314372i \(0.101794\pi\)
−0.949300 + 0.314372i \(0.898206\pi\)
\(858\) −246.030 27.3228i −0.286748 0.0318448i
\(859\) 678.546 0.789926 0.394963 0.918697i \(-0.370757\pi\)
0.394963 + 0.918697i \(0.370757\pi\)
\(860\) 9.93678i 0.0115544i
\(861\) 95.4285 0.110835
\(862\) −105.685 −0.122604
\(863\) 661.355 0.766344 0.383172 0.923677i \(-0.374832\pi\)
0.383172 + 0.923677i \(0.374832\pi\)
\(864\) 68.7223i 0.0795396i
\(865\) 106.290i 0.122878i
\(866\) 1251.29i 1.44491i
\(867\) −143.832 −0.165896
\(868\) 10.4155i 0.0119994i
\(869\) −46.3014 + 416.924i −0.0532813 + 0.479774i
\(870\) 18.0114 0.0207028
\(871\) 900.326i 1.03367i
\(872\) −1068.45 −1.22529
\(873\) 923.676 1.05805
\(874\) −286.075 −0.327317
\(875\) 98.9708i 0.113110i
\(876\) 5.65702i 0.00645778i
\(877\) 377.585i 0.430542i −0.976554 0.215271i \(-0.930937\pi\)
0.976554 0.215271i \(-0.0690634\pi\)
\(878\) −854.320 −0.973030
\(879\) 17.8692i 0.0203290i
\(880\) −118.383 13.1470i −0.134526 0.0149398i
\(881\) −67.1935 −0.0762696 −0.0381348 0.999273i \(-0.512142\pi\)
−0.0381348 + 0.999273i \(0.512142\pi\)
\(882\) 711.009i 0.806132i
\(883\) 322.940 0.365731 0.182865 0.983138i \(-0.441463\pi\)
0.182865 + 0.983138i \(0.441463\pi\)
\(884\) −11.1292 −0.0125896
\(885\) −25.3893 −0.0286885
\(886\) 1571.50i 1.77370i
\(887\) 478.863i 0.539868i 0.962879 + 0.269934i \(0.0870019\pi\)
−0.962879 + 0.269934i \(0.912998\pi\)
\(888\) 112.099i 0.126238i
\(889\) −713.389 −0.802462
\(890\) 79.5061i 0.0893327i
\(891\) −812.533 90.2359i −0.911934 0.101275i
\(892\) −120.174 −0.134724
\(893\) 813.863i 0.911380i
\(894\) −105.457 −0.117961
\(895\) 134.025 0.149749
\(896\) −477.167 −0.532552
\(897\) 50.9506i 0.0568011i
\(898\) 494.808i 0.551012i
\(899\) 182.541i 0.203049i
\(900\) −104.911 −0.116568
\(901\) 39.3472i 0.0436706i
\(902\) −1355.86 150.575i −1.50317 0.166934i
\(903\) −54.4105 −0.0602552
\(904\) 1163.34i 1.28688i
\(905\) −202.587 −0.223853
\(906\) 6.95612 0.00767784
\(907\) 736.925 0.812486 0.406243 0.913765i \(-0.366839\pi\)
0.406243 + 0.913765i \(0.366839\pi\)
\(908\) 165.133i 0.181865i
\(909\) 948.497i 1.04345i
\(910\) 89.8162i 0.0986991i
\(911\) −140.994 −0.154769 −0.0773844 0.997001i \(-0.524657\pi\)
−0.0773844 + 0.997001i \(0.524657\pi\)
\(912\) 249.214i 0.273260i
\(913\) 14.5736 131.229i 0.0159623 0.143733i
\(914\) −323.086 −0.353486
\(915\) 27.1341i 0.0296548i
\(916\) −118.330 −0.129181
\(917\) 192.553 0.209981
\(918\) 20.2000 0.0220044
\(919\) 1334.18i 1.45177i −0.687815 0.725886i \(-0.741430\pi\)
0.687815 0.725886i \(-0.258570\pi\)
\(920\) 21.8202i 0.0237177i
\(921\) 257.072i 0.279123i
\(922\) 1294.54 1.40405
\(923\) 2489.49i 2.69717i
\(924\) 0.963464 8.67555i 0.00104271 0.00938913i
\(925\) −742.393 −0.802587
\(926\) 33.8686i 0.0365751i
\(927\) 156.287 0.168594
\(928\) −215.647 −0.232378
\(929\) 922.321 0.992811 0.496405 0.868091i \(-0.334653\pi\)
0.496405 + 0.868091i \(0.334653\pi\)
\(930\) 4.24433i 0.00456379i
\(931\) 1080.25i 1.16031i
\(932\) 32.8002i 0.0351933i
\(933\) −156.962 −0.168234
\(934\) 10.3638i 0.0110962i
\(935\) −0.798132 + 7.18681i −0.000853617 + 0.00768643i
\(936\) 1384.45 1.47911
\(937\) 1556.45i 1.66110i 0.556945 + 0.830549i \(0.311973\pi\)
−0.556945 + 0.830549i \(0.688027\pi\)
\(938\) −292.585 −0.311924
\(939\) −156.499 −0.166665
\(940\) 8.60271 0.00915182
\(941\) 788.312i 0.837738i 0.908047 + 0.418869i \(0.137573\pi\)
−0.908047 + 0.418869i \(0.862427\pi\)
\(942\) 217.376i 0.230760i
\(943\) 280.787i 0.297759i
\(944\) 1471.81 1.55912
\(945\) 17.6889i 0.0187184i
\(946\) 773.070 + 85.8533i 0.817199 + 0.0907540i
\(947\) −426.391 −0.450255 −0.225127 0.974329i \(-0.572280\pi\)
−0.225127 + 0.974329i \(0.572280\pi\)
\(948\) 9.27735i 0.00978624i
\(949\) −494.397 −0.520967
\(950\) 1468.97 1.54629
\(951\) 221.944 0.233380
\(952\) 26.0982i 0.0274141i
\(953\) 1844.38i 1.93534i −0.252222 0.967669i \(-0.581161\pi\)
0.252222 0.967669i \(-0.418839\pi\)
\(954\) 678.316i 0.711023i
\(955\) 216.059 0.226240
\(956\) 160.191i 0.167564i
\(957\) −16.8856 + 152.047i −0.0176443 + 0.158879i
\(958\) −125.517 −0.131020
\(959\) 687.288i 0.716672i
\(960\) −16.6288 −0.0173217
\(961\) −917.985 −0.955239
\(962\) −1357.67 −1.41130
\(963\) 401.064i 0.416474i
\(964\) 43.1783i 0.0447908i
\(965\) 98.4222i 0.101992i
\(966\) −16.5577 −0.0171405
\(967\) 1190.35i 1.23097i −0.788149 0.615484i \(-0.788960\pi\)
0.788149 0.615484i \(-0.211040\pi\)
\(968\) 197.559 878.495i 0.204090 0.907536i
\(969\) −15.1293 −0.0156134
\(970\) 136.709i 0.140937i
\(971\) 1428.10 1.47075 0.735377 0.677658i \(-0.237005\pi\)
0.735377 + 0.677658i \(0.237005\pi\)
\(972\) 56.9444 0.0585848
\(973\) −211.834 −0.217712
\(974\) 1233.91i 1.26685i
\(975\) 261.627i 0.268335i
\(976\) 1572.96i 1.61164i
\(977\) 870.246 0.890733 0.445367 0.895348i \(-0.353073\pi\)
0.445367 + 0.895348i \(0.353073\pi\)
\(978\) 194.889i 0.199273i
\(979\) −671.169 74.5367i −0.685566 0.0761355i
\(980\) 11.4185 0.0116515
\(981\) 1256.36i 1.28069i
\(982\) −496.152 −0.505247
\(983\) −670.436 −0.682030 −0.341015 0.940058i \(-0.610771\pi\)
−0.341015 + 0.940058i \(0.610771\pi\)
\(984\) −217.710 −0.221250
\(985\) 172.792i 0.175423i
\(986\) 63.3866i 0.0642867i
\(987\) 47.1055i 0.0477260i
\(988\) 291.496 0.295036
\(989\) 160.096i 0.161877i
\(990\) −13.7592 + 123.895i −0.0138982 + 0.125147i
\(991\) 448.647 0.452722 0.226361 0.974044i \(-0.427317\pi\)
0.226361 + 0.974044i \(0.427317\pi\)
\(992\) 50.8164i 0.0512262i
\(993\) −22.6842 −0.0228442
\(994\) 809.024 0.813907
\(995\) 30.4723 0.0306254
\(996\) 2.92009i 0.00293182i
\(997\) 761.729i 0.764021i 0.924158 + 0.382010i \(0.124768\pi\)
−0.924158 + 0.382010i \(0.875232\pi\)
\(998\) 573.647i 0.574796i
\(999\) 267.387 0.267655
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.c.a.208.13 44
11.10 odd 2 inner 253.3.c.a.208.32 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.c.a.208.13 44 1.1 even 1 trivial
253.3.c.a.208.32 yes 44 11.10 odd 2 inner