Properties

Label 2523.2.a.r.1.8
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,2,Mod(1,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.58860\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.58860 q^{2} +1.00000 q^{3} +4.70087 q^{4} -1.14894 q^{5} +2.58860 q^{6} +2.76526 q^{7} +6.99148 q^{8} +1.00000 q^{9} -2.97416 q^{10} -4.35418 q^{11} +4.70087 q^{12} +5.62914 q^{13} +7.15816 q^{14} -1.14894 q^{15} +8.69643 q^{16} +2.41516 q^{17} +2.58860 q^{18} +1.87296 q^{19} -5.40103 q^{20} +2.76526 q^{21} -11.2712 q^{22} -8.82048 q^{23} +6.99148 q^{24} -3.67993 q^{25} +14.5716 q^{26} +1.00000 q^{27} +12.9991 q^{28} -2.97416 q^{30} +1.56053 q^{31} +8.52865 q^{32} -4.35418 q^{33} +6.25190 q^{34} -3.17713 q^{35} +4.70087 q^{36} +7.76330 q^{37} +4.84834 q^{38} +5.62914 q^{39} -8.03281 q^{40} +3.16072 q^{41} +7.15816 q^{42} -1.46397 q^{43} -20.4684 q^{44} -1.14894 q^{45} -22.8327 q^{46} +0.357351 q^{47} +8.69643 q^{48} +0.646666 q^{49} -9.52588 q^{50} +2.41516 q^{51} +26.4618 q^{52} -1.63498 q^{53} +2.58860 q^{54} +5.00270 q^{55} +19.3333 q^{56} +1.87296 q^{57} -4.85026 q^{59} -5.40103 q^{60} +1.55510 q^{61} +4.03961 q^{62} +2.76526 q^{63} +4.68444 q^{64} -6.46755 q^{65} -11.2712 q^{66} -9.66950 q^{67} +11.3534 q^{68} -8.82048 q^{69} -8.22432 q^{70} -8.18108 q^{71} +6.99148 q^{72} +11.3786 q^{73} +20.0961 q^{74} -3.67993 q^{75} +8.80452 q^{76} -12.0404 q^{77} +14.5716 q^{78} -8.13075 q^{79} -9.99170 q^{80} +1.00000 q^{81} +8.18185 q^{82} -0.481835 q^{83} +12.9991 q^{84} -2.77488 q^{85} -3.78965 q^{86} -30.4421 q^{88} -1.99621 q^{89} -2.97416 q^{90} +15.5660 q^{91} -41.4639 q^{92} +1.56053 q^{93} +0.925040 q^{94} -2.15192 q^{95} +8.52865 q^{96} +4.63516 q^{97} +1.67396 q^{98} -4.35418 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 9 q^{3} + 11 q^{4} - 4 q^{5} + 5 q^{6} + 5 q^{7} + 24 q^{8} + 9 q^{9} - q^{11} + 11 q^{12} + q^{13} + 9 q^{14} - 4 q^{15} + 35 q^{16} + 2 q^{17} + 5 q^{18} + 9 q^{19} - 18 q^{20} + 5 q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58860 1.83042 0.915210 0.402978i \(-0.132025\pi\)
0.915210 + 0.402978i \(0.132025\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.70087 2.35043
\(5\) −1.14894 −0.513823 −0.256911 0.966435i \(-0.582705\pi\)
−0.256911 + 0.966435i \(0.582705\pi\)
\(6\) 2.58860 1.05679
\(7\) 2.76526 1.04517 0.522585 0.852587i \(-0.324968\pi\)
0.522585 + 0.852587i \(0.324968\pi\)
\(8\) 6.99148 2.47186
\(9\) 1.00000 0.333333
\(10\) −2.97416 −0.940511
\(11\) −4.35418 −1.31283 −0.656417 0.754399i \(-0.727929\pi\)
−0.656417 + 0.754399i \(0.727929\pi\)
\(12\) 4.70087 1.35702
\(13\) 5.62914 1.56124 0.780621 0.625005i \(-0.214903\pi\)
0.780621 + 0.625005i \(0.214903\pi\)
\(14\) 7.15816 1.91310
\(15\) −1.14894 −0.296656
\(16\) 8.69643 2.17411
\(17\) 2.41516 0.585763 0.292881 0.956149i \(-0.405386\pi\)
0.292881 + 0.956149i \(0.405386\pi\)
\(18\) 2.58860 0.610140
\(19\) 1.87296 0.429686 0.214843 0.976649i \(-0.431076\pi\)
0.214843 + 0.976649i \(0.431076\pi\)
\(20\) −5.40103 −1.20771
\(21\) 2.76526 0.603429
\(22\) −11.2712 −2.40304
\(23\) −8.82048 −1.83920 −0.919598 0.392860i \(-0.871486\pi\)
−0.919598 + 0.392860i \(0.871486\pi\)
\(24\) 6.99148 1.42713
\(25\) −3.67993 −0.735986
\(26\) 14.5716 2.85773
\(27\) 1.00000 0.192450
\(28\) 12.9991 2.45660
\(29\) 0 0
\(30\) −2.97416 −0.543004
\(31\) 1.56053 0.280280 0.140140 0.990132i \(-0.455245\pi\)
0.140140 + 0.990132i \(0.455245\pi\)
\(32\) 8.52865 1.50767
\(33\) −4.35418 −0.757965
\(34\) 6.25190 1.07219
\(35\) −3.17713 −0.537032
\(36\) 4.70087 0.783478
\(37\) 7.76330 1.27628 0.638139 0.769921i \(-0.279705\pi\)
0.638139 + 0.769921i \(0.279705\pi\)
\(38\) 4.84834 0.786505
\(39\) 5.62914 0.901383
\(40\) −8.03281 −1.27010
\(41\) 3.16072 0.493622 0.246811 0.969064i \(-0.420617\pi\)
0.246811 + 0.969064i \(0.420617\pi\)
\(42\) 7.15816 1.10453
\(43\) −1.46397 −0.223254 −0.111627 0.993750i \(-0.535606\pi\)
−0.111627 + 0.993750i \(0.535606\pi\)
\(44\) −20.4684 −3.08573
\(45\) −1.14894 −0.171274
\(46\) −22.8327 −3.36650
\(47\) 0.357351 0.0521250 0.0260625 0.999660i \(-0.491703\pi\)
0.0260625 + 0.999660i \(0.491703\pi\)
\(48\) 8.69643 1.25522
\(49\) 0.646666 0.0923809
\(50\) −9.52588 −1.34716
\(51\) 2.41516 0.338190
\(52\) 26.4618 3.66960
\(53\) −1.63498 −0.224582 −0.112291 0.993675i \(-0.535819\pi\)
−0.112291 + 0.993675i \(0.535819\pi\)
\(54\) 2.58860 0.352264
\(55\) 5.00270 0.674563
\(56\) 19.3333 2.58352
\(57\) 1.87296 0.248079
\(58\) 0 0
\(59\) −4.85026 −0.631450 −0.315725 0.948851i \(-0.602248\pi\)
−0.315725 + 0.948851i \(0.602248\pi\)
\(60\) −5.40103 −0.697270
\(61\) 1.55510 0.199110 0.0995551 0.995032i \(-0.468258\pi\)
0.0995551 + 0.995032i \(0.468258\pi\)
\(62\) 4.03961 0.513030
\(63\) 2.76526 0.348390
\(64\) 4.68444 0.585555
\(65\) −6.46755 −0.802201
\(66\) −11.2712 −1.38739
\(67\) −9.66950 −1.18132 −0.590659 0.806922i \(-0.701132\pi\)
−0.590659 + 0.806922i \(0.701132\pi\)
\(68\) 11.3534 1.37680
\(69\) −8.82048 −1.06186
\(70\) −8.22432 −0.982994
\(71\) −8.18108 −0.970915 −0.485458 0.874260i \(-0.661347\pi\)
−0.485458 + 0.874260i \(0.661347\pi\)
\(72\) 6.99148 0.823954
\(73\) 11.3786 1.33177 0.665884 0.746055i \(-0.268054\pi\)
0.665884 + 0.746055i \(0.268054\pi\)
\(74\) 20.0961 2.33612
\(75\) −3.67993 −0.424922
\(76\) 8.80452 1.00995
\(77\) −12.0404 −1.37213
\(78\) 14.5716 1.64991
\(79\) −8.13075 −0.914781 −0.457391 0.889266i \(-0.651216\pi\)
−0.457391 + 0.889266i \(0.651216\pi\)
\(80\) −9.99170 −1.11711
\(81\) 1.00000 0.111111
\(82\) 8.18185 0.903535
\(83\) −0.481835 −0.0528882 −0.0264441 0.999650i \(-0.508418\pi\)
−0.0264441 + 0.999650i \(0.508418\pi\)
\(84\) 12.9991 1.41832
\(85\) −2.77488 −0.300978
\(86\) −3.78965 −0.408648
\(87\) 0 0
\(88\) −30.4421 −3.24514
\(89\) −1.99621 −0.211598 −0.105799 0.994388i \(-0.533740\pi\)
−0.105799 + 0.994388i \(0.533740\pi\)
\(90\) −2.97416 −0.313504
\(91\) 15.5660 1.63176
\(92\) −41.4639 −4.32291
\(93\) 1.56053 0.161820
\(94\) 0.925040 0.0954106
\(95\) −2.15192 −0.220782
\(96\) 8.52865 0.870452
\(97\) 4.63516 0.470629 0.235315 0.971919i \(-0.424388\pi\)
0.235315 + 0.971919i \(0.424388\pi\)
\(98\) 1.67396 0.169096
\(99\) −4.35418 −0.437611
\(100\) −17.2989 −1.72989
\(101\) −1.89907 −0.188964 −0.0944822 0.995527i \(-0.530120\pi\)
−0.0944822 + 0.995527i \(0.530120\pi\)
\(102\) 6.25190 0.619030
\(103\) −8.22122 −0.810061 −0.405030 0.914303i \(-0.632739\pi\)
−0.405030 + 0.914303i \(0.632739\pi\)
\(104\) 39.3560 3.85917
\(105\) −3.17713 −0.310056
\(106\) −4.23233 −0.411080
\(107\) 4.45778 0.430950 0.215475 0.976509i \(-0.430870\pi\)
0.215475 + 0.976509i \(0.430870\pi\)
\(108\) 4.70087 0.452341
\(109\) 17.5256 1.67865 0.839324 0.543631i \(-0.182951\pi\)
0.839324 + 0.543631i \(0.182951\pi\)
\(110\) 12.9500 1.23473
\(111\) 7.76330 0.736859
\(112\) 24.0479 2.27231
\(113\) 7.93117 0.746102 0.373051 0.927811i \(-0.378312\pi\)
0.373051 + 0.927811i \(0.378312\pi\)
\(114\) 4.84834 0.454089
\(115\) 10.1342 0.945021
\(116\) 0 0
\(117\) 5.62914 0.520414
\(118\) −12.5554 −1.15582
\(119\) 6.67855 0.612222
\(120\) −8.03281 −0.733292
\(121\) 7.95884 0.723531
\(122\) 4.02554 0.364455
\(123\) 3.16072 0.284993
\(124\) 7.33587 0.658780
\(125\) 9.97274 0.891989
\(126\) 7.15816 0.637700
\(127\) −3.35542 −0.297745 −0.148873 0.988856i \(-0.547564\pi\)
−0.148873 + 0.988856i \(0.547564\pi\)
\(128\) −4.93114 −0.435855
\(129\) −1.46397 −0.128896
\(130\) −16.7419 −1.46836
\(131\) −8.69320 −0.759528 −0.379764 0.925083i \(-0.623995\pi\)
−0.379764 + 0.925083i \(0.623995\pi\)
\(132\) −20.4684 −1.78155
\(133\) 5.17921 0.449095
\(134\) −25.0305 −2.16231
\(135\) −1.14894 −0.0988852
\(136\) 16.8856 1.44792
\(137\) 3.22382 0.275429 0.137715 0.990472i \(-0.456024\pi\)
0.137715 + 0.990472i \(0.456024\pi\)
\(138\) −22.8327 −1.94365
\(139\) −22.4884 −1.90744 −0.953721 0.300693i \(-0.902782\pi\)
−0.953721 + 0.300693i \(0.902782\pi\)
\(140\) −14.9352 −1.26226
\(141\) 0.357351 0.0300944
\(142\) −21.1776 −1.77718
\(143\) −24.5102 −2.04965
\(144\) 8.69643 0.724703
\(145\) 0 0
\(146\) 29.4548 2.43769
\(147\) 0.646666 0.0533361
\(148\) 36.4942 2.99981
\(149\) 1.28934 0.105627 0.0528133 0.998604i \(-0.483181\pi\)
0.0528133 + 0.998604i \(0.483181\pi\)
\(150\) −9.52588 −0.777785
\(151\) 6.55195 0.533190 0.266595 0.963809i \(-0.414101\pi\)
0.266595 + 0.963809i \(0.414101\pi\)
\(152\) 13.0947 1.06212
\(153\) 2.41516 0.195254
\(154\) −31.1679 −2.51158
\(155\) −1.79296 −0.144014
\(156\) 26.4618 2.11864
\(157\) −24.1178 −1.92481 −0.962407 0.271612i \(-0.912443\pi\)
−0.962407 + 0.271612i \(0.912443\pi\)
\(158\) −21.0473 −1.67443
\(159\) −1.63498 −0.129663
\(160\) −9.79893 −0.774674
\(161\) −24.3909 −1.92227
\(162\) 2.58860 0.203380
\(163\) 16.1434 1.26445 0.632223 0.774786i \(-0.282143\pi\)
0.632223 + 0.774786i \(0.282143\pi\)
\(164\) 14.8581 1.16023
\(165\) 5.00270 0.389459
\(166\) −1.24728 −0.0968076
\(167\) −5.42045 −0.419447 −0.209723 0.977761i \(-0.567256\pi\)
−0.209723 + 0.977761i \(0.567256\pi\)
\(168\) 19.3333 1.49159
\(169\) 18.6872 1.43747
\(170\) −7.18307 −0.550916
\(171\) 1.87296 0.143229
\(172\) −6.88195 −0.524744
\(173\) −11.2923 −0.858537 −0.429268 0.903177i \(-0.641229\pi\)
−0.429268 + 0.903177i \(0.641229\pi\)
\(174\) 0 0
\(175\) −10.1760 −0.769231
\(176\) −37.8658 −2.85424
\(177\) −4.85026 −0.364568
\(178\) −5.16739 −0.387312
\(179\) −10.6541 −0.796323 −0.398161 0.917315i \(-0.630352\pi\)
−0.398161 + 0.917315i \(0.630352\pi\)
\(180\) −5.40103 −0.402569
\(181\) −12.2934 −0.913763 −0.456882 0.889527i \(-0.651034\pi\)
−0.456882 + 0.889527i \(0.651034\pi\)
\(182\) 40.2943 2.98681
\(183\) 1.55510 0.114956
\(184\) −61.6682 −4.54624
\(185\) −8.91958 −0.655781
\(186\) 4.03961 0.296198
\(187\) −10.5160 −0.769009
\(188\) 1.67986 0.122516
\(189\) 2.76526 0.201143
\(190\) −5.57047 −0.404124
\(191\) −1.68311 −0.121786 −0.0608929 0.998144i \(-0.519395\pi\)
−0.0608929 + 0.998144i \(0.519395\pi\)
\(192\) 4.68444 0.338071
\(193\) 10.5761 0.761284 0.380642 0.924722i \(-0.375703\pi\)
0.380642 + 0.924722i \(0.375703\pi\)
\(194\) 11.9986 0.861449
\(195\) −6.46755 −0.463151
\(196\) 3.03989 0.217135
\(197\) −12.1150 −0.863161 −0.431581 0.902074i \(-0.642044\pi\)
−0.431581 + 0.902074i \(0.642044\pi\)
\(198\) −11.2712 −0.801012
\(199\) 4.99592 0.354151 0.177076 0.984197i \(-0.443336\pi\)
0.177076 + 0.984197i \(0.443336\pi\)
\(200\) −25.7282 −1.81926
\(201\) −9.66950 −0.682034
\(202\) −4.91594 −0.345884
\(203\) 0 0
\(204\) 11.3534 0.794894
\(205\) −3.63149 −0.253634
\(206\) −21.2815 −1.48275
\(207\) −8.82048 −0.613066
\(208\) 48.9534 3.39431
\(209\) −8.15518 −0.564106
\(210\) −8.22432 −0.567532
\(211\) −19.2108 −1.32253 −0.661263 0.750154i \(-0.729979\pi\)
−0.661263 + 0.750154i \(0.729979\pi\)
\(212\) −7.68585 −0.527866
\(213\) −8.18108 −0.560558
\(214\) 11.5394 0.788819
\(215\) 1.68202 0.114713
\(216\) 6.99148 0.475710
\(217\) 4.31528 0.292941
\(218\) 45.3668 3.07263
\(219\) 11.3786 0.768897
\(220\) 23.5170 1.58552
\(221\) 13.5953 0.914517
\(222\) 20.0961 1.34876
\(223\) −21.2442 −1.42262 −0.711308 0.702881i \(-0.751897\pi\)
−0.711308 + 0.702881i \(0.751897\pi\)
\(224\) 23.5840 1.57577
\(225\) −3.67993 −0.245329
\(226\) 20.5307 1.36568
\(227\) 19.7559 1.31125 0.655624 0.755088i \(-0.272406\pi\)
0.655624 + 0.755088i \(0.272406\pi\)
\(228\) 8.80452 0.583094
\(229\) 20.7139 1.36881 0.684405 0.729102i \(-0.260062\pi\)
0.684405 + 0.729102i \(0.260062\pi\)
\(230\) 26.2335 1.72978
\(231\) −12.0404 −0.792202
\(232\) 0 0
\(233\) 20.7745 1.36098 0.680492 0.732756i \(-0.261766\pi\)
0.680492 + 0.732756i \(0.261766\pi\)
\(234\) 14.5716 0.952575
\(235\) −0.410576 −0.0267830
\(236\) −22.8004 −1.48418
\(237\) −8.13075 −0.528149
\(238\) 17.2881 1.12062
\(239\) −2.27481 −0.147145 −0.0735727 0.997290i \(-0.523440\pi\)
−0.0735727 + 0.997290i \(0.523440\pi\)
\(240\) −9.99170 −0.644961
\(241\) 11.7783 0.758706 0.379353 0.925252i \(-0.376147\pi\)
0.379353 + 0.925252i \(0.376147\pi\)
\(242\) 20.6023 1.32437
\(243\) 1.00000 0.0641500
\(244\) 7.31032 0.467995
\(245\) −0.742982 −0.0474674
\(246\) 8.18185 0.521656
\(247\) 10.5431 0.670843
\(248\) 10.9104 0.692814
\(249\) −0.481835 −0.0305350
\(250\) 25.8155 1.63271
\(251\) −1.42714 −0.0900805 −0.0450402 0.998985i \(-0.514342\pi\)
−0.0450402 + 0.998985i \(0.514342\pi\)
\(252\) 12.9991 0.818868
\(253\) 38.4059 2.41456
\(254\) −8.68585 −0.544999
\(255\) −2.77488 −0.173770
\(256\) −22.1337 −1.38335
\(257\) −28.6450 −1.78683 −0.893414 0.449234i \(-0.851697\pi\)
−0.893414 + 0.449234i \(0.851697\pi\)
\(258\) −3.78965 −0.235933
\(259\) 21.4675 1.33393
\(260\) −30.4031 −1.88552
\(261\) 0 0
\(262\) −22.5032 −1.39025
\(263\) 18.5023 1.14090 0.570451 0.821332i \(-0.306769\pi\)
0.570451 + 0.821332i \(0.306769\pi\)
\(264\) −30.4421 −1.87358
\(265\) 1.87850 0.115396
\(266\) 13.4069 0.822032
\(267\) −1.99621 −0.122166
\(268\) −45.4550 −2.77661
\(269\) −28.7074 −1.75032 −0.875160 0.483834i \(-0.839244\pi\)
−0.875160 + 0.483834i \(0.839244\pi\)
\(270\) −2.97416 −0.181001
\(271\) 1.80441 0.109610 0.0548050 0.998497i \(-0.482546\pi\)
0.0548050 + 0.998497i \(0.482546\pi\)
\(272\) 21.0033 1.27351
\(273\) 15.5660 0.942099
\(274\) 8.34518 0.504151
\(275\) 16.0231 0.966227
\(276\) −41.4639 −2.49583
\(277\) −14.1949 −0.852890 −0.426445 0.904513i \(-0.640234\pi\)
−0.426445 + 0.904513i \(0.640234\pi\)
\(278\) −58.2136 −3.49142
\(279\) 1.56053 0.0934268
\(280\) −22.2128 −1.32747
\(281\) 18.8216 1.12280 0.561400 0.827545i \(-0.310263\pi\)
0.561400 + 0.827545i \(0.310263\pi\)
\(282\) 0.925040 0.0550853
\(283\) 21.8832 1.30082 0.650410 0.759584i \(-0.274597\pi\)
0.650410 + 0.759584i \(0.274597\pi\)
\(284\) −38.4582 −2.28207
\(285\) −2.15192 −0.127469
\(286\) −63.4473 −3.75172
\(287\) 8.74022 0.515919
\(288\) 8.52865 0.502556
\(289\) −11.1670 −0.656882
\(290\) 0 0
\(291\) 4.63516 0.271718
\(292\) 53.4895 3.13023
\(293\) 0.00776592 0.000453690 0 0.000226845 1.00000i \(-0.499928\pi\)
0.000226845 1.00000i \(0.499928\pi\)
\(294\) 1.67396 0.0976275
\(295\) 5.57267 0.324453
\(296\) 54.2769 3.15478
\(297\) −4.35418 −0.252655
\(298\) 3.33758 0.193341
\(299\) −49.6517 −2.87143
\(300\) −17.2989 −0.998751
\(301\) −4.04827 −0.233338
\(302\) 16.9604 0.975961
\(303\) −1.89907 −0.109099
\(304\) 16.2880 0.934183
\(305\) −1.78672 −0.102307
\(306\) 6.25190 0.357397
\(307\) 0.214941 0.0122673 0.00613367 0.999981i \(-0.498048\pi\)
0.00613367 + 0.999981i \(0.498048\pi\)
\(308\) −56.6005 −3.22511
\(309\) −8.22122 −0.467689
\(310\) −4.64127 −0.263607
\(311\) 28.2266 1.60058 0.800291 0.599612i \(-0.204678\pi\)
0.800291 + 0.599612i \(0.204678\pi\)
\(312\) 39.3560 2.22809
\(313\) −10.2302 −0.578244 −0.289122 0.957292i \(-0.593363\pi\)
−0.289122 + 0.957292i \(0.593363\pi\)
\(314\) −62.4316 −3.52322
\(315\) −3.17713 −0.179011
\(316\) −38.2216 −2.15013
\(317\) 23.7789 1.33555 0.667777 0.744361i \(-0.267246\pi\)
0.667777 + 0.744361i \(0.267246\pi\)
\(318\) −4.23233 −0.237337
\(319\) 0 0
\(320\) −5.38216 −0.300872
\(321\) 4.45778 0.248809
\(322\) −63.1384 −3.51857
\(323\) 4.52349 0.251694
\(324\) 4.70087 0.261159
\(325\) −20.7148 −1.14905
\(326\) 41.7888 2.31447
\(327\) 17.5256 0.969168
\(328\) 22.0981 1.22016
\(329\) 0.988168 0.0544795
\(330\) 12.9500 0.712874
\(331\) −7.07856 −0.389073 −0.194536 0.980895i \(-0.562320\pi\)
−0.194536 + 0.980895i \(0.562320\pi\)
\(332\) −2.26504 −0.124310
\(333\) 7.76330 0.425426
\(334\) −14.0314 −0.767763
\(335\) 11.1097 0.606987
\(336\) 24.0479 1.31192
\(337\) −7.02402 −0.382623 −0.191311 0.981529i \(-0.561274\pi\)
−0.191311 + 0.981529i \(0.561274\pi\)
\(338\) 48.3737 2.63118
\(339\) 7.93117 0.430762
\(340\) −13.0444 −0.707429
\(341\) −6.79484 −0.367961
\(342\) 4.84834 0.262168
\(343\) −17.5686 −0.948617
\(344\) −10.2353 −0.551852
\(345\) 10.1342 0.545608
\(346\) −29.2313 −1.57148
\(347\) 10.0795 0.541094 0.270547 0.962707i \(-0.412795\pi\)
0.270547 + 0.962707i \(0.412795\pi\)
\(348\) 0 0
\(349\) −1.64246 −0.0879187 −0.0439593 0.999033i \(-0.513997\pi\)
−0.0439593 + 0.999033i \(0.513997\pi\)
\(350\) −26.3416 −1.40802
\(351\) 5.62914 0.300461
\(352\) −37.1353 −1.97932
\(353\) 24.1232 1.28395 0.641975 0.766726i \(-0.278115\pi\)
0.641975 + 0.766726i \(0.278115\pi\)
\(354\) −12.5554 −0.667312
\(355\) 9.39959 0.498878
\(356\) −9.38391 −0.497346
\(357\) 6.67855 0.353466
\(358\) −27.5792 −1.45760
\(359\) −12.8958 −0.680612 −0.340306 0.940315i \(-0.610531\pi\)
−0.340306 + 0.940315i \(0.610531\pi\)
\(360\) −8.03281 −0.423366
\(361\) −15.4920 −0.815370
\(362\) −31.8228 −1.67257
\(363\) 7.95884 0.417731
\(364\) 73.1739 3.83535
\(365\) −13.0734 −0.684293
\(366\) 4.02554 0.210418
\(367\) −31.7420 −1.65692 −0.828459 0.560050i \(-0.810782\pi\)
−0.828459 + 0.560050i \(0.810782\pi\)
\(368\) −76.7067 −3.99861
\(369\) 3.16072 0.164541
\(370\) −23.0893 −1.20035
\(371\) −4.52116 −0.234727
\(372\) 7.33587 0.380347
\(373\) 4.75511 0.246210 0.123105 0.992394i \(-0.460715\pi\)
0.123105 + 0.992394i \(0.460715\pi\)
\(374\) −27.2218 −1.40761
\(375\) 9.97274 0.514990
\(376\) 2.49841 0.128846
\(377\) 0 0
\(378\) 7.15816 0.368176
\(379\) 2.11960 0.108877 0.0544383 0.998517i \(-0.482663\pi\)
0.0544383 + 0.998517i \(0.482663\pi\)
\(380\) −10.1159 −0.518934
\(381\) −3.35542 −0.171903
\(382\) −4.35691 −0.222919
\(383\) 14.6407 0.748103 0.374051 0.927408i \(-0.377968\pi\)
0.374051 + 0.927408i \(0.377968\pi\)
\(384\) −4.93114 −0.251641
\(385\) 13.8338 0.705034
\(386\) 27.3773 1.39347
\(387\) −1.46397 −0.0744179
\(388\) 21.7893 1.10618
\(389\) 1.93401 0.0980583 0.0490292 0.998797i \(-0.484387\pi\)
0.0490292 + 0.998797i \(0.484387\pi\)
\(390\) −16.7419 −0.847761
\(391\) −21.3029 −1.07733
\(392\) 4.52115 0.228353
\(393\) −8.69320 −0.438514
\(394\) −31.3611 −1.57995
\(395\) 9.34177 0.470035
\(396\) −20.4684 −1.02858
\(397\) −30.0191 −1.50662 −0.753309 0.657667i \(-0.771543\pi\)
−0.753309 + 0.657667i \(0.771543\pi\)
\(398\) 12.9324 0.648245
\(399\) 5.17921 0.259285
\(400\) −32.0023 −1.60011
\(401\) 15.7085 0.784444 0.392222 0.919871i \(-0.371707\pi\)
0.392222 + 0.919871i \(0.371707\pi\)
\(402\) −25.0305 −1.24841
\(403\) 8.78446 0.437585
\(404\) −8.92728 −0.444149
\(405\) −1.14894 −0.0570914
\(406\) 0 0
\(407\) −33.8027 −1.67554
\(408\) 16.8856 0.835959
\(409\) −4.87216 −0.240913 −0.120456 0.992719i \(-0.538436\pi\)
−0.120456 + 0.992719i \(0.538436\pi\)
\(410\) −9.40048 −0.464257
\(411\) 3.22382 0.159019
\(412\) −38.6469 −1.90399
\(413\) −13.4122 −0.659973
\(414\) −22.8327 −1.12217
\(415\) 0.553600 0.0271752
\(416\) 48.0090 2.35383
\(417\) −22.4884 −1.10126
\(418\) −21.1105 −1.03255
\(419\) 19.0131 0.928853 0.464426 0.885612i \(-0.346261\pi\)
0.464426 + 0.885612i \(0.346261\pi\)
\(420\) −14.9352 −0.728766
\(421\) 12.5171 0.610047 0.305023 0.952345i \(-0.401336\pi\)
0.305023 + 0.952345i \(0.401336\pi\)
\(422\) −49.7292 −2.42078
\(423\) 0.357351 0.0173750
\(424\) −11.4310 −0.555136
\(425\) −8.88763 −0.431113
\(426\) −21.1776 −1.02606
\(427\) 4.30026 0.208104
\(428\) 20.9554 1.01292
\(429\) −24.5102 −1.18337
\(430\) 4.35409 0.209973
\(431\) 35.3970 1.70501 0.852507 0.522716i \(-0.175081\pi\)
0.852507 + 0.522716i \(0.175081\pi\)
\(432\) 8.69643 0.418407
\(433\) 5.85494 0.281371 0.140685 0.990054i \(-0.455069\pi\)
0.140685 + 0.990054i \(0.455069\pi\)
\(434\) 11.1706 0.536204
\(435\) 0 0
\(436\) 82.3856 3.94555
\(437\) −16.5204 −0.790277
\(438\) 29.4548 1.40740
\(439\) 24.8297 1.18506 0.592530 0.805549i \(-0.298129\pi\)
0.592530 + 0.805549i \(0.298129\pi\)
\(440\) 34.9762 1.66743
\(441\) 0.646666 0.0307936
\(442\) 35.1928 1.67395
\(443\) 23.7488 1.12834 0.564170 0.825659i \(-0.309196\pi\)
0.564170 + 0.825659i \(0.309196\pi\)
\(444\) 36.4942 1.73194
\(445\) 2.29353 0.108724
\(446\) −54.9928 −2.60398
\(447\) 1.28934 0.0609835
\(448\) 12.9537 0.612005
\(449\) 6.44854 0.304325 0.152163 0.988355i \(-0.451376\pi\)
0.152163 + 0.988355i \(0.451376\pi\)
\(450\) −9.52588 −0.449054
\(451\) −13.7623 −0.648043
\(452\) 37.2834 1.75366
\(453\) 6.55195 0.307837
\(454\) 51.1403 2.40013
\(455\) −17.8845 −0.838437
\(456\) 13.0947 0.613217
\(457\) −2.62569 −0.122824 −0.0614122 0.998112i \(-0.519560\pi\)
−0.0614122 + 0.998112i \(0.519560\pi\)
\(458\) 53.6200 2.50550
\(459\) 2.41516 0.112730
\(460\) 47.6396 2.22121
\(461\) −7.15794 −0.333378 −0.166689 0.986009i \(-0.553308\pi\)
−0.166689 + 0.986009i \(0.553308\pi\)
\(462\) −31.1679 −1.45006
\(463\) −18.2411 −0.847737 −0.423868 0.905724i \(-0.639328\pi\)
−0.423868 + 0.905724i \(0.639328\pi\)
\(464\) 0 0
\(465\) −1.79296 −0.0831467
\(466\) 53.7770 2.49117
\(467\) 35.4677 1.64125 0.820624 0.571468i \(-0.193626\pi\)
0.820624 + 0.571468i \(0.193626\pi\)
\(468\) 26.4618 1.22320
\(469\) −26.7387 −1.23468
\(470\) −1.06282 −0.0490241
\(471\) −24.1178 −1.11129
\(472\) −33.9105 −1.56086
\(473\) 6.37440 0.293095
\(474\) −21.0473 −0.966734
\(475\) −6.89235 −0.316243
\(476\) 31.3950 1.43899
\(477\) −1.63498 −0.0748608
\(478\) −5.88859 −0.269338
\(479\) 26.1004 1.19256 0.596280 0.802777i \(-0.296645\pi\)
0.596280 + 0.802777i \(0.296645\pi\)
\(480\) −9.79893 −0.447258
\(481\) 43.7006 1.99258
\(482\) 30.4893 1.38875
\(483\) −24.3909 −1.10983
\(484\) 37.4135 1.70061
\(485\) −5.32553 −0.241820
\(486\) 2.58860 0.117421
\(487\) 22.1493 1.00368 0.501839 0.864961i \(-0.332657\pi\)
0.501839 + 0.864961i \(0.332657\pi\)
\(488\) 10.8724 0.492173
\(489\) 16.1434 0.730029
\(490\) −1.92329 −0.0868852
\(491\) −11.7483 −0.530193 −0.265096 0.964222i \(-0.585404\pi\)
−0.265096 + 0.964222i \(0.585404\pi\)
\(492\) 14.8581 0.669856
\(493\) 0 0
\(494\) 27.2920 1.22792
\(495\) 5.00270 0.224854
\(496\) 13.5711 0.609359
\(497\) −22.6228 −1.01477
\(498\) −1.24728 −0.0558919
\(499\) −16.3753 −0.733060 −0.366530 0.930406i \(-0.619454\pi\)
−0.366530 + 0.930406i \(0.619454\pi\)
\(500\) 46.8805 2.09656
\(501\) −5.42045 −0.242168
\(502\) −3.69431 −0.164885
\(503\) 14.8354 0.661476 0.330738 0.943723i \(-0.392702\pi\)
0.330738 + 0.943723i \(0.392702\pi\)
\(504\) 19.3333 0.861172
\(505\) 2.18192 0.0970942
\(506\) 99.4177 4.41965
\(507\) 18.6872 0.829927
\(508\) −15.7734 −0.699831
\(509\) 31.5733 1.39946 0.699732 0.714406i \(-0.253303\pi\)
0.699732 + 0.714406i \(0.253303\pi\)
\(510\) −7.18307 −0.318072
\(511\) 31.4649 1.39192
\(512\) −47.4330 −2.09626
\(513\) 1.87296 0.0826931
\(514\) −74.1507 −3.27065
\(515\) 9.44571 0.416228
\(516\) −6.88195 −0.302961
\(517\) −1.55597 −0.0684314
\(518\) 55.5709 2.44165
\(519\) −11.2923 −0.495676
\(520\) −45.2178 −1.98293
\(521\) −8.03875 −0.352184 −0.176092 0.984374i \(-0.556346\pi\)
−0.176092 + 0.984374i \(0.556346\pi\)
\(522\) 0 0
\(523\) −1.48633 −0.0649927 −0.0324963 0.999472i \(-0.510346\pi\)
−0.0324963 + 0.999472i \(0.510346\pi\)
\(524\) −40.8656 −1.78522
\(525\) −10.1760 −0.444116
\(526\) 47.8951 2.08833
\(527\) 3.76894 0.164178
\(528\) −37.8658 −1.64790
\(529\) 54.8008 2.38264
\(530\) 4.86270 0.211222
\(531\) −4.85026 −0.210483
\(532\) 24.3468 1.05557
\(533\) 17.7921 0.770663
\(534\) −5.16739 −0.223615
\(535\) −5.12173 −0.221432
\(536\) −67.6041 −2.92005
\(537\) −10.6541 −0.459757
\(538\) −74.3120 −3.20382
\(539\) −2.81570 −0.121281
\(540\) −5.40103 −0.232423
\(541\) 38.8306 1.66946 0.834728 0.550662i \(-0.185625\pi\)
0.834728 + 0.550662i \(0.185625\pi\)
\(542\) 4.67090 0.200632
\(543\) −12.2934 −0.527561
\(544\) 20.5981 0.883135
\(545\) −20.1359 −0.862528
\(546\) 40.2943 1.72444
\(547\) −17.3495 −0.741809 −0.370905 0.928671i \(-0.620952\pi\)
−0.370905 + 0.928671i \(0.620952\pi\)
\(548\) 15.1547 0.647378
\(549\) 1.55510 0.0663700
\(550\) 41.4774 1.76860
\(551\) 0 0
\(552\) −61.6682 −2.62477
\(553\) −22.4837 −0.956102
\(554\) −36.7450 −1.56115
\(555\) −8.91958 −0.378615
\(556\) −105.715 −4.48332
\(557\) 30.4259 1.28919 0.644593 0.764526i \(-0.277027\pi\)
0.644593 + 0.764526i \(0.277027\pi\)
\(558\) 4.03961 0.171010
\(559\) −8.24091 −0.348553
\(560\) −27.6296 −1.16757
\(561\) −10.5160 −0.443987
\(562\) 48.7215 2.05519
\(563\) −12.1911 −0.513793 −0.256897 0.966439i \(-0.582700\pi\)
−0.256897 + 0.966439i \(0.582700\pi\)
\(564\) 1.67986 0.0707349
\(565\) −9.11246 −0.383364
\(566\) 56.6469 2.38104
\(567\) 2.76526 0.116130
\(568\) −57.1978 −2.39997
\(569\) −3.15785 −0.132384 −0.0661920 0.997807i \(-0.521085\pi\)
−0.0661920 + 0.997807i \(0.521085\pi\)
\(570\) −5.57047 −0.233321
\(571\) 24.3414 1.01865 0.509327 0.860573i \(-0.329894\pi\)
0.509327 + 0.860573i \(0.329894\pi\)
\(572\) −115.219 −4.81757
\(573\) −1.68311 −0.0703130
\(574\) 22.6250 0.944347
\(575\) 32.4588 1.35362
\(576\) 4.68444 0.195185
\(577\) 7.99079 0.332661 0.166330 0.986070i \(-0.446808\pi\)
0.166330 + 0.986070i \(0.446808\pi\)
\(578\) −28.9069 −1.20237
\(579\) 10.5761 0.439528
\(580\) 0 0
\(581\) −1.33240 −0.0552772
\(582\) 11.9986 0.497358
\(583\) 7.11901 0.294839
\(584\) 79.5535 3.29195
\(585\) −6.46755 −0.267400
\(586\) 0.0201029 0.000830443 0
\(587\) −42.3655 −1.74861 −0.874305 0.485377i \(-0.838682\pi\)
−0.874305 + 0.485377i \(0.838682\pi\)
\(588\) 3.03989 0.125363
\(589\) 2.92281 0.120432
\(590\) 14.4254 0.593886
\(591\) −12.1150 −0.498347
\(592\) 67.5130 2.77477
\(593\) −26.3761 −1.08314 −0.541569 0.840656i \(-0.682169\pi\)
−0.541569 + 0.840656i \(0.682169\pi\)
\(594\) −11.2712 −0.462464
\(595\) −7.67327 −0.314573
\(596\) 6.06100 0.248268
\(597\) 4.99592 0.204469
\(598\) −128.528 −5.25592
\(599\) 6.35768 0.259768 0.129884 0.991529i \(-0.458540\pi\)
0.129884 + 0.991529i \(0.458540\pi\)
\(600\) −25.7282 −1.05035
\(601\) −16.9016 −0.689430 −0.344715 0.938707i \(-0.612024\pi\)
−0.344715 + 0.938707i \(0.612024\pi\)
\(602\) −10.4794 −0.427107
\(603\) −9.66950 −0.393772
\(604\) 30.7999 1.25323
\(605\) −9.14425 −0.371767
\(606\) −4.91594 −0.199696
\(607\) −7.41550 −0.300986 −0.150493 0.988611i \(-0.548086\pi\)
−0.150493 + 0.988611i \(0.548086\pi\)
\(608\) 15.9738 0.647823
\(609\) 0 0
\(610\) −4.62511 −0.187265
\(611\) 2.01158 0.0813797
\(612\) 11.3534 0.458932
\(613\) −28.9255 −1.16829 −0.584145 0.811649i \(-0.698570\pi\)
−0.584145 + 0.811649i \(0.698570\pi\)
\(614\) 0.556398 0.0224544
\(615\) −3.63149 −0.146436
\(616\) −84.1804 −3.39173
\(617\) −34.9128 −1.40554 −0.702768 0.711419i \(-0.748053\pi\)
−0.702768 + 0.711419i \(0.748053\pi\)
\(618\) −21.2815 −0.856067
\(619\) 45.1342 1.81410 0.907048 0.421028i \(-0.138331\pi\)
0.907048 + 0.421028i \(0.138331\pi\)
\(620\) −8.42849 −0.338496
\(621\) −8.82048 −0.353954
\(622\) 73.0674 2.92974
\(623\) −5.52003 −0.221155
\(624\) 48.9534 1.95970
\(625\) 6.94155 0.277662
\(626\) −26.4819 −1.05843
\(627\) −8.15518 −0.325687
\(628\) −113.375 −4.52415
\(629\) 18.7496 0.747596
\(630\) −8.22432 −0.327665
\(631\) 29.2602 1.16483 0.582415 0.812892i \(-0.302108\pi\)
0.582415 + 0.812892i \(0.302108\pi\)
\(632\) −56.8460 −2.26121
\(633\) −19.2108 −0.763561
\(634\) 61.5540 2.44462
\(635\) 3.85518 0.152988
\(636\) −7.68585 −0.304764
\(637\) 3.64017 0.144229
\(638\) 0 0
\(639\) −8.18108 −0.323638
\(640\) 5.66560 0.223952
\(641\) 17.7234 0.700031 0.350016 0.936744i \(-0.386176\pi\)
0.350016 + 0.936744i \(0.386176\pi\)
\(642\) 11.5394 0.455425
\(643\) 38.4443 1.51609 0.758047 0.652200i \(-0.226154\pi\)
0.758047 + 0.652200i \(0.226154\pi\)
\(644\) −114.659 −4.51818
\(645\) 1.68202 0.0662295
\(646\) 11.7095 0.460705
\(647\) 40.5910 1.59580 0.797899 0.602792i \(-0.205945\pi\)
0.797899 + 0.602792i \(0.205945\pi\)
\(648\) 6.99148 0.274651
\(649\) 21.1189 0.828989
\(650\) −53.6225 −2.10325
\(651\) 4.31528 0.169129
\(652\) 75.8879 2.97200
\(653\) −26.6169 −1.04160 −0.520800 0.853679i \(-0.674366\pi\)
−0.520800 + 0.853679i \(0.674366\pi\)
\(654\) 45.3668 1.77398
\(655\) 9.98798 0.390263
\(656\) 27.4870 1.07319
\(657\) 11.3786 0.443923
\(658\) 2.55798 0.0997203
\(659\) −23.1105 −0.900259 −0.450130 0.892963i \(-0.648622\pi\)
−0.450130 + 0.892963i \(0.648622\pi\)
\(660\) 23.5170 0.915399
\(661\) 23.4613 0.912537 0.456269 0.889842i \(-0.349186\pi\)
0.456269 + 0.889842i \(0.349186\pi\)
\(662\) −18.3236 −0.712166
\(663\) 13.5953 0.527997
\(664\) −3.36874 −0.130732
\(665\) −5.95062 −0.230755
\(666\) 20.0961 0.778708
\(667\) 0 0
\(668\) −25.4808 −0.985882
\(669\) −21.2442 −0.821348
\(670\) 28.7586 1.11104
\(671\) −6.77118 −0.261398
\(672\) 23.5840 0.909771
\(673\) −26.9621 −1.03931 −0.519656 0.854376i \(-0.673940\pi\)
−0.519656 + 0.854376i \(0.673940\pi\)
\(674\) −18.1824 −0.700360
\(675\) −3.67993 −0.141641
\(676\) 87.8460 3.37869
\(677\) 33.5314 1.28872 0.644358 0.764724i \(-0.277125\pi\)
0.644358 + 0.764724i \(0.277125\pi\)
\(678\) 20.5307 0.788475
\(679\) 12.8174 0.491888
\(680\) −19.4005 −0.743976
\(681\) 19.7559 0.757049
\(682\) −17.5891 −0.673523
\(683\) −12.3343 −0.471957 −0.235979 0.971758i \(-0.575830\pi\)
−0.235979 + 0.971758i \(0.575830\pi\)
\(684\) 8.80452 0.336649
\(685\) −3.70398 −0.141522
\(686\) −45.4782 −1.73637
\(687\) 20.7139 0.790283
\(688\) −12.7313 −0.485378
\(689\) −9.20355 −0.350627
\(690\) 26.2335 0.998691
\(691\) 2.02123 0.0768913 0.0384457 0.999261i \(-0.487759\pi\)
0.0384457 + 0.999261i \(0.487759\pi\)
\(692\) −53.0836 −2.01793
\(693\) −12.0404 −0.457378
\(694\) 26.0918 0.990429
\(695\) 25.8379 0.980087
\(696\) 0 0
\(697\) 7.63365 0.289145
\(698\) −4.25167 −0.160928
\(699\) 20.7745 0.785764
\(700\) −47.8359 −1.80803
\(701\) −33.6980 −1.27275 −0.636377 0.771378i \(-0.719568\pi\)
−0.636377 + 0.771378i \(0.719568\pi\)
\(702\) 14.5716 0.549970
\(703\) 14.5403 0.548398
\(704\) −20.3969 −0.768737
\(705\) −0.410576 −0.0154632
\(706\) 62.4455 2.35017
\(707\) −5.25142 −0.197500
\(708\) −22.8004 −0.856893
\(709\) 12.6531 0.475198 0.237599 0.971363i \(-0.423640\pi\)
0.237599 + 0.971363i \(0.423640\pi\)
\(710\) 24.3318 0.913157
\(711\) −8.13075 −0.304927
\(712\) −13.9564 −0.523040
\(713\) −13.7647 −0.515490
\(714\) 17.2881 0.646992
\(715\) 28.1609 1.05316
\(716\) −50.0834 −1.87170
\(717\) −2.27481 −0.0849545
\(718\) −33.3820 −1.24581
\(719\) 13.3377 0.497411 0.248706 0.968579i \(-0.419995\pi\)
0.248706 + 0.968579i \(0.419995\pi\)
\(720\) −9.99170 −0.372369
\(721\) −22.7338 −0.846651
\(722\) −40.1027 −1.49247
\(723\) 11.7783 0.438039
\(724\) −57.7898 −2.14774
\(725\) 0 0
\(726\) 20.6023 0.764622
\(727\) −41.7683 −1.54910 −0.774551 0.632512i \(-0.782024\pi\)
−0.774551 + 0.632512i \(0.782024\pi\)
\(728\) 108.830 4.03349
\(729\) 1.00000 0.0370370
\(730\) −33.8418 −1.25254
\(731\) −3.53573 −0.130774
\(732\) 7.31032 0.270197
\(733\) −42.5635 −1.57212 −0.786059 0.618152i \(-0.787882\pi\)
−0.786059 + 0.618152i \(0.787882\pi\)
\(734\) −82.1674 −3.03285
\(735\) −0.742982 −0.0274053
\(736\) −75.2268 −2.77290
\(737\) 42.1027 1.55087
\(738\) 8.18185 0.301178
\(739\) 22.2405 0.818129 0.409064 0.912506i \(-0.365855\pi\)
0.409064 + 0.912506i \(0.365855\pi\)
\(740\) −41.9298 −1.54137
\(741\) 10.5431 0.387312
\(742\) −11.7035 −0.429648
\(743\) −28.0714 −1.02984 −0.514920 0.857238i \(-0.672178\pi\)
−0.514920 + 0.857238i \(0.672178\pi\)
\(744\) 10.9104 0.399996
\(745\) −1.48137 −0.0542733
\(746\) 12.3091 0.450668
\(747\) −0.481835 −0.0176294
\(748\) −49.4345 −1.80750
\(749\) 12.3269 0.450416
\(750\) 25.8155 0.942648
\(751\) 28.5813 1.04295 0.521473 0.853268i \(-0.325383\pi\)
0.521473 + 0.853268i \(0.325383\pi\)
\(752\) 3.10768 0.113325
\(753\) −1.42714 −0.0520080
\(754\) 0 0
\(755\) −7.52781 −0.273965
\(756\) 12.9991 0.472774
\(757\) −21.4521 −0.779689 −0.389844 0.920881i \(-0.627471\pi\)
−0.389844 + 0.920881i \(0.627471\pi\)
\(758\) 5.48680 0.199290
\(759\) 38.4059 1.39405
\(760\) −15.0451 −0.545743
\(761\) −21.4222 −0.776553 −0.388277 0.921543i \(-0.626929\pi\)
−0.388277 + 0.921543i \(0.626929\pi\)
\(762\) −8.68585 −0.314655
\(763\) 48.4629 1.75447
\(764\) −7.91209 −0.286249
\(765\) −2.77488 −0.100326
\(766\) 37.8989 1.36934
\(767\) −27.3028 −0.985846
\(768\) −22.1337 −0.798679
\(769\) −22.7152 −0.819130 −0.409565 0.912281i \(-0.634320\pi\)
−0.409565 + 0.912281i \(0.634320\pi\)
\(770\) 35.8101 1.29051
\(771\) −28.6450 −1.03163
\(772\) 49.7168 1.78935
\(773\) −0.180228 −0.00648235 −0.00324118 0.999995i \(-0.501032\pi\)
−0.00324118 + 0.999995i \(0.501032\pi\)
\(774\) −3.78965 −0.136216
\(775\) −5.74266 −0.206282
\(776\) 32.4066 1.16333
\(777\) 21.4675 0.770144
\(778\) 5.00639 0.179488
\(779\) 5.91989 0.212102
\(780\) −30.4031 −1.08861
\(781\) 35.6219 1.27465
\(782\) −55.1447 −1.97197
\(783\) 0 0
\(784\) 5.62369 0.200846
\(785\) 27.7100 0.989013
\(786\) −22.5032 −0.802664
\(787\) 44.4923 1.58598 0.792989 0.609236i \(-0.208524\pi\)
0.792989 + 0.609236i \(0.208524\pi\)
\(788\) −56.9513 −2.02880
\(789\) 18.5023 0.658700
\(790\) 24.1821 0.860362
\(791\) 21.9318 0.779803
\(792\) −30.4421 −1.08171
\(793\) 8.75387 0.310859
\(794\) −77.7076 −2.75774
\(795\) 1.87850 0.0666236
\(796\) 23.4851 0.832409
\(797\) −2.28072 −0.0807872 −0.0403936 0.999184i \(-0.512861\pi\)
−0.0403936 + 0.999184i \(0.512861\pi\)
\(798\) 13.4069 0.474600
\(799\) 0.863060 0.0305329
\(800\) −31.3849 −1.10962
\(801\) −1.99621 −0.0705325
\(802\) 40.6630 1.43586
\(803\) −49.5446 −1.74839
\(804\) −45.4550 −1.60308
\(805\) 28.0238 0.987708
\(806\) 22.7395 0.800964
\(807\) −28.7074 −1.01055
\(808\) −13.2773 −0.467094
\(809\) 11.4774 0.403523 0.201761 0.979435i \(-0.435333\pi\)
0.201761 + 0.979435i \(0.435333\pi\)
\(810\) −2.97416 −0.104501
\(811\) 27.4524 0.963985 0.481993 0.876175i \(-0.339913\pi\)
0.481993 + 0.876175i \(0.339913\pi\)
\(812\) 0 0
\(813\) 1.80441 0.0632834
\(814\) −87.5019 −3.06694
\(815\) −18.5478 −0.649701
\(816\) 21.0033 0.735262
\(817\) −2.74196 −0.0959290
\(818\) −12.6121 −0.440971
\(819\) 15.5660 0.543921
\(820\) −17.0711 −0.596150
\(821\) −25.1785 −0.878734 −0.439367 0.898308i \(-0.644797\pi\)
−0.439367 + 0.898308i \(0.644797\pi\)
\(822\) 8.34518 0.291072
\(823\) 2.12913 0.0742169 0.0371085 0.999311i \(-0.488185\pi\)
0.0371085 + 0.999311i \(0.488185\pi\)
\(824\) −57.4785 −2.00236
\(825\) 16.0231 0.557852
\(826\) −34.7190 −1.20803
\(827\) −18.3427 −0.637837 −0.318918 0.947782i \(-0.603320\pi\)
−0.318918 + 0.947782i \(0.603320\pi\)
\(828\) −41.4639 −1.44097
\(829\) 52.9373 1.83859 0.919295 0.393570i \(-0.128760\pi\)
0.919295 + 0.393570i \(0.128760\pi\)
\(830\) 1.43305 0.0497419
\(831\) −14.1949 −0.492416
\(832\) 26.3694 0.914194
\(833\) 1.56180 0.0541133
\(834\) −58.2136 −2.01577
\(835\) 6.22778 0.215521
\(836\) −38.3364 −1.32589
\(837\) 1.56053 0.0539400
\(838\) 49.2175 1.70019
\(839\) −26.8505 −0.926984 −0.463492 0.886101i \(-0.653404\pi\)
−0.463492 + 0.886101i \(0.653404\pi\)
\(840\) −22.2128 −0.766415
\(841\) 0 0
\(842\) 32.4018 1.11664
\(843\) 18.8216 0.648249
\(844\) −90.3075 −3.10851
\(845\) −21.4705 −0.738607
\(846\) 0.925040 0.0318035
\(847\) 22.0083 0.756213
\(848\) −14.2185 −0.488266
\(849\) 21.8832 0.751028
\(850\) −23.0065 −0.789118
\(851\) −68.4760 −2.34733
\(852\) −38.4582 −1.31756
\(853\) 39.8554 1.36462 0.682311 0.731062i \(-0.260975\pi\)
0.682311 + 0.731062i \(0.260975\pi\)
\(854\) 11.1317 0.380918
\(855\) −2.15192 −0.0735941
\(856\) 31.1665 1.06525
\(857\) 50.9827 1.74154 0.870768 0.491694i \(-0.163622\pi\)
0.870768 + 0.491694i \(0.163622\pi\)
\(858\) −63.4473 −2.16606
\(859\) 14.8714 0.507404 0.253702 0.967282i \(-0.418352\pi\)
0.253702 + 0.967282i \(0.418352\pi\)
\(860\) 7.90696 0.269625
\(861\) 8.74022 0.297866
\(862\) 91.6288 3.12089
\(863\) −20.4603 −0.696478 −0.348239 0.937406i \(-0.613220\pi\)
−0.348239 + 0.937406i \(0.613220\pi\)
\(864\) 8.52865 0.290151
\(865\) 12.9742 0.441136
\(866\) 15.1561 0.515026
\(867\) −11.1670 −0.379251
\(868\) 20.2856 0.688538
\(869\) 35.4027 1.20096
\(870\) 0 0
\(871\) −54.4309 −1.84432
\(872\) 122.530 4.14939
\(873\) 4.63516 0.156876
\(874\) −42.7647 −1.44654
\(875\) 27.5772 0.932280
\(876\) 53.4895 1.80724
\(877\) −15.4211 −0.520732 −0.260366 0.965510i \(-0.583843\pi\)
−0.260366 + 0.965510i \(0.583843\pi\)
\(878\) 64.2744 2.16916
\(879\) 0.00776592 0.000261938 0
\(880\) 43.5056 1.46657
\(881\) 55.0390 1.85431 0.927155 0.374678i \(-0.122247\pi\)
0.927155 + 0.374678i \(0.122247\pi\)
\(882\) 1.67396 0.0563652
\(883\) 37.9954 1.27865 0.639324 0.768938i \(-0.279214\pi\)
0.639324 + 0.768938i \(0.279214\pi\)
\(884\) 63.9096 2.14951
\(885\) 5.57267 0.187323
\(886\) 61.4762 2.06533
\(887\) 18.2699 0.613444 0.306722 0.951799i \(-0.400768\pi\)
0.306722 + 0.951799i \(0.400768\pi\)
\(888\) 54.2769 1.82141
\(889\) −9.27861 −0.311195
\(890\) 5.93703 0.199010
\(891\) −4.35418 −0.145870
\(892\) −99.8661 −3.34376
\(893\) 0.669303 0.0223974
\(894\) 3.33758 0.111625
\(895\) 12.2409 0.409169
\(896\) −13.6359 −0.455543
\(897\) −49.6517 −1.65782
\(898\) 16.6927 0.557043
\(899\) 0 0
\(900\) −17.2989 −0.576629
\(901\) −3.94875 −0.131552
\(902\) −35.6252 −1.18619
\(903\) −4.04827 −0.134718
\(904\) 55.4506 1.84426
\(905\) 14.1244 0.469512
\(906\) 16.9604 0.563472
\(907\) 25.2735 0.839192 0.419596 0.907711i \(-0.362172\pi\)
0.419596 + 0.907711i \(0.362172\pi\)
\(908\) 92.8701 3.08200
\(909\) −1.89907 −0.0629882
\(910\) −46.2958 −1.53469
\(911\) 34.3336 1.13752 0.568762 0.822502i \(-0.307422\pi\)
0.568762 + 0.822502i \(0.307422\pi\)
\(912\) 16.2880 0.539351
\(913\) 2.09799 0.0694334
\(914\) −6.79686 −0.224820
\(915\) −1.78672 −0.0590671
\(916\) 97.3731 3.21730
\(917\) −24.0390 −0.793836
\(918\) 6.25190 0.206343
\(919\) −26.8764 −0.886572 −0.443286 0.896380i \(-0.646187\pi\)
−0.443286 + 0.896380i \(0.646187\pi\)
\(920\) 70.8532 2.33596
\(921\) 0.214941 0.00708256
\(922\) −18.5291 −0.610222
\(923\) −46.0524 −1.51583
\(924\) −56.6005 −1.86202
\(925\) −28.5684 −0.939323
\(926\) −47.2190 −1.55171
\(927\) −8.22122 −0.270020
\(928\) 0 0
\(929\) −27.4218 −0.899679 −0.449839 0.893109i \(-0.648519\pi\)
−0.449839 + 0.893109i \(0.648519\pi\)
\(930\) −4.64127 −0.152193
\(931\) 1.21118 0.0396947
\(932\) 97.6582 3.19890
\(933\) 28.2266 0.924097
\(934\) 91.8118 3.00417
\(935\) 12.0823 0.395134
\(936\) 39.3560 1.28639
\(937\) −10.3107 −0.336836 −0.168418 0.985716i \(-0.553866\pi\)
−0.168418 + 0.985716i \(0.553866\pi\)
\(938\) −69.2158 −2.25998
\(939\) −10.2302 −0.333849
\(940\) −1.93006 −0.0629517
\(941\) 16.9225 0.551657 0.275828 0.961207i \(-0.411048\pi\)
0.275828 + 0.961207i \(0.411048\pi\)
\(942\) −62.4316 −2.03413
\(943\) −27.8791 −0.907867
\(944\) −42.1800 −1.37284
\(945\) −3.17713 −0.103352
\(946\) 16.5008 0.536487
\(947\) −21.2231 −0.689659 −0.344829 0.938665i \(-0.612063\pi\)
−0.344829 + 0.938665i \(0.612063\pi\)
\(948\) −38.2216 −1.24138
\(949\) 64.0519 2.07921
\(950\) −17.8416 −0.578857
\(951\) 23.7789 0.771082
\(952\) 46.6929 1.51333
\(953\) −8.78444 −0.284556 −0.142278 0.989827i \(-0.545443\pi\)
−0.142278 + 0.989827i \(0.545443\pi\)
\(954\) −4.23233 −0.137027
\(955\) 1.93380 0.0625763
\(956\) −10.6936 −0.345856
\(957\) 0 0
\(958\) 67.5637 2.18288
\(959\) 8.91469 0.287870
\(960\) −5.38216 −0.173708
\(961\) −28.5647 −0.921443
\(962\) 113.124 3.64725
\(963\) 4.45778 0.143650
\(964\) 55.3682 1.78329
\(965\) −12.1513 −0.391165
\(966\) −63.1384 −2.03145
\(967\) −25.9334 −0.833961 −0.416981 0.908915i \(-0.636912\pi\)
−0.416981 + 0.908915i \(0.636912\pi\)
\(968\) 55.6441 1.78847
\(969\) 4.52349 0.145316
\(970\) −13.7857 −0.442632
\(971\) −58.1391 −1.86577 −0.932886 0.360172i \(-0.882718\pi\)
−0.932886 + 0.360172i \(0.882718\pi\)
\(972\) 4.70087 0.150780
\(973\) −62.1863 −1.99360
\(974\) 57.3357 1.83715
\(975\) −20.7148 −0.663406
\(976\) 13.5238 0.432887
\(977\) 29.9259 0.957414 0.478707 0.877975i \(-0.341106\pi\)
0.478707 + 0.877975i \(0.341106\pi\)
\(978\) 41.7888 1.33626
\(979\) 8.69184 0.277792
\(980\) −3.49266 −0.111569
\(981\) 17.5256 0.559549
\(982\) −30.4117 −0.970475
\(983\) −40.2091 −1.28247 −0.641236 0.767344i \(-0.721578\pi\)
−0.641236 + 0.767344i \(0.721578\pi\)
\(984\) 22.0981 0.704462
\(985\) 13.9195 0.443512
\(986\) 0 0
\(987\) 0.988168 0.0314537
\(988\) 49.5619 1.57677
\(989\) 12.9129 0.410608
\(990\) 12.9500 0.411578
\(991\) 39.1707 1.24430 0.622149 0.782898i \(-0.286260\pi\)
0.622149 + 0.782898i \(0.286260\pi\)
\(992\) 13.3093 0.422569
\(993\) −7.07856 −0.224631
\(994\) −58.5615 −1.85746
\(995\) −5.74002 −0.181971
\(996\) −2.26504 −0.0717706
\(997\) 34.4756 1.09185 0.545927 0.837833i \(-0.316177\pi\)
0.545927 + 0.837833i \(0.316177\pi\)
\(998\) −42.3892 −1.34181
\(999\) 7.76330 0.245620
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.r.1.8 9
3.2 odd 2 7569.2.a.bj.1.2 9
29.16 even 7 87.2.g.a.82.3 yes 18
29.20 even 7 87.2.g.a.52.3 18
29.28 even 2 2523.2.a.o.1.2 9
87.20 odd 14 261.2.k.c.226.1 18
87.74 odd 14 261.2.k.c.82.1 18
87.86 odd 2 7569.2.a.bm.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.52.3 18 29.20 even 7
87.2.g.a.82.3 yes 18 29.16 even 7
261.2.k.c.82.1 18 87.74 odd 14
261.2.k.c.226.1 18 87.20 odd 14
2523.2.a.o.1.2 9 29.28 even 2
2523.2.a.r.1.8 9 1.1 even 1 trivial
7569.2.a.bj.1.2 9 3.2 odd 2
7569.2.a.bm.1.8 9 87.86 odd 2