Properties

Label 2523.2.a.r.1.6
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: table mf_hecke_newspace_traces does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2523,2,Mod(1,2523)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2523.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2523, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,5,9,11,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.163909\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.16391 q^{2} +1.00000 q^{3} -0.645316 q^{4} +3.11042 q^{5} +1.16391 q^{6} +1.74624 q^{7} -3.07891 q^{8} +1.00000 q^{9} +3.62025 q^{10} -2.77225 q^{11} -0.645316 q^{12} -1.15295 q^{13} +2.03246 q^{14} +3.11042 q^{15} -2.29294 q^{16} +2.64265 q^{17} +1.16391 q^{18} +7.22436 q^{19} -2.00720 q^{20} +1.74624 q^{21} -3.22665 q^{22} -2.81031 q^{23} -3.07891 q^{24} +4.67473 q^{25} -1.34193 q^{26} +1.00000 q^{27} -1.12688 q^{28} +3.62025 q^{30} +3.98533 q^{31} +3.48904 q^{32} -2.77225 q^{33} +3.07581 q^{34} +5.43154 q^{35} -0.645316 q^{36} +10.4698 q^{37} +8.40850 q^{38} -1.15295 q^{39} -9.57670 q^{40} +8.92649 q^{41} +2.03246 q^{42} +11.7961 q^{43} +1.78898 q^{44} +3.11042 q^{45} -3.27095 q^{46} -7.34522 q^{47} -2.29294 q^{48} -3.95065 q^{49} +5.44096 q^{50} +2.64265 q^{51} +0.744019 q^{52} -5.38657 q^{53} +1.16391 q^{54} -8.62288 q^{55} -5.37651 q^{56} +7.22436 q^{57} -8.20042 q^{59} -2.00720 q^{60} +4.90841 q^{61} +4.63856 q^{62} +1.74624 q^{63} +8.64680 q^{64} -3.58617 q^{65} -3.22665 q^{66} -0.453589 q^{67} -1.70534 q^{68} -2.81031 q^{69} +6.32182 q^{70} +11.6046 q^{71} -3.07891 q^{72} -12.8553 q^{73} +12.1859 q^{74} +4.67473 q^{75} -4.66199 q^{76} -4.84102 q^{77} -1.34193 q^{78} -15.4177 q^{79} -7.13200 q^{80} +1.00000 q^{81} +10.3896 q^{82} -4.21480 q^{83} -1.12688 q^{84} +8.21977 q^{85} +13.7296 q^{86} +8.53551 q^{88} -2.03195 q^{89} +3.62025 q^{90} -2.01333 q^{91} +1.81354 q^{92} +3.98533 q^{93} -8.54917 q^{94} +22.4708 q^{95} +3.48904 q^{96} +12.6660 q^{97} -4.59819 q^{98} -2.77225 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 9 q^{3} + 11 q^{4} - 4 q^{5} + 5 q^{6} + 5 q^{7} + 24 q^{8} + 9 q^{9} - q^{11} + 11 q^{12} + q^{13} + 9 q^{14} - 4 q^{15} + 35 q^{16} + 2 q^{17} + 5 q^{18} + 9 q^{19} - 18 q^{20} + 5 q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16391 0.823008 0.411504 0.911408i \(-0.365004\pi\)
0.411504 + 0.911408i \(0.365004\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.645316 −0.322658
\(5\) 3.11042 1.39102 0.695512 0.718515i \(-0.255178\pi\)
0.695512 + 0.718515i \(0.255178\pi\)
\(6\) 1.16391 0.475164
\(7\) 1.74624 0.660017 0.330008 0.943978i \(-0.392948\pi\)
0.330008 + 0.943978i \(0.392948\pi\)
\(8\) −3.07891 −1.08856
\(9\) 1.00000 0.333333
\(10\) 3.62025 1.14482
\(11\) −2.77225 −0.835866 −0.417933 0.908478i \(-0.637245\pi\)
−0.417933 + 0.908478i \(0.637245\pi\)
\(12\) −0.645316 −0.186287
\(13\) −1.15295 −0.319772 −0.159886 0.987136i \(-0.551113\pi\)
−0.159886 + 0.987136i \(0.551113\pi\)
\(14\) 2.03246 0.543199
\(15\) 3.11042 0.803108
\(16\) −2.29294 −0.573234
\(17\) 2.64265 0.640937 0.320469 0.947259i \(-0.396160\pi\)
0.320469 + 0.947259i \(0.396160\pi\)
\(18\) 1.16391 0.274336
\(19\) 7.22436 1.65738 0.828691 0.559707i \(-0.189086\pi\)
0.828691 + 0.559707i \(0.189086\pi\)
\(20\) −2.00720 −0.448824
\(21\) 1.74624 0.381061
\(22\) −3.22665 −0.687925
\(23\) −2.81031 −0.585991 −0.292995 0.956114i \(-0.594652\pi\)
−0.292995 + 0.956114i \(0.594652\pi\)
\(24\) −3.07891 −0.628479
\(25\) 4.67473 0.934945
\(26\) −1.34193 −0.263175
\(27\) 1.00000 0.192450
\(28\) −1.12688 −0.212959
\(29\) 0 0
\(30\) 3.62025 0.660964
\(31\) 3.98533 0.715786 0.357893 0.933763i \(-0.383495\pi\)
0.357893 + 0.933763i \(0.383495\pi\)
\(32\) 3.48904 0.616782
\(33\) −2.77225 −0.482588
\(34\) 3.07581 0.527497
\(35\) 5.43154 0.918098
\(36\) −0.645316 −0.107553
\(37\) 10.4698 1.72123 0.860613 0.509260i \(-0.170081\pi\)
0.860613 + 0.509260i \(0.170081\pi\)
\(38\) 8.40850 1.36404
\(39\) −1.15295 −0.184620
\(40\) −9.57670 −1.51421
\(41\) 8.92649 1.39408 0.697041 0.717031i \(-0.254499\pi\)
0.697041 + 0.717031i \(0.254499\pi\)
\(42\) 2.03246 0.313616
\(43\) 11.7961 1.79889 0.899446 0.437031i \(-0.143970\pi\)
0.899446 + 0.437031i \(0.143970\pi\)
\(44\) 1.78898 0.269699
\(45\) 3.11042 0.463674
\(46\) −3.27095 −0.482275
\(47\) −7.34522 −1.07141 −0.535705 0.844405i \(-0.679954\pi\)
−0.535705 + 0.844405i \(0.679954\pi\)
\(48\) −2.29294 −0.330957
\(49\) −3.95065 −0.564378
\(50\) 5.44096 0.769468
\(51\) 2.64265 0.370045
\(52\) 0.744019 0.103177
\(53\) −5.38657 −0.739903 −0.369951 0.929051i \(-0.620626\pi\)
−0.369951 + 0.929051i \(0.620626\pi\)
\(54\) 1.16391 0.158388
\(55\) −8.62288 −1.16271
\(56\) −5.37651 −0.718466
\(57\) 7.22436 0.956889
\(58\) 0 0
\(59\) −8.20042 −1.06760 −0.533802 0.845610i \(-0.679237\pi\)
−0.533802 + 0.845610i \(0.679237\pi\)
\(60\) −2.00720 −0.259129
\(61\) 4.90841 0.628458 0.314229 0.949347i \(-0.398254\pi\)
0.314229 + 0.949347i \(0.398254\pi\)
\(62\) 4.63856 0.589098
\(63\) 1.74624 0.220006
\(64\) 8.64680 1.08085
\(65\) −3.58617 −0.444810
\(66\) −3.22665 −0.397173
\(67\) −0.453589 −0.0554147 −0.0277074 0.999616i \(-0.508821\pi\)
−0.0277074 + 0.999616i \(0.508821\pi\)
\(68\) −1.70534 −0.206803
\(69\) −2.81031 −0.338322
\(70\) 6.32182 0.755602
\(71\) 11.6046 1.37721 0.688606 0.725136i \(-0.258223\pi\)
0.688606 + 0.725136i \(0.258223\pi\)
\(72\) −3.07891 −0.362853
\(73\) −12.8553 −1.50460 −0.752298 0.658823i \(-0.771055\pi\)
−0.752298 + 0.658823i \(0.771055\pi\)
\(74\) 12.1859 1.41658
\(75\) 4.67473 0.539791
\(76\) −4.66199 −0.534767
\(77\) −4.84102 −0.551686
\(78\) −1.34193 −0.151944
\(79\) −15.4177 −1.73463 −0.867314 0.497761i \(-0.834156\pi\)
−0.867314 + 0.497761i \(0.834156\pi\)
\(80\) −7.13200 −0.797382
\(81\) 1.00000 0.111111
\(82\) 10.3896 1.14734
\(83\) −4.21480 −0.462635 −0.231317 0.972878i \(-0.574304\pi\)
−0.231317 + 0.972878i \(0.574304\pi\)
\(84\) −1.12688 −0.122952
\(85\) 8.21977 0.891559
\(86\) 13.7296 1.48050
\(87\) 0 0
\(88\) 8.53551 0.909889
\(89\) −2.03195 −0.215386 −0.107693 0.994184i \(-0.534346\pi\)
−0.107693 + 0.994184i \(0.534346\pi\)
\(90\) 3.62025 0.381608
\(91\) −2.01333 −0.211055
\(92\) 1.81354 0.189075
\(93\) 3.98533 0.413259
\(94\) −8.54917 −0.881779
\(95\) 22.4708 2.30546
\(96\) 3.48904 0.356099
\(97\) 12.6660 1.28604 0.643018 0.765851i \(-0.277682\pi\)
0.643018 + 0.765851i \(0.277682\pi\)
\(98\) −4.59819 −0.464488
\(99\) −2.77225 −0.278622
\(100\) −3.01667 −0.301667
\(101\) 3.16539 0.314968 0.157484 0.987522i \(-0.449662\pi\)
0.157484 + 0.987522i \(0.449662\pi\)
\(102\) 3.07581 0.304550
\(103\) 2.61991 0.258148 0.129074 0.991635i \(-0.458800\pi\)
0.129074 + 0.991635i \(0.458800\pi\)
\(104\) 3.54984 0.348090
\(105\) 5.43154 0.530064
\(106\) −6.26948 −0.608946
\(107\) −10.0408 −0.970685 −0.485343 0.874324i \(-0.661305\pi\)
−0.485343 + 0.874324i \(0.661305\pi\)
\(108\) −0.645316 −0.0620955
\(109\) −4.61764 −0.442290 −0.221145 0.975241i \(-0.570979\pi\)
−0.221145 + 0.975241i \(0.570979\pi\)
\(110\) −10.0363 −0.956919
\(111\) 10.4698 0.993750
\(112\) −4.00402 −0.378344
\(113\) −5.18977 −0.488212 −0.244106 0.969749i \(-0.578495\pi\)
−0.244106 + 0.969749i \(0.578495\pi\)
\(114\) 8.40850 0.787528
\(115\) −8.74126 −0.815127
\(116\) 0 0
\(117\) −1.15295 −0.106591
\(118\) −9.54454 −0.878646
\(119\) 4.61470 0.423029
\(120\) −9.57670 −0.874229
\(121\) −3.31460 −0.301328
\(122\) 5.71295 0.517226
\(123\) 8.92649 0.804874
\(124\) −2.57179 −0.230954
\(125\) −1.01174 −0.0904924
\(126\) 2.03246 0.181066
\(127\) −15.0144 −1.33231 −0.666156 0.745812i \(-0.732062\pi\)
−0.666156 + 0.745812i \(0.732062\pi\)
\(128\) 3.08601 0.272767
\(129\) 11.7961 1.03859
\(130\) −4.17398 −0.366082
\(131\) −0.535351 −0.0467738 −0.0233869 0.999726i \(-0.507445\pi\)
−0.0233869 + 0.999726i \(0.507445\pi\)
\(132\) 1.78898 0.155711
\(133\) 12.6155 1.09390
\(134\) −0.527936 −0.0456068
\(135\) 3.11042 0.267703
\(136\) −8.13648 −0.697697
\(137\) 12.4709 1.06546 0.532729 0.846286i \(-0.321167\pi\)
0.532729 + 0.846286i \(0.321167\pi\)
\(138\) −3.27095 −0.278442
\(139\) −8.68832 −0.736933 −0.368467 0.929641i \(-0.620117\pi\)
−0.368467 + 0.929641i \(0.620117\pi\)
\(140\) −3.50506 −0.296232
\(141\) −7.34522 −0.618579
\(142\) 13.5067 1.13346
\(143\) 3.19628 0.267286
\(144\) −2.29294 −0.191078
\(145\) 0 0
\(146\) −14.9624 −1.23830
\(147\) −3.95065 −0.325844
\(148\) −6.75633 −0.555367
\(149\) −15.0304 −1.23134 −0.615668 0.788006i \(-0.711114\pi\)
−0.615668 + 0.788006i \(0.711114\pi\)
\(150\) 5.44096 0.444252
\(151\) 15.0837 1.22750 0.613749 0.789501i \(-0.289661\pi\)
0.613749 + 0.789501i \(0.289661\pi\)
\(152\) −22.2431 −1.80416
\(153\) 2.64265 0.213646
\(154\) −5.63451 −0.454042
\(155\) 12.3961 0.995675
\(156\) 0.744019 0.0595692
\(157\) −9.94273 −0.793517 −0.396758 0.917923i \(-0.629865\pi\)
−0.396758 + 0.917923i \(0.629865\pi\)
\(158\) −17.9448 −1.42761
\(159\) −5.38657 −0.427183
\(160\) 10.8524 0.857958
\(161\) −4.90748 −0.386764
\(162\) 1.16391 0.0914453
\(163\) −2.74444 −0.214961 −0.107481 0.994207i \(-0.534278\pi\)
−0.107481 + 0.994207i \(0.534278\pi\)
\(164\) −5.76040 −0.449812
\(165\) −8.62288 −0.671291
\(166\) −4.90565 −0.380752
\(167\) −3.18949 −0.246810 −0.123405 0.992356i \(-0.539381\pi\)
−0.123405 + 0.992356i \(0.539381\pi\)
\(168\) −5.37651 −0.414807
\(169\) −11.6707 −0.897746
\(170\) 9.56706 0.733760
\(171\) 7.22436 0.552460
\(172\) −7.61222 −0.580427
\(173\) 7.57784 0.576132 0.288066 0.957611i \(-0.406988\pi\)
0.288066 + 0.957611i \(0.406988\pi\)
\(174\) 0 0
\(175\) 8.16319 0.617079
\(176\) 6.35661 0.479147
\(177\) −8.20042 −0.616381
\(178\) −2.36501 −0.177265
\(179\) −2.81192 −0.210173 −0.105086 0.994463i \(-0.533512\pi\)
−0.105086 + 0.994463i \(0.533512\pi\)
\(180\) −2.00720 −0.149608
\(181\) 7.04070 0.523331 0.261666 0.965159i \(-0.415728\pi\)
0.261666 + 0.965159i \(0.415728\pi\)
\(182\) −2.34334 −0.173700
\(183\) 4.90841 0.362840
\(184\) 8.65269 0.637885
\(185\) 32.5655 2.39426
\(186\) 4.63856 0.340116
\(187\) −7.32611 −0.535738
\(188\) 4.73998 0.345699
\(189\) 1.74624 0.127020
\(190\) 26.1540 1.89741
\(191\) 4.42589 0.320246 0.160123 0.987097i \(-0.448811\pi\)
0.160123 + 0.987097i \(0.448811\pi\)
\(192\) 8.64680 0.624029
\(193\) −4.03908 −0.290739 −0.145370 0.989377i \(-0.546437\pi\)
−0.145370 + 0.989377i \(0.546437\pi\)
\(194\) 14.7421 1.05842
\(195\) −3.58617 −0.256811
\(196\) 2.54941 0.182101
\(197\) 11.9908 0.854309 0.427154 0.904179i \(-0.359516\pi\)
0.427154 + 0.904179i \(0.359516\pi\)
\(198\) −3.22665 −0.229308
\(199\) 1.37703 0.0976152 0.0488076 0.998808i \(-0.484458\pi\)
0.0488076 + 0.998808i \(0.484458\pi\)
\(200\) −14.3931 −1.01774
\(201\) −0.453589 −0.0319937
\(202\) 3.68422 0.259221
\(203\) 0 0
\(204\) −1.70534 −0.119398
\(205\) 27.7651 1.93920
\(206\) 3.04934 0.212458
\(207\) −2.81031 −0.195330
\(208\) 2.64365 0.183304
\(209\) −20.0278 −1.38535
\(210\) 6.32182 0.436247
\(211\) −17.3739 −1.19607 −0.598034 0.801471i \(-0.704051\pi\)
−0.598034 + 0.801471i \(0.704051\pi\)
\(212\) 3.47604 0.238735
\(213\) 11.6046 0.795133
\(214\) −11.6866 −0.798882
\(215\) 36.6909 2.50230
\(216\) −3.07891 −0.209493
\(217\) 6.95934 0.472430
\(218\) −5.37451 −0.364008
\(219\) −12.8553 −0.868679
\(220\) 5.56448 0.375157
\(221\) −3.04685 −0.204954
\(222\) 12.1859 0.817864
\(223\) 13.8682 0.928686 0.464343 0.885655i \(-0.346290\pi\)
0.464343 + 0.885655i \(0.346290\pi\)
\(224\) 6.09271 0.407086
\(225\) 4.67473 0.311648
\(226\) −6.04042 −0.401803
\(227\) 2.39052 0.158664 0.0793322 0.996848i \(-0.474721\pi\)
0.0793322 + 0.996848i \(0.474721\pi\)
\(228\) −4.66199 −0.308748
\(229\) 1.06811 0.0705826 0.0352913 0.999377i \(-0.488764\pi\)
0.0352913 + 0.999377i \(0.488764\pi\)
\(230\) −10.1740 −0.670856
\(231\) −4.84102 −0.318516
\(232\) 0 0
\(233\) −25.6684 −1.68159 −0.840795 0.541353i \(-0.817912\pi\)
−0.840795 + 0.541353i \(0.817912\pi\)
\(234\) −1.34193 −0.0877249
\(235\) −22.8467 −1.49036
\(236\) 5.29186 0.344470
\(237\) −15.4177 −1.00149
\(238\) 5.37110 0.348156
\(239\) −7.85957 −0.508393 −0.254197 0.967153i \(-0.581811\pi\)
−0.254197 + 0.967153i \(0.581811\pi\)
\(240\) −7.13200 −0.460369
\(241\) 24.4553 1.57531 0.787653 0.616119i \(-0.211296\pi\)
0.787653 + 0.616119i \(0.211296\pi\)
\(242\) −3.85790 −0.247995
\(243\) 1.00000 0.0641500
\(244\) −3.16747 −0.202777
\(245\) −12.2882 −0.785063
\(246\) 10.3896 0.662418
\(247\) −8.32935 −0.529984
\(248\) −12.2705 −0.779174
\(249\) −4.21480 −0.267102
\(250\) −1.17757 −0.0744759
\(251\) −5.97805 −0.377331 −0.188666 0.982041i \(-0.560416\pi\)
−0.188666 + 0.982041i \(0.560416\pi\)
\(252\) −1.12688 −0.0709865
\(253\) 7.79091 0.489810
\(254\) −17.4754 −1.09650
\(255\) 8.21977 0.514742
\(256\) −13.7018 −0.856361
\(257\) 26.9440 1.68072 0.840361 0.542027i \(-0.182343\pi\)
0.840361 + 0.542027i \(0.182343\pi\)
\(258\) 13.7296 0.854769
\(259\) 18.2828 1.13604
\(260\) 2.31421 0.143521
\(261\) 0 0
\(262\) −0.623100 −0.0384952
\(263\) 16.6334 1.02566 0.512829 0.858491i \(-0.328597\pi\)
0.512829 + 0.858491i \(0.328597\pi\)
\(264\) 8.53551 0.525325
\(265\) −16.7545 −1.02922
\(266\) 14.6832 0.900288
\(267\) −2.03195 −0.124353
\(268\) 0.292708 0.0178800
\(269\) 13.6354 0.831366 0.415683 0.909510i \(-0.363543\pi\)
0.415683 + 0.909510i \(0.363543\pi\)
\(270\) 3.62025 0.220321
\(271\) −14.4025 −0.874892 −0.437446 0.899245i \(-0.644117\pi\)
−0.437446 + 0.899245i \(0.644117\pi\)
\(272\) −6.05944 −0.367407
\(273\) −2.01333 −0.121852
\(274\) 14.5149 0.876880
\(275\) −12.9595 −0.781489
\(276\) 1.81354 0.109162
\(277\) −13.7296 −0.824933 −0.412467 0.910973i \(-0.635333\pi\)
−0.412467 + 0.910973i \(0.635333\pi\)
\(278\) −10.1124 −0.606502
\(279\) 3.98533 0.238595
\(280\) −16.7232 −0.999403
\(281\) −0.143690 −0.00857182 −0.00428591 0.999991i \(-0.501364\pi\)
−0.00428591 + 0.999991i \(0.501364\pi\)
\(282\) −8.54917 −0.509096
\(283\) −8.83798 −0.525364 −0.262682 0.964883i \(-0.584607\pi\)
−0.262682 + 0.964883i \(0.584607\pi\)
\(284\) −7.48862 −0.444368
\(285\) 22.4708 1.33106
\(286\) 3.72018 0.219979
\(287\) 15.5878 0.920118
\(288\) 3.48904 0.205594
\(289\) −10.0164 −0.589199
\(290\) 0 0
\(291\) 12.6660 0.742493
\(292\) 8.29571 0.485470
\(293\) −3.37386 −0.197103 −0.0985516 0.995132i \(-0.531421\pi\)
−0.0985516 + 0.995132i \(0.531421\pi\)
\(294\) −4.59819 −0.268172
\(295\) −25.5068 −1.48506
\(296\) −32.2356 −1.87365
\(297\) −2.77225 −0.160863
\(298\) −17.4940 −1.01340
\(299\) 3.24016 0.187383
\(300\) −3.01667 −0.174168
\(301\) 20.5989 1.18730
\(302\) 17.5561 1.01024
\(303\) 3.16539 0.181847
\(304\) −16.5650 −0.950068
\(305\) 15.2672 0.874199
\(306\) 3.07581 0.175832
\(307\) −0.230862 −0.0131760 −0.00658799 0.999978i \(-0.502097\pi\)
−0.00658799 + 0.999978i \(0.502097\pi\)
\(308\) 3.12399 0.178006
\(309\) 2.61991 0.149042
\(310\) 14.4279 0.819448
\(311\) −25.1762 −1.42761 −0.713806 0.700344i \(-0.753030\pi\)
−0.713806 + 0.700344i \(0.753030\pi\)
\(312\) 3.54984 0.200970
\(313\) 9.98229 0.564233 0.282116 0.959380i \(-0.408964\pi\)
0.282116 + 0.959380i \(0.408964\pi\)
\(314\) −11.5724 −0.653071
\(315\) 5.43154 0.306033
\(316\) 9.94929 0.559691
\(317\) −27.6956 −1.55554 −0.777770 0.628549i \(-0.783649\pi\)
−0.777770 + 0.628549i \(0.783649\pi\)
\(318\) −6.26948 −0.351575
\(319\) 0 0
\(320\) 26.8952 1.50349
\(321\) −10.0408 −0.560425
\(322\) −5.71186 −0.318310
\(323\) 19.0915 1.06228
\(324\) −0.645316 −0.0358509
\(325\) −5.38974 −0.298969
\(326\) −3.19428 −0.176915
\(327\) −4.61764 −0.255356
\(328\) −27.4838 −1.51754
\(329\) −12.8265 −0.707149
\(330\) −10.0363 −0.552478
\(331\) −23.2748 −1.27930 −0.639650 0.768666i \(-0.720921\pi\)
−0.639650 + 0.768666i \(0.720921\pi\)
\(332\) 2.71988 0.149273
\(333\) 10.4698 0.573742
\(334\) −3.71228 −0.203127
\(335\) −1.41085 −0.0770831
\(336\) −4.00402 −0.218437
\(337\) 18.8302 1.02574 0.512872 0.858465i \(-0.328581\pi\)
0.512872 + 0.858465i \(0.328581\pi\)
\(338\) −13.5836 −0.738852
\(339\) −5.18977 −0.281869
\(340\) −5.30434 −0.287668
\(341\) −11.0483 −0.598301
\(342\) 8.40850 0.454679
\(343\) −19.1225 −1.03252
\(344\) −36.3192 −1.95820
\(345\) −8.74126 −0.470614
\(346\) 8.81991 0.474161
\(347\) −19.4007 −1.04148 −0.520741 0.853715i \(-0.674344\pi\)
−0.520741 + 0.853715i \(0.674344\pi\)
\(348\) 0 0
\(349\) 9.57141 0.512346 0.256173 0.966631i \(-0.417538\pi\)
0.256173 + 0.966631i \(0.417538\pi\)
\(350\) 9.50122 0.507861
\(351\) −1.15295 −0.0615401
\(352\) −9.67252 −0.515547
\(353\) −32.7562 −1.74344 −0.871718 0.490008i \(-0.836994\pi\)
−0.871718 + 0.490008i \(0.836994\pi\)
\(354\) −9.54454 −0.507287
\(355\) 36.0952 1.91573
\(356\) 1.31125 0.0694961
\(357\) 4.61470 0.244236
\(358\) −3.27282 −0.172974
\(359\) 14.5169 0.766172 0.383086 0.923713i \(-0.374861\pi\)
0.383086 + 0.923713i \(0.374861\pi\)
\(360\) −9.57670 −0.504736
\(361\) 33.1913 1.74691
\(362\) 8.19473 0.430706
\(363\) −3.31460 −0.173972
\(364\) 1.29923 0.0680984
\(365\) −39.9854 −2.09293
\(366\) 5.71295 0.298620
\(367\) 17.2024 0.897959 0.448979 0.893542i \(-0.351788\pi\)
0.448979 + 0.893542i \(0.351788\pi\)
\(368\) 6.44387 0.335910
\(369\) 8.92649 0.464694
\(370\) 37.9033 1.97050
\(371\) −9.40625 −0.488348
\(372\) −2.57179 −0.133341
\(373\) 8.53262 0.441802 0.220901 0.975296i \(-0.429100\pi\)
0.220901 + 0.975296i \(0.429100\pi\)
\(374\) −8.52692 −0.440917
\(375\) −1.01174 −0.0522458
\(376\) 22.6152 1.16629
\(377\) 0 0
\(378\) 2.03246 0.104539
\(379\) −10.8270 −0.556147 −0.278074 0.960560i \(-0.589696\pi\)
−0.278074 + 0.960560i \(0.589696\pi\)
\(380\) −14.5008 −0.743873
\(381\) −15.0144 −0.769211
\(382\) 5.15134 0.263565
\(383\) 20.0319 1.02358 0.511791 0.859110i \(-0.328982\pi\)
0.511791 + 0.859110i \(0.328982\pi\)
\(384\) 3.08601 0.157482
\(385\) −15.0576 −0.767407
\(386\) −4.70112 −0.239281
\(387\) 11.7961 0.599631
\(388\) −8.17355 −0.414949
\(389\) −30.9606 −1.56976 −0.784881 0.619646i \(-0.787276\pi\)
−0.784881 + 0.619646i \(0.787276\pi\)
\(390\) −4.17398 −0.211358
\(391\) −7.42668 −0.375583
\(392\) 12.1637 0.614358
\(393\) −0.535351 −0.0270049
\(394\) 13.9562 0.703103
\(395\) −47.9556 −2.41291
\(396\) 1.78898 0.0898996
\(397\) 19.7641 0.991933 0.495966 0.868342i \(-0.334814\pi\)
0.495966 + 0.868342i \(0.334814\pi\)
\(398\) 1.60274 0.0803381
\(399\) 12.6155 0.631563
\(400\) −10.7189 −0.535943
\(401\) 18.5889 0.928285 0.464143 0.885760i \(-0.346362\pi\)
0.464143 + 0.885760i \(0.346362\pi\)
\(402\) −0.527936 −0.0263311
\(403\) −4.59490 −0.228888
\(404\) −2.04267 −0.101627
\(405\) 3.11042 0.154558
\(406\) 0 0
\(407\) −29.0250 −1.43871
\(408\) −8.13648 −0.402816
\(409\) 31.5490 1.56000 0.779999 0.625780i \(-0.215219\pi\)
0.779999 + 0.625780i \(0.215219\pi\)
\(410\) 32.3161 1.59598
\(411\) 12.4709 0.615142
\(412\) −1.69067 −0.0832934
\(413\) −14.3199 −0.704636
\(414\) −3.27095 −0.160758
\(415\) −13.1098 −0.643536
\(416\) −4.02270 −0.197229
\(417\) −8.68832 −0.425469
\(418\) −23.3105 −1.14015
\(419\) −23.4046 −1.14339 −0.571695 0.820466i \(-0.693714\pi\)
−0.571695 + 0.820466i \(0.693714\pi\)
\(420\) −3.50506 −0.171029
\(421\) −0.394623 −0.0192327 −0.00961637 0.999954i \(-0.503061\pi\)
−0.00961637 + 0.999954i \(0.503061\pi\)
\(422\) −20.2216 −0.984373
\(423\) −7.34522 −0.357137
\(424\) 16.5848 0.805427
\(425\) 12.3537 0.599241
\(426\) 13.5067 0.654401
\(427\) 8.57126 0.414792
\(428\) 6.47952 0.313199
\(429\) 3.19628 0.154318
\(430\) 42.7049 2.05941
\(431\) −20.8177 −1.00275 −0.501376 0.865230i \(-0.667173\pi\)
−0.501376 + 0.865230i \(0.667173\pi\)
\(432\) −2.29294 −0.110319
\(433\) 0.298803 0.0143596 0.00717978 0.999974i \(-0.497715\pi\)
0.00717978 + 0.999974i \(0.497715\pi\)
\(434\) 8.10003 0.388814
\(435\) 0 0
\(436\) 2.97983 0.142708
\(437\) −20.3027 −0.971210
\(438\) −14.9624 −0.714930
\(439\) 25.9002 1.23615 0.618075 0.786119i \(-0.287913\pi\)
0.618075 + 0.786119i \(0.287913\pi\)
\(440\) 26.5491 1.26568
\(441\) −3.95065 −0.188126
\(442\) −3.54626 −0.168678
\(443\) 4.17054 0.198149 0.0990743 0.995080i \(-0.468412\pi\)
0.0990743 + 0.995080i \(0.468412\pi\)
\(444\) −6.75633 −0.320641
\(445\) −6.32022 −0.299607
\(446\) 16.1414 0.764316
\(447\) −15.0304 −0.710912
\(448\) 15.0994 0.713379
\(449\) −21.4255 −1.01113 −0.505566 0.862788i \(-0.668716\pi\)
−0.505566 + 0.862788i \(0.668716\pi\)
\(450\) 5.44096 0.256489
\(451\) −24.7465 −1.16527
\(452\) 3.34904 0.157525
\(453\) 15.0837 0.708696
\(454\) 2.78235 0.130582
\(455\) −6.26231 −0.293582
\(456\) −22.2431 −1.04163
\(457\) 15.2181 0.711875 0.355937 0.934510i \(-0.384162\pi\)
0.355937 + 0.934510i \(0.384162\pi\)
\(458\) 1.24318 0.0580900
\(459\) 2.64265 0.123348
\(460\) 5.64087 0.263007
\(461\) −3.40687 −0.158674 −0.0793370 0.996848i \(-0.525280\pi\)
−0.0793370 + 0.996848i \(0.525280\pi\)
\(462\) −5.63451 −0.262141
\(463\) −20.8584 −0.969374 −0.484687 0.874688i \(-0.661066\pi\)
−0.484687 + 0.874688i \(0.661066\pi\)
\(464\) 0 0
\(465\) 12.3961 0.574853
\(466\) −29.8757 −1.38396
\(467\) 17.3430 0.802536 0.401268 0.915961i \(-0.368570\pi\)
0.401268 + 0.915961i \(0.368570\pi\)
\(468\) 0.744019 0.0343923
\(469\) −0.792075 −0.0365746
\(470\) −26.5915 −1.22658
\(471\) −9.94273 −0.458137
\(472\) 25.2483 1.16215
\(473\) −32.7019 −1.50363
\(474\) −17.9448 −0.824233
\(475\) 33.7719 1.54956
\(476\) −2.97794 −0.136494
\(477\) −5.38657 −0.246634
\(478\) −9.14783 −0.418412
\(479\) −36.0650 −1.64785 −0.823927 0.566696i \(-0.808221\pi\)
−0.823927 + 0.566696i \(0.808221\pi\)
\(480\) 10.8524 0.495342
\(481\) −12.0712 −0.550399
\(482\) 28.4638 1.29649
\(483\) −4.90748 −0.223298
\(484\) 2.13896 0.0972257
\(485\) 39.3966 1.78891
\(486\) 1.16391 0.0527960
\(487\) 13.2004 0.598167 0.299083 0.954227i \(-0.403319\pi\)
0.299083 + 0.954227i \(0.403319\pi\)
\(488\) −15.1125 −0.684113
\(489\) −2.74444 −0.124108
\(490\) −14.3023 −0.646113
\(491\) −24.7678 −1.11776 −0.558878 0.829250i \(-0.688768\pi\)
−0.558878 + 0.829250i \(0.688768\pi\)
\(492\) −5.76040 −0.259699
\(493\) 0 0
\(494\) −9.69460 −0.436181
\(495\) −8.62288 −0.387570
\(496\) −9.13810 −0.410313
\(497\) 20.2644 0.908982
\(498\) −4.90565 −0.219827
\(499\) 15.8147 0.707963 0.353981 0.935252i \(-0.384828\pi\)
0.353981 + 0.935252i \(0.384828\pi\)
\(500\) 0.652889 0.0291981
\(501\) −3.18949 −0.142496
\(502\) −6.95791 −0.310547
\(503\) −23.4528 −1.04571 −0.522854 0.852422i \(-0.675133\pi\)
−0.522854 + 0.852422i \(0.675133\pi\)
\(504\) −5.37651 −0.239489
\(505\) 9.84569 0.438127
\(506\) 9.06791 0.403118
\(507\) −11.6707 −0.518314
\(508\) 9.68903 0.429881
\(509\) 6.97756 0.309275 0.154638 0.987971i \(-0.450579\pi\)
0.154638 + 0.987971i \(0.450579\pi\)
\(510\) 9.56706 0.423637
\(511\) −22.4484 −0.993059
\(512\) −22.1196 −0.977559
\(513\) 7.22436 0.318963
\(514\) 31.3604 1.38325
\(515\) 8.14904 0.359090
\(516\) −7.61222 −0.335109
\(517\) 20.3628 0.895556
\(518\) 21.2795 0.934968
\(519\) 7.57784 0.332630
\(520\) 11.0415 0.484201
\(521\) −20.4524 −0.896037 −0.448019 0.894024i \(-0.647870\pi\)
−0.448019 + 0.894024i \(0.647870\pi\)
\(522\) 0 0
\(523\) −19.8313 −0.867162 −0.433581 0.901115i \(-0.642750\pi\)
−0.433581 + 0.901115i \(0.642750\pi\)
\(524\) 0.345470 0.0150919
\(525\) 8.16319 0.356271
\(526\) 19.3597 0.844125
\(527\) 10.5318 0.458774
\(528\) 6.35661 0.276636
\(529\) −15.1021 −0.656615
\(530\) −19.5007 −0.847058
\(531\) −8.20042 −0.355868
\(532\) −8.14095 −0.352955
\(533\) −10.2918 −0.445788
\(534\) −2.36501 −0.102344
\(535\) −31.2313 −1.35025
\(536\) 1.39656 0.0603221
\(537\) −2.81192 −0.121343
\(538\) 15.8704 0.684221
\(539\) 10.9522 0.471745
\(540\) −2.00720 −0.0863763
\(541\) 35.7048 1.53507 0.767535 0.641007i \(-0.221483\pi\)
0.767535 + 0.641007i \(0.221483\pi\)
\(542\) −16.7633 −0.720043
\(543\) 7.04070 0.302145
\(544\) 9.22033 0.395318
\(545\) −14.3628 −0.615235
\(546\) −2.34334 −0.100286
\(547\) −9.88299 −0.422566 −0.211283 0.977425i \(-0.567764\pi\)
−0.211283 + 0.977425i \(0.567764\pi\)
\(548\) −8.04764 −0.343778
\(549\) 4.90841 0.209486
\(550\) −15.0837 −0.643172
\(551\) 0 0
\(552\) 8.65269 0.368283
\(553\) −26.9230 −1.14488
\(554\) −15.9800 −0.678927
\(555\) 32.5655 1.38233
\(556\) 5.60671 0.237777
\(557\) −31.8798 −1.35079 −0.675395 0.737457i \(-0.736027\pi\)
−0.675395 + 0.737457i \(0.736027\pi\)
\(558\) 4.63856 0.196366
\(559\) −13.6004 −0.575235
\(560\) −12.4542 −0.526285
\(561\) −7.32611 −0.309308
\(562\) −0.167242 −0.00705468
\(563\) −9.06052 −0.381855 −0.190928 0.981604i \(-0.561150\pi\)
−0.190928 + 0.981604i \(0.561150\pi\)
\(564\) 4.73998 0.199589
\(565\) −16.1424 −0.679114
\(566\) −10.2866 −0.432378
\(567\) 1.74624 0.0733352
\(568\) −35.7294 −1.49917
\(569\) −16.7232 −0.701073 −0.350537 0.936549i \(-0.614001\pi\)
−0.350537 + 0.936549i \(0.614001\pi\)
\(570\) 26.1540 1.09547
\(571\) −23.2770 −0.974113 −0.487057 0.873370i \(-0.661929\pi\)
−0.487057 + 0.873370i \(0.661929\pi\)
\(572\) −2.06261 −0.0862420
\(573\) 4.42589 0.184894
\(574\) 18.1428 0.757264
\(575\) −13.1375 −0.547870
\(576\) 8.64680 0.360283
\(577\) 18.9370 0.788358 0.394179 0.919034i \(-0.371029\pi\)
0.394179 + 0.919034i \(0.371029\pi\)
\(578\) −11.6582 −0.484916
\(579\) −4.03908 −0.167858
\(580\) 0 0
\(581\) −7.36006 −0.305347
\(582\) 14.7421 0.611078
\(583\) 14.9330 0.618460
\(584\) 39.5802 1.63784
\(585\) −3.58617 −0.148270
\(586\) −3.92687 −0.162218
\(587\) −0.0227550 −0.000939198 0 −0.000469599 1.00000i \(-0.500149\pi\)
−0.000469599 1.00000i \(0.500149\pi\)
\(588\) 2.54941 0.105136
\(589\) 28.7914 1.18633
\(590\) −29.6875 −1.22222
\(591\) 11.9908 0.493235
\(592\) −24.0066 −0.986665
\(593\) 0.352611 0.0144800 0.00724000 0.999974i \(-0.497695\pi\)
0.00724000 + 0.999974i \(0.497695\pi\)
\(594\) −3.22665 −0.132391
\(595\) 14.3537 0.588443
\(596\) 9.69933 0.397300
\(597\) 1.37703 0.0563582
\(598\) 3.77125 0.154218
\(599\) 8.06663 0.329594 0.164797 0.986328i \(-0.447303\pi\)
0.164797 + 0.986328i \(0.447303\pi\)
\(600\) −14.3931 −0.587594
\(601\) −21.8761 −0.892347 −0.446173 0.894947i \(-0.647213\pi\)
−0.446173 + 0.894947i \(0.647213\pi\)
\(602\) 23.9752 0.977157
\(603\) −0.453589 −0.0184716
\(604\) −9.73378 −0.396062
\(605\) −10.3098 −0.419154
\(606\) 3.68422 0.149661
\(607\) −3.24534 −0.131724 −0.0658622 0.997829i \(-0.520980\pi\)
−0.0658622 + 0.997829i \(0.520980\pi\)
\(608\) 25.2061 1.02224
\(609\) 0 0
\(610\) 17.7697 0.719473
\(611\) 8.46869 0.342607
\(612\) −1.70534 −0.0689345
\(613\) −9.33554 −0.377059 −0.188529 0.982068i \(-0.560372\pi\)
−0.188529 + 0.982068i \(0.560372\pi\)
\(614\) −0.268702 −0.0108439
\(615\) 27.7651 1.11960
\(616\) 14.9051 0.600542
\(617\) 22.1616 0.892192 0.446096 0.894985i \(-0.352814\pi\)
0.446096 + 0.894985i \(0.352814\pi\)
\(618\) 3.04934 0.122663
\(619\) −6.51815 −0.261987 −0.130993 0.991383i \(-0.541817\pi\)
−0.130993 + 0.991383i \(0.541817\pi\)
\(620\) −7.99936 −0.321262
\(621\) −2.81031 −0.112774
\(622\) −29.3028 −1.17494
\(623\) −3.54827 −0.142159
\(624\) 2.64365 0.105831
\(625\) −26.5206 −1.06082
\(626\) 11.6185 0.464368
\(627\) −20.0278 −0.799832
\(628\) 6.41620 0.256034
\(629\) 27.6681 1.10320
\(630\) 6.32182 0.251867
\(631\) −23.9791 −0.954593 −0.477297 0.878742i \(-0.658383\pi\)
−0.477297 + 0.878742i \(0.658383\pi\)
\(632\) 47.4697 1.88824
\(633\) −17.3739 −0.690550
\(634\) −32.2352 −1.28022
\(635\) −46.7011 −1.85328
\(636\) 3.47604 0.137834
\(637\) 4.55491 0.180472
\(638\) 0 0
\(639\) 11.6046 0.459070
\(640\) 9.59878 0.379425
\(641\) 43.9700 1.73671 0.868355 0.495943i \(-0.165177\pi\)
0.868355 + 0.495943i \(0.165177\pi\)
\(642\) −11.6866 −0.461235
\(643\) 16.5216 0.651549 0.325775 0.945447i \(-0.394375\pi\)
0.325775 + 0.945447i \(0.394375\pi\)
\(644\) 3.16687 0.124792
\(645\) 36.6909 1.44470
\(646\) 22.2207 0.874263
\(647\) −35.2719 −1.38668 −0.693340 0.720611i \(-0.743862\pi\)
−0.693340 + 0.720611i \(0.743862\pi\)
\(648\) −3.07891 −0.120951
\(649\) 22.7336 0.892374
\(650\) −6.27317 −0.246054
\(651\) 6.95934 0.272758
\(652\) 1.77103 0.0693590
\(653\) 16.8156 0.658045 0.329023 0.944322i \(-0.393281\pi\)
0.329023 + 0.944322i \(0.393281\pi\)
\(654\) −5.37451 −0.210160
\(655\) −1.66517 −0.0650635
\(656\) −20.4679 −0.799136
\(657\) −12.8553 −0.501532
\(658\) −14.9289 −0.581989
\(659\) 3.00399 0.117019 0.0585094 0.998287i \(-0.481365\pi\)
0.0585094 + 0.998287i \(0.481365\pi\)
\(660\) 5.56448 0.216597
\(661\) 38.3135 1.49022 0.745111 0.666940i \(-0.232396\pi\)
0.745111 + 0.666940i \(0.232396\pi\)
\(662\) −27.0898 −1.05287
\(663\) −3.04685 −0.118330
\(664\) 12.9770 0.503605
\(665\) 39.2394 1.52164
\(666\) 12.1859 0.472194
\(667\) 0 0
\(668\) 2.05823 0.0796353
\(669\) 13.8682 0.536177
\(670\) −1.64211 −0.0634401
\(671\) −13.6074 −0.525307
\(672\) 6.09271 0.235031
\(673\) −27.3818 −1.05549 −0.527745 0.849403i \(-0.676962\pi\)
−0.527745 + 0.849403i \(0.676962\pi\)
\(674\) 21.9166 0.844196
\(675\) 4.67473 0.179930
\(676\) 7.53128 0.289665
\(677\) 28.6366 1.10059 0.550297 0.834969i \(-0.314514\pi\)
0.550297 + 0.834969i \(0.314514\pi\)
\(678\) −6.04042 −0.231981
\(679\) 22.1178 0.848805
\(680\) −25.3079 −0.970513
\(681\) 2.39052 0.0916049
\(682\) −12.8593 −0.492407
\(683\) 12.5885 0.481686 0.240843 0.970564i \(-0.422576\pi\)
0.240843 + 0.970564i \(0.422576\pi\)
\(684\) −4.66199 −0.178256
\(685\) 38.7896 1.48208
\(686\) −22.2568 −0.849769
\(687\) 1.06811 0.0407509
\(688\) −27.0478 −1.03119
\(689\) 6.21047 0.236600
\(690\) −10.1740 −0.387319
\(691\) 40.0195 1.52241 0.761207 0.648509i \(-0.224607\pi\)
0.761207 + 0.648509i \(0.224607\pi\)
\(692\) −4.89009 −0.185894
\(693\) −4.84102 −0.183895
\(694\) −22.5806 −0.857148
\(695\) −27.0243 −1.02509
\(696\) 0 0
\(697\) 23.5896 0.893520
\(698\) 11.1403 0.421665
\(699\) −25.6684 −0.970867
\(700\) −5.26784 −0.199105
\(701\) −12.8864 −0.486711 −0.243356 0.969937i \(-0.578248\pi\)
−0.243356 + 0.969937i \(0.578248\pi\)
\(702\) −1.34193 −0.0506480
\(703\) 75.6376 2.85273
\(704\) −23.9711 −0.903446
\(705\) −22.8467 −0.860458
\(706\) −38.1252 −1.43486
\(707\) 5.52752 0.207884
\(708\) 5.29186 0.198880
\(709\) −0.627021 −0.0235483 −0.0117741 0.999931i \(-0.503748\pi\)
−0.0117741 + 0.999931i \(0.503748\pi\)
\(710\) 42.0115 1.57666
\(711\) −15.4177 −0.578209
\(712\) 6.25619 0.234460
\(713\) −11.2000 −0.419444
\(714\) 5.37110 0.201008
\(715\) 9.94178 0.371802
\(716\) 1.81458 0.0678139
\(717\) −7.85957 −0.293521
\(718\) 16.8963 0.630566
\(719\) 35.4279 1.32124 0.660619 0.750722i \(-0.270294\pi\)
0.660619 + 0.750722i \(0.270294\pi\)
\(720\) −7.13200 −0.265794
\(721\) 4.57500 0.170382
\(722\) 38.6317 1.43772
\(723\) 24.4553 0.909504
\(724\) −4.54347 −0.168857
\(725\) 0 0
\(726\) −3.85790 −0.143180
\(727\) −19.4235 −0.720377 −0.360189 0.932879i \(-0.617288\pi\)
−0.360189 + 0.932879i \(0.617288\pi\)
\(728\) 6.19886 0.229745
\(729\) 1.00000 0.0370370
\(730\) −46.5393 −1.72250
\(731\) 31.1731 1.15298
\(732\) −3.16747 −0.117073
\(733\) −25.0806 −0.926374 −0.463187 0.886261i \(-0.653294\pi\)
−0.463187 + 0.886261i \(0.653294\pi\)
\(734\) 20.0220 0.739027
\(735\) −12.2882 −0.453256
\(736\) −9.80531 −0.361428
\(737\) 1.25746 0.0463193
\(738\) 10.3896 0.382447
\(739\) 52.8524 1.94421 0.972104 0.234550i \(-0.0753617\pi\)
0.972104 + 0.234550i \(0.0753617\pi\)
\(740\) −21.0150 −0.772528
\(741\) −8.32935 −0.305986
\(742\) −10.9480 −0.401914
\(743\) 15.8786 0.582528 0.291264 0.956643i \(-0.405924\pi\)
0.291264 + 0.956643i \(0.405924\pi\)
\(744\) −12.2705 −0.449857
\(745\) −46.7508 −1.71282
\(746\) 9.93119 0.363607
\(747\) −4.21480 −0.154212
\(748\) 4.72765 0.172860
\(749\) −17.5337 −0.640668
\(750\) −1.17757 −0.0429987
\(751\) −9.27637 −0.338500 −0.169250 0.985573i \(-0.554134\pi\)
−0.169250 + 0.985573i \(0.554134\pi\)
\(752\) 16.8421 0.614169
\(753\) −5.97805 −0.217852
\(754\) 0 0
\(755\) 46.9168 1.70748
\(756\) −1.12688 −0.0409841
\(757\) −5.98504 −0.217530 −0.108765 0.994067i \(-0.534690\pi\)
−0.108765 + 0.994067i \(0.534690\pi\)
\(758\) −12.6017 −0.457714
\(759\) 7.79091 0.282792
\(760\) −69.1855 −2.50962
\(761\) 21.1614 0.767100 0.383550 0.923520i \(-0.374701\pi\)
0.383550 + 0.923520i \(0.374701\pi\)
\(762\) −17.4754 −0.633067
\(763\) −8.06351 −0.291918
\(764\) −2.85610 −0.103330
\(765\) 8.21977 0.297186
\(766\) 23.3153 0.842415
\(767\) 9.45470 0.341389
\(768\) −13.7018 −0.494420
\(769\) 24.3858 0.879373 0.439686 0.898151i \(-0.355090\pi\)
0.439686 + 0.898151i \(0.355090\pi\)
\(770\) −17.5257 −0.631582
\(771\) 26.9440 0.970366
\(772\) 2.60648 0.0938093
\(773\) 54.2116 1.94985 0.974927 0.222524i \(-0.0714294\pi\)
0.974927 + 0.222524i \(0.0714294\pi\)
\(774\) 13.7296 0.493501
\(775\) 18.6303 0.669221
\(776\) −38.9974 −1.39992
\(777\) 18.2828 0.655891
\(778\) −36.0353 −1.29193
\(779\) 64.4881 2.31053
\(780\) 2.31421 0.0828621
\(781\) −32.1709 −1.15116
\(782\) −8.64398 −0.309108
\(783\) 0 0
\(784\) 9.05858 0.323521
\(785\) −30.9261 −1.10380
\(786\) −0.623100 −0.0222252
\(787\) −0.547155 −0.0195040 −0.00975198 0.999952i \(-0.503104\pi\)
−0.00975198 + 0.999952i \(0.503104\pi\)
\(788\) −7.73785 −0.275649
\(789\) 16.6334 0.592164
\(790\) −55.8160 −1.98584
\(791\) −9.06258 −0.322228
\(792\) 8.53551 0.303296
\(793\) −5.65917 −0.200963
\(794\) 23.0036 0.816369
\(795\) −16.7545 −0.594222
\(796\) −0.888620 −0.0314963
\(797\) −24.5501 −0.869610 −0.434805 0.900525i \(-0.643183\pi\)
−0.434805 + 0.900525i \(0.643183\pi\)
\(798\) 14.6832 0.519781
\(799\) −19.4109 −0.686707
\(800\) 16.3103 0.576657
\(801\) −2.03195 −0.0717954
\(802\) 21.6358 0.763986
\(803\) 35.6381 1.25764
\(804\) 0.292708 0.0103230
\(805\) −15.2643 −0.537997
\(806\) −5.34804 −0.188377
\(807\) 13.6354 0.479989
\(808\) −9.74593 −0.342861
\(809\) 26.3716 0.927175 0.463588 0.886051i \(-0.346562\pi\)
0.463588 + 0.886051i \(0.346562\pi\)
\(810\) 3.62025 0.127203
\(811\) 31.8364 1.11793 0.558964 0.829192i \(-0.311199\pi\)
0.558964 + 0.829192i \(0.311199\pi\)
\(812\) 0 0
\(813\) −14.4025 −0.505119
\(814\) −33.7824 −1.18407
\(815\) −8.53638 −0.299016
\(816\) −6.05944 −0.212123
\(817\) 85.2194 2.98145
\(818\) 36.7202 1.28389
\(819\) −2.01333 −0.0703515
\(820\) −17.9173 −0.625698
\(821\) 13.1414 0.458640 0.229320 0.973351i \(-0.426350\pi\)
0.229320 + 0.973351i \(0.426350\pi\)
\(822\) 14.5149 0.506267
\(823\) −52.3889 −1.82616 −0.913081 0.407778i \(-0.866304\pi\)
−0.913081 + 0.407778i \(0.866304\pi\)
\(824\) −8.06647 −0.281009
\(825\) −12.9595 −0.451193
\(826\) −16.6671 −0.579921
\(827\) −22.6892 −0.788981 −0.394491 0.918900i \(-0.629079\pi\)
−0.394491 + 0.918900i \(0.629079\pi\)
\(828\) 1.81354 0.0630248
\(829\) 20.0998 0.698094 0.349047 0.937105i \(-0.386505\pi\)
0.349047 + 0.937105i \(0.386505\pi\)
\(830\) −15.2586 −0.529635
\(831\) −13.7296 −0.476276
\(832\) −9.96936 −0.345625
\(833\) −10.4402 −0.361731
\(834\) −10.1124 −0.350164
\(835\) −9.92067 −0.343319
\(836\) 12.9242 0.446994
\(837\) 3.98533 0.137753
\(838\) −27.2408 −0.941019
\(839\) 8.22035 0.283798 0.141899 0.989881i \(-0.454679\pi\)
0.141899 + 0.989881i \(0.454679\pi\)
\(840\) −16.7232 −0.577006
\(841\) 0 0
\(842\) −0.459305 −0.0158287
\(843\) −0.143690 −0.00494895
\(844\) 11.2116 0.385920
\(845\) −36.3008 −1.24879
\(846\) −8.54917 −0.293926
\(847\) −5.78809 −0.198881
\(848\) 12.3511 0.424138
\(849\) −8.83798 −0.303319
\(850\) 14.3786 0.493181
\(851\) −29.4234 −1.00862
\(852\) −7.48862 −0.256556
\(853\) 20.7111 0.709136 0.354568 0.935030i \(-0.384628\pi\)
0.354568 + 0.935030i \(0.384628\pi\)
\(854\) 9.97617 0.341378
\(855\) 22.4708 0.768485
\(856\) 30.9148 1.05665
\(857\) −6.13652 −0.209620 −0.104810 0.994492i \(-0.533423\pi\)
−0.104810 + 0.994492i \(0.533423\pi\)
\(858\) 3.72018 0.127005
\(859\) 15.9653 0.544730 0.272365 0.962194i \(-0.412194\pi\)
0.272365 + 0.962194i \(0.412194\pi\)
\(860\) −23.6772 −0.807387
\(861\) 15.5878 0.531230
\(862\) −24.2299 −0.825273
\(863\) −20.5055 −0.698014 −0.349007 0.937120i \(-0.613481\pi\)
−0.349007 + 0.937120i \(0.613481\pi\)
\(864\) 3.48904 0.118700
\(865\) 23.5703 0.801413
\(866\) 0.347780 0.0118180
\(867\) −10.0164 −0.340174
\(868\) −4.49097 −0.152433
\(869\) 42.7418 1.44992
\(870\) 0 0
\(871\) 0.522967 0.0177201
\(872\) 14.2173 0.481458
\(873\) 12.6660 0.428679
\(874\) −23.6305 −0.799314
\(875\) −1.76673 −0.0597265
\(876\) 8.29571 0.280286
\(877\) −26.7528 −0.903378 −0.451689 0.892175i \(-0.649178\pi\)
−0.451689 + 0.892175i \(0.649178\pi\)
\(878\) 30.1455 1.01736
\(879\) −3.37386 −0.113798
\(880\) 19.7717 0.666505
\(881\) 20.0351 0.675001 0.337501 0.941325i \(-0.390418\pi\)
0.337501 + 0.941325i \(0.390418\pi\)
\(882\) −4.59819 −0.154829
\(883\) −34.9210 −1.17518 −0.587592 0.809157i \(-0.699924\pi\)
−0.587592 + 0.809157i \(0.699924\pi\)
\(884\) 1.96618 0.0661299
\(885\) −25.5068 −0.857400
\(886\) 4.85413 0.163078
\(887\) −16.0686 −0.539530 −0.269765 0.962926i \(-0.586946\pi\)
−0.269765 + 0.962926i \(0.586946\pi\)
\(888\) −32.2356 −1.08175
\(889\) −26.2187 −0.879348
\(890\) −7.35617 −0.246579
\(891\) −2.77225 −0.0928740
\(892\) −8.94939 −0.299648
\(893\) −53.0645 −1.77574
\(894\) −17.4940 −0.585087
\(895\) −8.74627 −0.292355
\(896\) 5.38891 0.180031
\(897\) 3.24016 0.108186
\(898\) −24.9373 −0.832170
\(899\) 0 0
\(900\) −3.01667 −0.100556
\(901\) −14.2348 −0.474231
\(902\) −28.8027 −0.959024
\(903\) 20.5989 0.685487
\(904\) 15.9788 0.531447
\(905\) 21.8995 0.727966
\(906\) 17.5561 0.583263
\(907\) 26.8790 0.892501 0.446251 0.894908i \(-0.352759\pi\)
0.446251 + 0.894908i \(0.352759\pi\)
\(908\) −1.54264 −0.0511943
\(909\) 3.16539 0.104989
\(910\) −7.28876 −0.241620
\(911\) −29.9706 −0.992969 −0.496485 0.868045i \(-0.665376\pi\)
−0.496485 + 0.868045i \(0.665376\pi\)
\(912\) −16.5650 −0.548522
\(913\) 11.6845 0.386701
\(914\) 17.7125 0.585879
\(915\) 15.2672 0.504719
\(916\) −0.689267 −0.0227740
\(917\) −0.934851 −0.0308715
\(918\) 3.07581 0.101517
\(919\) 34.5424 1.13945 0.569725 0.821835i \(-0.307050\pi\)
0.569725 + 0.821835i \(0.307050\pi\)
\(920\) 26.9135 0.887313
\(921\) −0.230862 −0.00760715
\(922\) −3.96529 −0.130590
\(923\) −13.3795 −0.440393
\(924\) 3.12399 0.102772
\(925\) 48.9435 1.60925
\(926\) −24.2773 −0.797803
\(927\) 2.61991 0.0860493
\(928\) 0 0
\(929\) −55.5508 −1.82256 −0.911282 0.411783i \(-0.864906\pi\)
−0.911282 + 0.411783i \(0.864906\pi\)
\(930\) 14.4279 0.473109
\(931\) −28.5409 −0.935390
\(932\) 16.5642 0.542578
\(933\) −25.1762 −0.824232
\(934\) 20.1856 0.660494
\(935\) −22.7873 −0.745224
\(936\) 3.54984 0.116030
\(937\) −4.11223 −0.134341 −0.0671703 0.997742i \(-0.521397\pi\)
−0.0671703 + 0.997742i \(0.521397\pi\)
\(938\) −0.921903 −0.0301012
\(939\) 9.98229 0.325760
\(940\) 14.7434 0.480875
\(941\) 3.81681 0.124425 0.0622123 0.998063i \(-0.480184\pi\)
0.0622123 + 0.998063i \(0.480184\pi\)
\(942\) −11.5724 −0.377050
\(943\) −25.0862 −0.816920
\(944\) 18.8030 0.611987
\(945\) 5.43154 0.176688
\(946\) −38.0620 −1.23750
\(947\) 22.8259 0.741743 0.370871 0.928684i \(-0.379059\pi\)
0.370871 + 0.928684i \(0.379059\pi\)
\(948\) 9.94929 0.323138
\(949\) 14.8215 0.481127
\(950\) 39.3074 1.27530
\(951\) −27.6956 −0.898092
\(952\) −14.2082 −0.460492
\(953\) −44.6142 −1.44520 −0.722598 0.691268i \(-0.757052\pi\)
−0.722598 + 0.691268i \(0.757052\pi\)
\(954\) −6.26948 −0.202982
\(955\) 13.7664 0.445470
\(956\) 5.07190 0.164037
\(957\) 0 0
\(958\) −41.9764 −1.35620
\(959\) 21.7771 0.703219
\(960\) 26.8952 0.868039
\(961\) −15.1172 −0.487651
\(962\) −14.0498 −0.452983
\(963\) −10.0408 −0.323562
\(964\) −15.7814 −0.508285
\(965\) −12.5632 −0.404425
\(966\) −5.71186 −0.183776
\(967\) 55.1136 1.77233 0.886167 0.463366i \(-0.153358\pi\)
0.886167 + 0.463366i \(0.153358\pi\)
\(968\) 10.2054 0.328013
\(969\) 19.0915 0.613306
\(970\) 45.8540 1.47228
\(971\) −13.2980 −0.426753 −0.213377 0.976970i \(-0.568446\pi\)
−0.213377 + 0.976970i \(0.568446\pi\)
\(972\) −0.645316 −0.0206985
\(973\) −15.1719 −0.486388
\(974\) 15.3640 0.492296
\(975\) −5.38974 −0.172610
\(976\) −11.2547 −0.360253
\(977\) 2.11659 0.0677156 0.0338578 0.999427i \(-0.489221\pi\)
0.0338578 + 0.999427i \(0.489221\pi\)
\(978\) −3.19428 −0.102142
\(979\) 5.63308 0.180034
\(980\) 7.92975 0.253307
\(981\) −4.61764 −0.147430
\(982\) −28.8275 −0.919922
\(983\) −9.53887 −0.304243 −0.152121 0.988362i \(-0.548610\pi\)
−0.152121 + 0.988362i \(0.548610\pi\)
\(984\) −27.4838 −0.876152
\(985\) 37.2964 1.18836
\(986\) 0 0
\(987\) −12.8265 −0.408272
\(988\) 5.37506 0.171003
\(989\) −33.1508 −1.05413
\(990\) −10.0363 −0.318973
\(991\) −11.7197 −0.372288 −0.186144 0.982522i \(-0.559599\pi\)
−0.186144 + 0.982522i \(0.559599\pi\)
\(992\) 13.9050 0.441484
\(993\) −23.2748 −0.738604
\(994\) 23.5859 0.748100
\(995\) 4.28315 0.135785
\(996\) 2.71988 0.0861826
\(997\) 48.5074 1.53624 0.768122 0.640303i \(-0.221191\pi\)
0.768122 + 0.640303i \(0.221191\pi\)
\(998\) 18.4069 0.582659
\(999\) 10.4698 0.331250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.r.1.6 9
3.2 odd 2 7569.2.a.bj.1.4 9
29.7 even 7 87.2.g.a.49.2 yes 18
29.25 even 7 87.2.g.a.16.2 18
29.28 even 2 2523.2.a.o.1.4 9
87.65 odd 14 261.2.k.c.136.2 18
87.83 odd 14 261.2.k.c.190.2 18
87.86 odd 2 7569.2.a.bm.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.16.2 18 29.25 even 7
87.2.g.a.49.2 yes 18 29.7 even 7
261.2.k.c.136.2 18 87.65 odd 14
261.2.k.c.190.2 18 87.83 odd 14
2523.2.a.o.1.4 9 29.28 even 2
2523.2.a.r.1.6 9 1.1 even 1 trivial
7569.2.a.bj.1.4 9 3.2 odd 2
7569.2.a.bm.1.6 9 87.86 odd 2