Properties

Label 2523.2.a.r.1.3
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,2,Mod(1,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.69494\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.694939 q^{2} +1.00000 q^{3} -1.51706 q^{4} -2.01780 q^{5} -0.694939 q^{6} -2.39488 q^{7} +2.44414 q^{8} +1.00000 q^{9} +1.40225 q^{10} -0.957887 q^{11} -1.51706 q^{12} +6.53321 q^{13} +1.66430 q^{14} -2.01780 q^{15} +1.33559 q^{16} -3.81642 q^{17} -0.694939 q^{18} -4.31846 q^{19} +3.06113 q^{20} -2.39488 q^{21} +0.665673 q^{22} -5.38804 q^{23} +2.44414 q^{24} -0.928470 q^{25} -4.54018 q^{26} +1.00000 q^{27} +3.63318 q^{28} +1.40225 q^{30} +2.73463 q^{31} -5.81644 q^{32} -0.957887 q^{33} +2.65217 q^{34} +4.83240 q^{35} -1.51706 q^{36} -1.86068 q^{37} +3.00106 q^{38} +6.53321 q^{39} -4.93180 q^{40} +11.8282 q^{41} +1.66430 q^{42} -3.70437 q^{43} +1.45317 q^{44} -2.01780 q^{45} +3.74436 q^{46} -3.23270 q^{47} +1.33559 q^{48} -1.26453 q^{49} +0.645230 q^{50} -3.81642 q^{51} -9.91127 q^{52} +2.26772 q^{53} -0.694939 q^{54} +1.93283 q^{55} -5.85343 q^{56} -4.31846 q^{57} -9.30726 q^{59} +3.06113 q^{60} +3.13852 q^{61} -1.90040 q^{62} -2.39488 q^{63} +1.37088 q^{64} -13.1827 q^{65} +0.665673 q^{66} +12.1012 q^{67} +5.78973 q^{68} -5.38804 q^{69} -3.35822 q^{70} -4.60343 q^{71} +2.44414 q^{72} +9.09135 q^{73} +1.29306 q^{74} -0.928470 q^{75} +6.55136 q^{76} +2.29403 q^{77} -4.54018 q^{78} +4.28781 q^{79} -2.69496 q^{80} +1.00000 q^{81} -8.21984 q^{82} +16.1813 q^{83} +3.63318 q^{84} +7.70078 q^{85} +2.57431 q^{86} -2.34121 q^{88} +15.4430 q^{89} +1.40225 q^{90} -15.6463 q^{91} +8.17399 q^{92} +2.73463 q^{93} +2.24653 q^{94} +8.71380 q^{95} -5.81644 q^{96} +15.7632 q^{97} +0.878774 q^{98} -0.957887 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 9 q^{3} + 11 q^{4} - 4 q^{5} + 5 q^{6} + 5 q^{7} + 24 q^{8} + 9 q^{9} - q^{11} + 11 q^{12} + q^{13} + 9 q^{14} - 4 q^{15} + 35 q^{16} + 2 q^{17} + 5 q^{18} + 9 q^{19} - 18 q^{20} + 5 q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.694939 −0.491396 −0.245698 0.969346i \(-0.579017\pi\)
−0.245698 + 0.969346i \(0.579017\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.51706 −0.758530
\(5\) −2.01780 −0.902389 −0.451195 0.892426i \(-0.649002\pi\)
−0.451195 + 0.892426i \(0.649002\pi\)
\(6\) −0.694939 −0.283707
\(7\) −2.39488 −0.905181 −0.452590 0.891719i \(-0.649500\pi\)
−0.452590 + 0.891719i \(0.649500\pi\)
\(8\) 2.44414 0.864134
\(9\) 1.00000 0.333333
\(10\) 1.40225 0.443430
\(11\) −0.957887 −0.288814 −0.144407 0.989518i \(-0.546127\pi\)
−0.144407 + 0.989518i \(0.546127\pi\)
\(12\) −1.51706 −0.437938
\(13\) 6.53321 1.81199 0.905993 0.423294i \(-0.139126\pi\)
0.905993 + 0.423294i \(0.139126\pi\)
\(14\) 1.66430 0.444802
\(15\) −2.01780 −0.520995
\(16\) 1.33559 0.333898
\(17\) −3.81642 −0.925617 −0.462808 0.886458i \(-0.653158\pi\)
−0.462808 + 0.886458i \(0.653158\pi\)
\(18\) −0.694939 −0.163799
\(19\) −4.31846 −0.990722 −0.495361 0.868687i \(-0.664964\pi\)
−0.495361 + 0.868687i \(0.664964\pi\)
\(20\) 3.06113 0.684489
\(21\) −2.39488 −0.522606
\(22\) 0.665673 0.141922
\(23\) −5.38804 −1.12348 −0.561742 0.827312i \(-0.689869\pi\)
−0.561742 + 0.827312i \(0.689869\pi\)
\(24\) 2.44414 0.498908
\(25\) −0.928470 −0.185694
\(26\) −4.54018 −0.890402
\(27\) 1.00000 0.192450
\(28\) 3.63318 0.686607
\(29\) 0 0
\(30\) 1.40225 0.256015
\(31\) 2.73463 0.491155 0.245577 0.969377i \(-0.421022\pi\)
0.245577 + 0.969377i \(0.421022\pi\)
\(32\) −5.81644 −1.02821
\(33\) −0.957887 −0.166747
\(34\) 2.65217 0.454844
\(35\) 4.83240 0.816825
\(36\) −1.51706 −0.252843
\(37\) −1.86068 −0.305894 −0.152947 0.988234i \(-0.548876\pi\)
−0.152947 + 0.988234i \(0.548876\pi\)
\(38\) 3.00106 0.486837
\(39\) 6.53321 1.04615
\(40\) −4.93180 −0.779785
\(41\) 11.8282 1.84725 0.923624 0.383300i \(-0.125212\pi\)
0.923624 + 0.383300i \(0.125212\pi\)
\(42\) 1.66430 0.256807
\(43\) −3.70437 −0.564911 −0.282455 0.959280i \(-0.591149\pi\)
−0.282455 + 0.959280i \(0.591149\pi\)
\(44\) 1.45317 0.219074
\(45\) −2.01780 −0.300796
\(46\) 3.74436 0.552075
\(47\) −3.23270 −0.471538 −0.235769 0.971809i \(-0.575761\pi\)
−0.235769 + 0.971809i \(0.575761\pi\)
\(48\) 1.33559 0.192776
\(49\) −1.26453 −0.180648
\(50\) 0.645230 0.0912493
\(51\) −3.81642 −0.534405
\(52\) −9.91127 −1.37445
\(53\) 2.26772 0.311495 0.155748 0.987797i \(-0.450221\pi\)
0.155748 + 0.987797i \(0.450221\pi\)
\(54\) −0.694939 −0.0945692
\(55\) 1.93283 0.260622
\(56\) −5.85343 −0.782198
\(57\) −4.31846 −0.571994
\(58\) 0 0
\(59\) −9.30726 −1.21170 −0.605851 0.795578i \(-0.707167\pi\)
−0.605851 + 0.795578i \(0.707167\pi\)
\(60\) 3.06113 0.395190
\(61\) 3.13852 0.401847 0.200923 0.979607i \(-0.435606\pi\)
0.200923 + 0.979607i \(0.435606\pi\)
\(62\) −1.90040 −0.241351
\(63\) −2.39488 −0.301727
\(64\) 1.37088 0.171360
\(65\) −13.1827 −1.63512
\(66\) 0.665673 0.0819386
\(67\) 12.1012 1.47840 0.739200 0.673487i \(-0.235204\pi\)
0.739200 + 0.673487i \(0.235204\pi\)
\(68\) 5.78973 0.702108
\(69\) −5.38804 −0.648644
\(70\) −3.35822 −0.401384
\(71\) −4.60343 −0.546327 −0.273163 0.961968i \(-0.588070\pi\)
−0.273163 + 0.961968i \(0.588070\pi\)
\(72\) 2.44414 0.288045
\(73\) 9.09135 1.06406 0.532031 0.846725i \(-0.321429\pi\)
0.532031 + 0.846725i \(0.321429\pi\)
\(74\) 1.29306 0.150315
\(75\) −0.928470 −0.107211
\(76\) 6.55136 0.751492
\(77\) 2.29403 0.261429
\(78\) −4.54018 −0.514074
\(79\) 4.28781 0.482416 0.241208 0.970473i \(-0.422456\pi\)
0.241208 + 0.970473i \(0.422456\pi\)
\(80\) −2.69496 −0.301306
\(81\) 1.00000 0.111111
\(82\) −8.21984 −0.907730
\(83\) 16.1813 1.77612 0.888062 0.459725i \(-0.152052\pi\)
0.888062 + 0.459725i \(0.152052\pi\)
\(84\) 3.63318 0.396413
\(85\) 7.70078 0.835266
\(86\) 2.57431 0.277595
\(87\) 0 0
\(88\) −2.34121 −0.249574
\(89\) 15.4430 1.63696 0.818478 0.574538i \(-0.194818\pi\)
0.818478 + 0.574538i \(0.194818\pi\)
\(90\) 1.40225 0.147810
\(91\) −15.6463 −1.64017
\(92\) 8.17399 0.852197
\(93\) 2.73463 0.283568
\(94\) 2.24653 0.231712
\(95\) 8.71380 0.894017
\(96\) −5.81644 −0.593638
\(97\) 15.7632 1.60051 0.800253 0.599662i \(-0.204698\pi\)
0.800253 + 0.599662i \(0.204698\pi\)
\(98\) 0.878774 0.0887696
\(99\) −0.957887 −0.0962713
\(100\) 1.40855 0.140855
\(101\) 9.25649 0.921055 0.460528 0.887645i \(-0.347660\pi\)
0.460528 + 0.887645i \(0.347660\pi\)
\(102\) 2.65217 0.262604
\(103\) 10.5946 1.04391 0.521956 0.852972i \(-0.325202\pi\)
0.521956 + 0.852972i \(0.325202\pi\)
\(104\) 15.9681 1.56580
\(105\) 4.83240 0.471594
\(106\) −1.57593 −0.153068
\(107\) −0.125704 −0.0121523 −0.00607614 0.999982i \(-0.501934\pi\)
−0.00607614 + 0.999982i \(0.501934\pi\)
\(108\) −1.51706 −0.145979
\(109\) −9.64659 −0.923976 −0.461988 0.886886i \(-0.652864\pi\)
−0.461988 + 0.886886i \(0.652864\pi\)
\(110\) −1.34320 −0.128069
\(111\) −1.86068 −0.176608
\(112\) −3.19859 −0.302238
\(113\) 3.10847 0.292420 0.146210 0.989254i \(-0.453292\pi\)
0.146210 + 0.989254i \(0.453292\pi\)
\(114\) 3.00106 0.281075
\(115\) 10.8720 1.01382
\(116\) 0 0
\(117\) 6.53321 0.603995
\(118\) 6.46797 0.595425
\(119\) 9.13987 0.837850
\(120\) −4.93180 −0.450209
\(121\) −10.0825 −0.916587
\(122\) −2.18108 −0.197466
\(123\) 11.8282 1.06651
\(124\) −4.14861 −0.372556
\(125\) 11.9625 1.06996
\(126\) 1.66430 0.148267
\(127\) −3.92002 −0.347846 −0.173923 0.984759i \(-0.555644\pi\)
−0.173923 + 0.984759i \(0.555644\pi\)
\(128\) 10.6802 0.944005
\(129\) −3.70437 −0.326151
\(130\) 9.16118 0.803489
\(131\) −16.4949 −1.44117 −0.720585 0.693367i \(-0.756127\pi\)
−0.720585 + 0.693367i \(0.756127\pi\)
\(132\) 1.45317 0.126482
\(133\) 10.3422 0.896782
\(134\) −8.40960 −0.726479
\(135\) −2.01780 −0.173665
\(136\) −9.32786 −0.799857
\(137\) −3.04505 −0.260156 −0.130078 0.991504i \(-0.541523\pi\)
−0.130078 + 0.991504i \(0.541523\pi\)
\(138\) 3.74436 0.318741
\(139\) 11.2805 0.956803 0.478401 0.878141i \(-0.341216\pi\)
0.478401 + 0.878141i \(0.341216\pi\)
\(140\) −7.33105 −0.619587
\(141\) −3.23270 −0.272243
\(142\) 3.19910 0.268463
\(143\) −6.25807 −0.523326
\(144\) 1.33559 0.111299
\(145\) 0 0
\(146\) −6.31793 −0.522875
\(147\) −1.26453 −0.104297
\(148\) 2.82277 0.232030
\(149\) 4.89777 0.401241 0.200621 0.979669i \(-0.435704\pi\)
0.200621 + 0.979669i \(0.435704\pi\)
\(150\) 0.645230 0.0526828
\(151\) 17.0267 1.38561 0.692805 0.721125i \(-0.256375\pi\)
0.692805 + 0.721125i \(0.256375\pi\)
\(152\) −10.5549 −0.856117
\(153\) −3.81642 −0.308539
\(154\) −1.59421 −0.128465
\(155\) −5.51795 −0.443213
\(156\) −9.91127 −0.793536
\(157\) 20.3897 1.62728 0.813639 0.581371i \(-0.197483\pi\)
0.813639 + 0.581371i \(0.197483\pi\)
\(158\) −2.97976 −0.237057
\(159\) 2.26772 0.179842
\(160\) 11.7364 0.927846
\(161\) 12.9037 1.01696
\(162\) −0.694939 −0.0545995
\(163\) 7.63026 0.597648 0.298824 0.954308i \(-0.403406\pi\)
0.298824 + 0.954308i \(0.403406\pi\)
\(164\) −17.9440 −1.40119
\(165\) 1.93283 0.150470
\(166\) −11.2450 −0.872779
\(167\) −21.7308 −1.68158 −0.840791 0.541360i \(-0.817910\pi\)
−0.840791 + 0.541360i \(0.817910\pi\)
\(168\) −5.85343 −0.451602
\(169\) 29.6828 2.28329
\(170\) −5.35157 −0.410446
\(171\) −4.31846 −0.330241
\(172\) 5.61975 0.428502
\(173\) 4.01358 0.305147 0.152573 0.988292i \(-0.451244\pi\)
0.152573 + 0.988292i \(0.451244\pi\)
\(174\) 0 0
\(175\) 2.22358 0.168087
\(176\) −1.27935 −0.0964344
\(177\) −9.30726 −0.699576
\(178\) −10.7319 −0.804393
\(179\) −3.86773 −0.289088 −0.144544 0.989498i \(-0.546171\pi\)
−0.144544 + 0.989498i \(0.546171\pi\)
\(180\) 3.06113 0.228163
\(181\) 16.6298 1.23608 0.618042 0.786145i \(-0.287926\pi\)
0.618042 + 0.786145i \(0.287926\pi\)
\(182\) 10.8732 0.805975
\(183\) 3.13852 0.232006
\(184\) −13.1691 −0.970841
\(185\) 3.75449 0.276036
\(186\) −1.90040 −0.139344
\(187\) 3.65569 0.267331
\(188\) 4.90421 0.357676
\(189\) −2.39488 −0.174202
\(190\) −6.05555 −0.439316
\(191\) −2.64112 −0.191105 −0.0955525 0.995424i \(-0.530462\pi\)
−0.0955525 + 0.995424i \(0.530462\pi\)
\(192\) 1.37088 0.0989347
\(193\) 6.54111 0.470839 0.235420 0.971894i \(-0.424354\pi\)
0.235420 + 0.971894i \(0.424354\pi\)
\(194\) −10.9544 −0.786482
\(195\) −13.1827 −0.944034
\(196\) 1.91838 0.137027
\(197\) −9.82434 −0.699956 −0.349978 0.936758i \(-0.613811\pi\)
−0.349978 + 0.936758i \(0.613811\pi\)
\(198\) 0.665673 0.0473073
\(199\) 0.524712 0.0371958 0.0185979 0.999827i \(-0.494080\pi\)
0.0185979 + 0.999827i \(0.494080\pi\)
\(200\) −2.26931 −0.160465
\(201\) 12.1012 0.853554
\(202\) −6.43269 −0.452603
\(203\) 0 0
\(204\) 5.78973 0.405362
\(205\) −23.8669 −1.66694
\(206\) −7.36256 −0.512974
\(207\) −5.38804 −0.374495
\(208\) 8.72570 0.605019
\(209\) 4.13659 0.286134
\(210\) −3.35822 −0.231739
\(211\) 16.5476 1.13919 0.569593 0.821927i \(-0.307101\pi\)
0.569593 + 0.821927i \(0.307101\pi\)
\(212\) −3.44027 −0.236279
\(213\) −4.60343 −0.315422
\(214\) 0.0873567 0.00597158
\(215\) 7.47469 0.509769
\(216\) 2.44414 0.166303
\(217\) −6.54913 −0.444584
\(218\) 6.70379 0.454038
\(219\) 9.09135 0.614336
\(220\) −2.93222 −0.197690
\(221\) −24.9334 −1.67720
\(222\) 1.29306 0.0867845
\(223\) −11.7450 −0.786504 −0.393252 0.919431i \(-0.628650\pi\)
−0.393252 + 0.919431i \(0.628650\pi\)
\(224\) 13.9297 0.930716
\(225\) −0.928470 −0.0618980
\(226\) −2.16019 −0.143694
\(227\) −21.3071 −1.41420 −0.707100 0.707114i \(-0.749997\pi\)
−0.707100 + 0.707114i \(0.749997\pi\)
\(228\) 6.55136 0.433874
\(229\) 0.183313 0.0121137 0.00605683 0.999982i \(-0.498072\pi\)
0.00605683 + 0.999982i \(0.498072\pi\)
\(230\) −7.55538 −0.498187
\(231\) 2.29403 0.150936
\(232\) 0 0
\(233\) −23.8810 −1.56449 −0.782247 0.622969i \(-0.785926\pi\)
−0.782247 + 0.622969i \(0.785926\pi\)
\(234\) −4.54018 −0.296801
\(235\) 6.52296 0.425511
\(236\) 14.1197 0.919113
\(237\) 4.28781 0.278523
\(238\) −6.35165 −0.411716
\(239\) −8.40937 −0.543957 −0.271979 0.962303i \(-0.587678\pi\)
−0.271979 + 0.962303i \(0.587678\pi\)
\(240\) −2.69496 −0.173959
\(241\) −0.538363 −0.0346790 −0.0173395 0.999850i \(-0.505520\pi\)
−0.0173395 + 0.999850i \(0.505520\pi\)
\(242\) 7.00668 0.450407
\(243\) 1.00000 0.0641500
\(244\) −4.76133 −0.304813
\(245\) 2.55158 0.163015
\(246\) −8.21984 −0.524078
\(247\) −28.2134 −1.79517
\(248\) 6.68383 0.424424
\(249\) 16.1813 1.02545
\(250\) −8.31319 −0.525772
\(251\) −1.71008 −0.107939 −0.0539695 0.998543i \(-0.517187\pi\)
−0.0539695 + 0.998543i \(0.517187\pi\)
\(252\) 3.63318 0.228869
\(253\) 5.16114 0.324478
\(254\) 2.72417 0.170930
\(255\) 7.70078 0.482241
\(256\) −10.1638 −0.635240
\(257\) −18.0843 −1.12807 −0.564034 0.825752i \(-0.690751\pi\)
−0.564034 + 0.825752i \(0.690751\pi\)
\(258\) 2.57431 0.160269
\(259\) 4.45612 0.276890
\(260\) 19.9990 1.24028
\(261\) 0 0
\(262\) 11.4630 0.708185
\(263\) 0.965486 0.0595344 0.0297672 0.999557i \(-0.490523\pi\)
0.0297672 + 0.999557i \(0.490523\pi\)
\(264\) −2.34121 −0.144092
\(265\) −4.57581 −0.281090
\(266\) −7.18719 −0.440675
\(267\) 15.4430 0.945097
\(268\) −18.3583 −1.12141
\(269\) 9.70803 0.591909 0.295955 0.955202i \(-0.404362\pi\)
0.295955 + 0.955202i \(0.404362\pi\)
\(270\) 1.40225 0.0853382
\(271\) 16.9509 1.02969 0.514845 0.857283i \(-0.327849\pi\)
0.514845 + 0.857283i \(0.327849\pi\)
\(272\) −5.09718 −0.309062
\(273\) −15.6463 −0.946955
\(274\) 2.11612 0.127840
\(275\) 0.889370 0.0536310
\(276\) 8.17399 0.492016
\(277\) −22.0209 −1.32311 −0.661554 0.749897i \(-0.730103\pi\)
−0.661554 + 0.749897i \(0.730103\pi\)
\(278\) −7.83928 −0.470169
\(279\) 2.73463 0.163718
\(280\) 11.8111 0.705847
\(281\) 10.7284 0.640003 0.320001 0.947417i \(-0.396317\pi\)
0.320001 + 0.947417i \(0.396317\pi\)
\(282\) 2.24653 0.133779
\(283\) 15.2187 0.904656 0.452328 0.891852i \(-0.350594\pi\)
0.452328 + 0.891852i \(0.350594\pi\)
\(284\) 6.98368 0.414405
\(285\) 8.71380 0.516161
\(286\) 4.34898 0.257160
\(287\) −28.3271 −1.67209
\(288\) −5.81644 −0.342737
\(289\) −2.43497 −0.143234
\(290\) 0 0
\(291\) 15.7632 0.924053
\(292\) −13.7921 −0.807123
\(293\) 23.1861 1.35455 0.677274 0.735731i \(-0.263161\pi\)
0.677274 + 0.735731i \(0.263161\pi\)
\(294\) 0.878774 0.0512511
\(295\) 18.7802 1.09343
\(296\) −4.54777 −0.264334
\(297\) −0.957887 −0.0555822
\(298\) −3.40365 −0.197168
\(299\) −35.2012 −2.03574
\(300\) 1.40855 0.0813224
\(301\) 8.87153 0.511346
\(302\) −11.8325 −0.680883
\(303\) 9.25649 0.531772
\(304\) −5.76770 −0.330800
\(305\) −6.33292 −0.362622
\(306\) 2.65217 0.151615
\(307\) −18.8555 −1.07614 −0.538070 0.842900i \(-0.680846\pi\)
−0.538070 + 0.842900i \(0.680846\pi\)
\(308\) −3.48018 −0.198302
\(309\) 10.5946 0.602703
\(310\) 3.83464 0.217793
\(311\) 27.1467 1.53935 0.769675 0.638436i \(-0.220418\pi\)
0.769675 + 0.638436i \(0.220418\pi\)
\(312\) 15.9681 0.904014
\(313\) 7.41189 0.418945 0.209472 0.977815i \(-0.432825\pi\)
0.209472 + 0.977815i \(0.432825\pi\)
\(314\) −14.1696 −0.799637
\(315\) 4.83240 0.272275
\(316\) −6.50487 −0.365927
\(317\) 2.23194 0.125358 0.0626790 0.998034i \(-0.480036\pi\)
0.0626790 + 0.998034i \(0.480036\pi\)
\(318\) −1.57593 −0.0883736
\(319\) 0 0
\(320\) −2.76617 −0.154633
\(321\) −0.125704 −0.00701613
\(322\) −8.96730 −0.499728
\(323\) 16.4810 0.917029
\(324\) −1.51706 −0.0842811
\(325\) −6.06589 −0.336475
\(326\) −5.30256 −0.293682
\(327\) −9.64659 −0.533458
\(328\) 28.9097 1.59627
\(329\) 7.74194 0.426827
\(330\) −1.34320 −0.0739405
\(331\) −23.2235 −1.27648 −0.638241 0.769837i \(-0.720337\pi\)
−0.638241 + 0.769837i \(0.720337\pi\)
\(332\) −24.5479 −1.34724
\(333\) −1.86068 −0.101965
\(334\) 15.1016 0.826322
\(335\) −24.4179 −1.33409
\(336\) −3.19859 −0.174497
\(337\) 27.0723 1.47472 0.737362 0.675498i \(-0.236071\pi\)
0.737362 + 0.675498i \(0.236071\pi\)
\(338\) −20.6277 −1.12200
\(339\) 3.10847 0.168829
\(340\) −11.6825 −0.633575
\(341\) −2.61947 −0.141852
\(342\) 3.00106 0.162279
\(343\) 19.7926 1.06870
\(344\) −9.05400 −0.488159
\(345\) 10.8720 0.585329
\(346\) −2.78919 −0.149948
\(347\) −33.0378 −1.77356 −0.886780 0.462191i \(-0.847063\pi\)
−0.886780 + 0.462191i \(0.847063\pi\)
\(348\) 0 0
\(349\) 6.36434 0.340675 0.170338 0.985386i \(-0.445514\pi\)
0.170338 + 0.985386i \(0.445514\pi\)
\(350\) −1.54525 −0.0825971
\(351\) 6.53321 0.348717
\(352\) 5.57149 0.296961
\(353\) 17.5725 0.935292 0.467646 0.883916i \(-0.345102\pi\)
0.467646 + 0.883916i \(0.345102\pi\)
\(354\) 6.46797 0.343769
\(355\) 9.28882 0.492999
\(356\) −23.4280 −1.24168
\(357\) 9.13987 0.483733
\(358\) 2.68783 0.142056
\(359\) 7.81990 0.412719 0.206359 0.978476i \(-0.433838\pi\)
0.206359 + 0.978476i \(0.433838\pi\)
\(360\) −4.93180 −0.259928
\(361\) −0.350934 −0.0184702
\(362\) −11.5567 −0.607407
\(363\) −10.0825 −0.529192
\(364\) 23.7363 1.24412
\(365\) −18.3446 −0.960198
\(366\) −2.18108 −0.114007
\(367\) 29.1659 1.52245 0.761224 0.648489i \(-0.224599\pi\)
0.761224 + 0.648489i \(0.224599\pi\)
\(368\) −7.19623 −0.375130
\(369\) 11.8282 0.615749
\(370\) −2.60914 −0.135643
\(371\) −5.43093 −0.281960
\(372\) −4.14861 −0.215095
\(373\) −5.85615 −0.303220 −0.151610 0.988440i \(-0.548446\pi\)
−0.151610 + 0.988440i \(0.548446\pi\)
\(374\) −2.54048 −0.131365
\(375\) 11.9625 0.617740
\(376\) −7.90118 −0.407472
\(377\) 0 0
\(378\) 1.66430 0.0856022
\(379\) −2.31759 −0.119046 −0.0595232 0.998227i \(-0.518958\pi\)
−0.0595232 + 0.998227i \(0.518958\pi\)
\(380\) −13.2194 −0.678139
\(381\) −3.92002 −0.200829
\(382\) 1.83542 0.0939082
\(383\) −18.2436 −0.932206 −0.466103 0.884730i \(-0.654342\pi\)
−0.466103 + 0.884730i \(0.654342\pi\)
\(384\) 10.6802 0.545021
\(385\) −4.62890 −0.235910
\(386\) −4.54567 −0.231368
\(387\) −3.70437 −0.188304
\(388\) −23.9137 −1.21403
\(389\) 29.6576 1.50370 0.751850 0.659335i \(-0.229162\pi\)
0.751850 + 0.659335i \(0.229162\pi\)
\(390\) 9.16118 0.463894
\(391\) 20.5630 1.03992
\(392\) −3.09070 −0.156104
\(393\) −16.4949 −0.832060
\(394\) 6.82732 0.343955
\(395\) −8.65195 −0.435327
\(396\) 1.45317 0.0730247
\(397\) 2.03228 0.101997 0.0509985 0.998699i \(-0.483760\pi\)
0.0509985 + 0.998699i \(0.483760\pi\)
\(398\) −0.364643 −0.0182779
\(399\) 10.3422 0.517758
\(400\) −1.24006 −0.0620029
\(401\) −0.142599 −0.00712106 −0.00356053 0.999994i \(-0.501133\pi\)
−0.00356053 + 0.999994i \(0.501133\pi\)
\(402\) −8.40960 −0.419433
\(403\) 17.8659 0.889965
\(404\) −14.0427 −0.698648
\(405\) −2.01780 −0.100265
\(406\) 0 0
\(407\) 1.78232 0.0883465
\(408\) −9.32786 −0.461798
\(409\) −20.7433 −1.02569 −0.512845 0.858481i \(-0.671408\pi\)
−0.512845 + 0.858481i \(0.671408\pi\)
\(410\) 16.5860 0.819125
\(411\) −3.04505 −0.150201
\(412\) −16.0726 −0.791839
\(413\) 22.2898 1.09681
\(414\) 3.74436 0.184025
\(415\) −32.6506 −1.60275
\(416\) −38.0000 −1.86310
\(417\) 11.2805 0.552410
\(418\) −2.87468 −0.140605
\(419\) 6.55154 0.320064 0.160032 0.987112i \(-0.448840\pi\)
0.160032 + 0.987112i \(0.448840\pi\)
\(420\) −7.33105 −0.357718
\(421\) 8.62850 0.420527 0.210264 0.977645i \(-0.432568\pi\)
0.210264 + 0.977645i \(0.432568\pi\)
\(422\) −11.4996 −0.559791
\(423\) −3.23270 −0.157179
\(424\) 5.54263 0.269174
\(425\) 3.54343 0.171882
\(426\) 3.19910 0.154997
\(427\) −7.51640 −0.363744
\(428\) 0.190701 0.00921788
\(429\) −6.25807 −0.302143
\(430\) −5.19445 −0.250499
\(431\) 31.5733 1.52083 0.760417 0.649435i \(-0.224994\pi\)
0.760417 + 0.649435i \(0.224994\pi\)
\(432\) 1.33559 0.0642588
\(433\) −3.15030 −0.151394 −0.0756969 0.997131i \(-0.524118\pi\)
−0.0756969 + 0.997131i \(0.524118\pi\)
\(434\) 4.55124 0.218467
\(435\) 0 0
\(436\) 14.6345 0.700863
\(437\) 23.2680 1.11306
\(438\) −6.31793 −0.301882
\(439\) 22.8086 1.08859 0.544296 0.838893i \(-0.316797\pi\)
0.544296 + 0.838893i \(0.316797\pi\)
\(440\) 4.72410 0.225213
\(441\) −1.26453 −0.0602159
\(442\) 17.3272 0.824171
\(443\) 19.1260 0.908705 0.454353 0.890822i \(-0.349871\pi\)
0.454353 + 0.890822i \(0.349871\pi\)
\(444\) 2.82277 0.133963
\(445\) −31.1610 −1.47717
\(446\) 8.16206 0.386485
\(447\) 4.89777 0.231657
\(448\) −3.28310 −0.155112
\(449\) −39.7898 −1.87780 −0.938898 0.344196i \(-0.888152\pi\)
−0.938898 + 0.344196i \(0.888152\pi\)
\(450\) 0.645230 0.0304164
\(451\) −11.3300 −0.533511
\(452\) −4.71573 −0.221809
\(453\) 17.0267 0.799983
\(454\) 14.8071 0.694932
\(455\) 31.5711 1.48008
\(456\) −10.5549 −0.494279
\(457\) 29.2169 1.36671 0.683355 0.730086i \(-0.260520\pi\)
0.683355 + 0.730086i \(0.260520\pi\)
\(458\) −0.127391 −0.00595260
\(459\) −3.81642 −0.178135
\(460\) −16.4935 −0.769013
\(461\) 0.982645 0.0457663 0.0228832 0.999738i \(-0.492715\pi\)
0.0228832 + 0.999738i \(0.492715\pi\)
\(462\) −1.59421 −0.0741693
\(463\) −10.1420 −0.471340 −0.235670 0.971833i \(-0.575728\pi\)
−0.235670 + 0.971833i \(0.575728\pi\)
\(464\) 0 0
\(465\) −5.51795 −0.255889
\(466\) 16.5958 0.768785
\(467\) 17.9779 0.831917 0.415959 0.909384i \(-0.363446\pi\)
0.415959 + 0.909384i \(0.363446\pi\)
\(468\) −9.91127 −0.458148
\(469\) −28.9810 −1.33822
\(470\) −4.53305 −0.209094
\(471\) 20.3897 0.939509
\(472\) −22.7483 −1.04707
\(473\) 3.54837 0.163154
\(474\) −2.97976 −0.136865
\(475\) 4.00956 0.183971
\(476\) −13.8657 −0.635535
\(477\) 2.26772 0.103832
\(478\) 5.84400 0.267298
\(479\) 20.5926 0.940902 0.470451 0.882426i \(-0.344091\pi\)
0.470451 + 0.882426i \(0.344091\pi\)
\(480\) 11.7364 0.535692
\(481\) −12.1562 −0.554276
\(482\) 0.374129 0.0170411
\(483\) 12.9037 0.587140
\(484\) 15.2957 0.695259
\(485\) −31.8070 −1.44428
\(486\) −0.694939 −0.0315231
\(487\) 15.9915 0.724643 0.362321 0.932053i \(-0.381984\pi\)
0.362321 + 0.932053i \(0.381984\pi\)
\(488\) 7.67099 0.347250
\(489\) 7.63026 0.345052
\(490\) −1.77319 −0.0801047
\(491\) −10.2005 −0.460341 −0.230171 0.973150i \(-0.573928\pi\)
−0.230171 + 0.973150i \(0.573928\pi\)
\(492\) −17.9440 −0.808979
\(493\) 0 0
\(494\) 19.6066 0.882141
\(495\) 1.93283 0.0868741
\(496\) 3.65236 0.163996
\(497\) 11.0247 0.494525
\(498\) −11.2450 −0.503899
\(499\) −6.15200 −0.275401 −0.137701 0.990474i \(-0.543971\pi\)
−0.137701 + 0.990474i \(0.543971\pi\)
\(500\) −18.1478 −0.811595
\(501\) −21.7308 −0.970862
\(502\) 1.18840 0.0530408
\(503\) −20.2354 −0.902253 −0.451126 0.892460i \(-0.648978\pi\)
−0.451126 + 0.892460i \(0.648978\pi\)
\(504\) −5.85343 −0.260733
\(505\) −18.6778 −0.831150
\(506\) −3.58667 −0.159447
\(507\) 29.6828 1.31826
\(508\) 5.94691 0.263851
\(509\) −4.05922 −0.179922 −0.0899608 0.995945i \(-0.528674\pi\)
−0.0899608 + 0.995945i \(0.528674\pi\)
\(510\) −5.35157 −0.236971
\(511\) −21.7727 −0.963168
\(512\) −14.2971 −0.631851
\(513\) −4.31846 −0.190665
\(514\) 12.5675 0.554328
\(515\) −21.3777 −0.942015
\(516\) 5.61975 0.247396
\(517\) 3.09656 0.136187
\(518\) −3.09673 −0.136062
\(519\) 4.01358 0.176177
\(520\) −32.2204 −1.41296
\(521\) 10.9066 0.477828 0.238914 0.971041i \(-0.423209\pi\)
0.238914 + 0.971041i \(0.423209\pi\)
\(522\) 0 0
\(523\) 3.65147 0.159668 0.0798339 0.996808i \(-0.474561\pi\)
0.0798339 + 0.996808i \(0.474561\pi\)
\(524\) 25.0238 1.09317
\(525\) 2.22358 0.0970449
\(526\) −0.670954 −0.0292550
\(527\) −10.4365 −0.454621
\(528\) −1.27935 −0.0556764
\(529\) 6.03100 0.262217
\(530\) 3.17991 0.138126
\(531\) −9.30726 −0.403901
\(532\) −15.6897 −0.680237
\(533\) 77.2758 3.34719
\(534\) −10.7319 −0.464417
\(535\) 0.253646 0.0109661
\(536\) 29.5771 1.27754
\(537\) −3.86773 −0.166905
\(538\) −6.74649 −0.290862
\(539\) 1.21128 0.0521736
\(540\) 3.06113 0.131730
\(541\) −33.9307 −1.45879 −0.729397 0.684091i \(-0.760199\pi\)
−0.729397 + 0.684091i \(0.760199\pi\)
\(542\) −11.7798 −0.505986
\(543\) 16.6298 0.713654
\(544\) 22.1979 0.951729
\(545\) 19.4649 0.833785
\(546\) 10.8732 0.465330
\(547\) 19.6642 0.840779 0.420389 0.907344i \(-0.361893\pi\)
0.420389 + 0.907344i \(0.361893\pi\)
\(548\) 4.61953 0.197336
\(549\) 3.13852 0.133949
\(550\) −0.618057 −0.0263541
\(551\) 0 0
\(552\) −13.1691 −0.560516
\(553\) −10.2688 −0.436674
\(554\) 15.3032 0.650170
\(555\) 3.75449 0.159369
\(556\) −17.1133 −0.725764
\(557\) −38.2463 −1.62055 −0.810275 0.586050i \(-0.800682\pi\)
−0.810275 + 0.586050i \(0.800682\pi\)
\(558\) −1.90040 −0.0804505
\(559\) −24.2014 −1.02361
\(560\) 6.45412 0.272737
\(561\) 3.65569 0.154344
\(562\) −7.45558 −0.314495
\(563\) −23.4745 −0.989330 −0.494665 0.869084i \(-0.664709\pi\)
−0.494665 + 0.869084i \(0.664709\pi\)
\(564\) 4.90421 0.206504
\(565\) −6.27228 −0.263877
\(566\) −10.5760 −0.444544
\(567\) −2.39488 −0.100576
\(568\) −11.2514 −0.472100
\(569\) −3.40949 −0.142933 −0.0714665 0.997443i \(-0.522768\pi\)
−0.0714665 + 0.997443i \(0.522768\pi\)
\(570\) −6.05555 −0.253639
\(571\) 23.2044 0.971073 0.485536 0.874216i \(-0.338624\pi\)
0.485536 + 0.874216i \(0.338624\pi\)
\(572\) 9.49387 0.396959
\(573\) −2.64112 −0.110335
\(574\) 19.6856 0.821660
\(575\) 5.00264 0.208624
\(576\) 1.37088 0.0571200
\(577\) −0.293784 −0.0122304 −0.00611519 0.999981i \(-0.501947\pi\)
−0.00611519 + 0.999981i \(0.501947\pi\)
\(578\) 1.69216 0.0703844
\(579\) 6.54111 0.271839
\(580\) 0 0
\(581\) −38.7522 −1.60771
\(582\) −10.9544 −0.454076
\(583\) −2.17222 −0.0899642
\(584\) 22.2205 0.919492
\(585\) −13.1827 −0.545038
\(586\) −16.1129 −0.665619
\(587\) −2.75456 −0.113693 −0.0568465 0.998383i \(-0.518105\pi\)
−0.0568465 + 0.998383i \(0.518105\pi\)
\(588\) 1.91838 0.0791125
\(589\) −11.8094 −0.486598
\(590\) −13.0511 −0.537305
\(591\) −9.82434 −0.404120
\(592\) −2.48512 −0.102138
\(593\) −20.7991 −0.854116 −0.427058 0.904224i \(-0.640450\pi\)
−0.427058 + 0.904224i \(0.640450\pi\)
\(594\) 0.665673 0.0273129
\(595\) −18.4425 −0.756067
\(596\) −7.43022 −0.304354
\(597\) 0.524712 0.0214750
\(598\) 24.4627 1.00035
\(599\) 34.9339 1.42736 0.713681 0.700471i \(-0.247027\pi\)
0.713681 + 0.700471i \(0.247027\pi\)
\(600\) −2.26931 −0.0926443
\(601\) 2.88126 0.117529 0.0587646 0.998272i \(-0.481284\pi\)
0.0587646 + 0.998272i \(0.481284\pi\)
\(602\) −6.16517 −0.251273
\(603\) 12.1012 0.492800
\(604\) −25.8305 −1.05103
\(605\) 20.3444 0.827118
\(606\) −6.43269 −0.261310
\(607\) 22.2741 0.904076 0.452038 0.891999i \(-0.350697\pi\)
0.452038 + 0.891999i \(0.350697\pi\)
\(608\) 25.1180 1.01867
\(609\) 0 0
\(610\) 4.40099 0.178191
\(611\) −21.1199 −0.854420
\(612\) 5.78973 0.234036
\(613\) 1.67163 0.0675166 0.0337583 0.999430i \(-0.489252\pi\)
0.0337583 + 0.999430i \(0.489252\pi\)
\(614\) 13.1034 0.528810
\(615\) −23.8669 −0.962406
\(616\) 5.60693 0.225909
\(617\) 14.4007 0.579752 0.289876 0.957064i \(-0.406386\pi\)
0.289876 + 0.957064i \(0.406386\pi\)
\(618\) −7.36256 −0.296166
\(619\) −2.74833 −0.110465 −0.0552324 0.998474i \(-0.517590\pi\)
−0.0552324 + 0.998474i \(0.517590\pi\)
\(620\) 8.37107 0.336190
\(621\) −5.38804 −0.216215
\(622\) −18.8653 −0.756430
\(623\) −36.9842 −1.48174
\(624\) 8.72570 0.349308
\(625\) −19.4956 −0.779824
\(626\) −5.15081 −0.205868
\(627\) 4.13659 0.165200
\(628\) −30.9324 −1.23434
\(629\) 7.10114 0.283141
\(630\) −3.35822 −0.133795
\(631\) −9.07172 −0.361139 −0.180570 0.983562i \(-0.557794\pi\)
−0.180570 + 0.983562i \(0.557794\pi\)
\(632\) 10.4800 0.416872
\(633\) 16.5476 0.657709
\(634\) −1.55106 −0.0616004
\(635\) 7.90983 0.313892
\(636\) −3.44027 −0.136416
\(637\) −8.26146 −0.327331
\(638\) 0 0
\(639\) −4.60343 −0.182109
\(640\) −21.5505 −0.851860
\(641\) −11.3851 −0.449686 −0.224843 0.974395i \(-0.572187\pi\)
−0.224843 + 0.974395i \(0.572187\pi\)
\(642\) 0.0873567 0.00344769
\(643\) −10.8211 −0.426742 −0.213371 0.976971i \(-0.568444\pi\)
−0.213371 + 0.976971i \(0.568444\pi\)
\(644\) −19.5757 −0.771392
\(645\) 7.47469 0.294316
\(646\) −11.4533 −0.450624
\(647\) −22.0900 −0.868448 −0.434224 0.900805i \(-0.642977\pi\)
−0.434224 + 0.900805i \(0.642977\pi\)
\(648\) 2.44414 0.0960149
\(649\) 8.91530 0.349956
\(650\) 4.21542 0.165342
\(651\) −6.54913 −0.256681
\(652\) −11.5756 −0.453334
\(653\) 19.3795 0.758377 0.379189 0.925319i \(-0.376203\pi\)
0.379189 + 0.925319i \(0.376203\pi\)
\(654\) 6.70379 0.262139
\(655\) 33.2836 1.30050
\(656\) 15.7976 0.616793
\(657\) 9.09135 0.354687
\(658\) −5.38018 −0.209741
\(659\) 6.69003 0.260607 0.130303 0.991474i \(-0.458405\pi\)
0.130303 + 0.991474i \(0.458405\pi\)
\(660\) −2.93222 −0.114136
\(661\) −44.4774 −1.72997 −0.864985 0.501798i \(-0.832672\pi\)
−0.864985 + 0.501798i \(0.832672\pi\)
\(662\) 16.1389 0.627257
\(663\) −24.9334 −0.968334
\(664\) 39.5493 1.53481
\(665\) −20.8685 −0.809247
\(666\) 1.29306 0.0501051
\(667\) 0 0
\(668\) 32.9670 1.27553
\(669\) −11.7450 −0.454089
\(670\) 16.9689 0.655567
\(671\) −3.00635 −0.116059
\(672\) 13.9297 0.537349
\(673\) 21.0755 0.812402 0.406201 0.913784i \(-0.366853\pi\)
0.406201 + 0.913784i \(0.366853\pi\)
\(674\) −18.8136 −0.724673
\(675\) −0.928470 −0.0357368
\(676\) −45.0306 −1.73194
\(677\) 3.58338 0.137720 0.0688602 0.997626i \(-0.478064\pi\)
0.0688602 + 0.997626i \(0.478064\pi\)
\(678\) −2.16019 −0.0829618
\(679\) −37.7509 −1.44875
\(680\) 18.8218 0.721782
\(681\) −21.3071 −0.816489
\(682\) 1.82037 0.0697056
\(683\) −13.4710 −0.515454 −0.257727 0.966218i \(-0.582973\pi\)
−0.257727 + 0.966218i \(0.582973\pi\)
\(684\) 6.55136 0.250497
\(685\) 6.14432 0.234762
\(686\) −13.7546 −0.525154
\(687\) 0.183313 0.00699383
\(688\) −4.94753 −0.188623
\(689\) 14.8155 0.564425
\(690\) −7.55538 −0.287628
\(691\) 17.4813 0.665021 0.332511 0.943100i \(-0.392104\pi\)
0.332511 + 0.943100i \(0.392104\pi\)
\(692\) −6.08884 −0.231463
\(693\) 2.29403 0.0871429
\(694\) 22.9592 0.871520
\(695\) −22.7619 −0.863408
\(696\) 0 0
\(697\) −45.1412 −1.70984
\(698\) −4.42283 −0.167406
\(699\) −23.8810 −0.903261
\(700\) −3.37330 −0.127499
\(701\) −29.5015 −1.11426 −0.557128 0.830427i \(-0.688097\pi\)
−0.557128 + 0.830427i \(0.688097\pi\)
\(702\) −4.54018 −0.171358
\(703\) 8.03528 0.303056
\(704\) −1.31315 −0.0494911
\(705\) 6.52296 0.245669
\(706\) −12.2118 −0.459598
\(707\) −22.1682 −0.833722
\(708\) 14.1197 0.530650
\(709\) 24.6468 0.925630 0.462815 0.886455i \(-0.346839\pi\)
0.462815 + 0.886455i \(0.346839\pi\)
\(710\) −6.45516 −0.242258
\(711\) 4.28781 0.160805
\(712\) 37.7449 1.41455
\(713\) −14.7343 −0.551805
\(714\) −6.35165 −0.237704
\(715\) 12.6276 0.472244
\(716\) 5.86758 0.219282
\(717\) −8.40937 −0.314054
\(718\) −5.43435 −0.202808
\(719\) −1.38271 −0.0515665 −0.0257833 0.999668i \(-0.508208\pi\)
−0.0257833 + 0.999668i \(0.508208\pi\)
\(720\) −2.69496 −0.100435
\(721\) −25.3727 −0.944929
\(722\) 0.243877 0.00907617
\(723\) −0.538363 −0.0200219
\(724\) −25.2284 −0.937607
\(725\) 0 0
\(726\) 7.00668 0.260042
\(727\) 37.7570 1.40033 0.700164 0.713982i \(-0.253110\pi\)
0.700164 + 0.713982i \(0.253110\pi\)
\(728\) −38.2417 −1.41733
\(729\) 1.00000 0.0370370
\(730\) 12.7483 0.471837
\(731\) 14.1374 0.522891
\(732\) −4.76133 −0.175984
\(733\) −32.5735 −1.20313 −0.601564 0.798824i \(-0.705456\pi\)
−0.601564 + 0.798824i \(0.705456\pi\)
\(734\) −20.2685 −0.748125
\(735\) 2.55158 0.0941165
\(736\) 31.3392 1.15518
\(737\) −11.5916 −0.426982
\(738\) −8.21984 −0.302577
\(739\) −37.9628 −1.39648 −0.698241 0.715863i \(-0.746034\pi\)
−0.698241 + 0.715863i \(0.746034\pi\)
\(740\) −5.69579 −0.209381
\(741\) −28.2134 −1.03644
\(742\) 3.77416 0.138554
\(743\) −13.1194 −0.481306 −0.240653 0.970611i \(-0.577362\pi\)
−0.240653 + 0.970611i \(0.577362\pi\)
\(744\) 6.68383 0.245041
\(745\) −9.88275 −0.362076
\(746\) 4.06966 0.149001
\(747\) 16.1813 0.592041
\(748\) −5.54591 −0.202779
\(749\) 0.301047 0.0110000
\(750\) −8.31319 −0.303555
\(751\) −28.1170 −1.02601 −0.513003 0.858387i \(-0.671467\pi\)
−0.513003 + 0.858387i \(0.671467\pi\)
\(752\) −4.31758 −0.157446
\(753\) −1.71008 −0.0623186
\(754\) 0 0
\(755\) −34.3565 −1.25036
\(756\) 3.63318 0.132138
\(757\) −19.0677 −0.693028 −0.346514 0.938045i \(-0.612635\pi\)
−0.346514 + 0.938045i \(0.612635\pi\)
\(758\) 1.61058 0.0584989
\(759\) 5.16114 0.187337
\(760\) 21.2977 0.772550
\(761\) 8.84457 0.320615 0.160308 0.987067i \(-0.448751\pi\)
0.160308 + 0.987067i \(0.448751\pi\)
\(762\) 2.72417 0.0986864
\(763\) 23.1025 0.836365
\(764\) 4.00674 0.144959
\(765\) 7.70078 0.278422
\(766\) 12.6782 0.458082
\(767\) −60.8062 −2.19559
\(768\) −10.1638 −0.366756
\(769\) −14.4007 −0.519303 −0.259651 0.965702i \(-0.583608\pi\)
−0.259651 + 0.965702i \(0.583608\pi\)
\(770\) 3.21680 0.115925
\(771\) −18.0843 −0.651290
\(772\) −9.92326 −0.357146
\(773\) −5.71792 −0.205659 −0.102830 0.994699i \(-0.532790\pi\)
−0.102830 + 0.994699i \(0.532790\pi\)
\(774\) 2.57431 0.0925316
\(775\) −2.53903 −0.0912045
\(776\) 38.5274 1.38305
\(777\) 4.45612 0.159862
\(778\) −20.6102 −0.738911
\(779\) −51.0794 −1.83011
\(780\) 19.9990 0.716079
\(781\) 4.40957 0.157787
\(782\) −14.2900 −0.511010
\(783\) 0 0
\(784\) −1.68890 −0.0603180
\(785\) −41.1425 −1.46844
\(786\) 11.4630 0.408871
\(787\) 38.7631 1.38176 0.690878 0.722972i \(-0.257224\pi\)
0.690878 + 0.722972i \(0.257224\pi\)
\(788\) 14.9041 0.530937
\(789\) 0.965486 0.0343722
\(790\) 6.01258 0.213918
\(791\) −7.44442 −0.264693
\(792\) −2.34121 −0.0831913
\(793\) 20.5046 0.728140
\(794\) −1.41231 −0.0501209
\(795\) −4.57581 −0.162287
\(796\) −0.796020 −0.0282142
\(797\) 3.16247 0.112021 0.0560103 0.998430i \(-0.482162\pi\)
0.0560103 + 0.998430i \(0.482162\pi\)
\(798\) −7.18719 −0.254424
\(799\) 12.3373 0.436464
\(800\) 5.40039 0.190933
\(801\) 15.4430 0.545652
\(802\) 0.0990976 0.00349926
\(803\) −8.70848 −0.307316
\(804\) −18.3583 −0.647447
\(805\) −26.0372 −0.917690
\(806\) −12.4157 −0.437325
\(807\) 9.70803 0.341739
\(808\) 22.6242 0.795916
\(809\) 11.8313 0.415965 0.207983 0.978133i \(-0.433310\pi\)
0.207983 + 0.978133i \(0.433310\pi\)
\(810\) 1.40225 0.0492700
\(811\) −11.2027 −0.393381 −0.196691 0.980466i \(-0.563019\pi\)
−0.196691 + 0.980466i \(0.563019\pi\)
\(812\) 0 0
\(813\) 16.9509 0.594492
\(814\) −1.23861 −0.0434131
\(815\) −15.3964 −0.539311
\(816\) −5.09718 −0.178437
\(817\) 15.9972 0.559670
\(818\) 14.4153 0.504020
\(819\) −15.6463 −0.546725
\(820\) 36.2075 1.26442
\(821\) 14.8331 0.517678 0.258839 0.965920i \(-0.416660\pi\)
0.258839 + 0.965920i \(0.416660\pi\)
\(822\) 2.11612 0.0738083
\(823\) 43.8191 1.52744 0.763719 0.645548i \(-0.223371\pi\)
0.763719 + 0.645548i \(0.223371\pi\)
\(824\) 25.8946 0.902080
\(825\) 0.889370 0.0309639
\(826\) −15.4900 −0.538967
\(827\) −7.62477 −0.265139 −0.132570 0.991174i \(-0.542323\pi\)
−0.132570 + 0.991174i \(0.542323\pi\)
\(828\) 8.17399 0.284066
\(829\) −20.4341 −0.709707 −0.354854 0.934922i \(-0.615469\pi\)
−0.354854 + 0.934922i \(0.615469\pi\)
\(830\) 22.6901 0.787587
\(831\) −22.0209 −0.763897
\(832\) 8.95624 0.310502
\(833\) 4.82599 0.167211
\(834\) −7.83928 −0.271452
\(835\) 43.8485 1.51744
\(836\) −6.27546 −0.217041
\(837\) 2.73463 0.0945228
\(838\) −4.55292 −0.157278
\(839\) 16.9391 0.584802 0.292401 0.956296i \(-0.405546\pi\)
0.292401 + 0.956296i \(0.405546\pi\)
\(840\) 11.8111 0.407521
\(841\) 0 0
\(842\) −5.99628 −0.206645
\(843\) 10.7284 0.369506
\(844\) −25.1038 −0.864107
\(845\) −59.8940 −2.06042
\(846\) 2.24653 0.0772373
\(847\) 24.1463 0.829677
\(848\) 3.02875 0.104008
\(849\) 15.2187 0.522303
\(850\) −2.46247 −0.0844619
\(851\) 10.0254 0.343668
\(852\) 6.98368 0.239257
\(853\) −9.95085 −0.340711 −0.170355 0.985383i \(-0.554492\pi\)
−0.170355 + 0.985383i \(0.554492\pi\)
\(854\) 5.22343 0.178742
\(855\) 8.71380 0.298006
\(856\) −0.307239 −0.0105012
\(857\) 32.4424 1.10821 0.554106 0.832446i \(-0.313060\pi\)
0.554106 + 0.832446i \(0.313060\pi\)
\(858\) 4.34898 0.148472
\(859\) −51.9501 −1.77252 −0.886258 0.463192i \(-0.846704\pi\)
−0.886258 + 0.463192i \(0.846704\pi\)
\(860\) −11.3396 −0.386675
\(861\) −28.3271 −0.965383
\(862\) −21.9415 −0.747332
\(863\) 20.8719 0.710489 0.355245 0.934773i \(-0.384398\pi\)
0.355245 + 0.934773i \(0.384398\pi\)
\(864\) −5.81644 −0.197879
\(865\) −8.09862 −0.275361
\(866\) 2.18926 0.0743942
\(867\) −2.43497 −0.0826960
\(868\) 9.93543 0.337230
\(869\) −4.10724 −0.139328
\(870\) 0 0
\(871\) 79.0597 2.67884
\(872\) −23.5776 −0.798439
\(873\) 15.7632 0.533502
\(874\) −16.1698 −0.546953
\(875\) −28.6488 −0.968505
\(876\) −13.7921 −0.465993
\(877\) −15.0698 −0.508873 −0.254436 0.967090i \(-0.581890\pi\)
−0.254436 + 0.967090i \(0.581890\pi\)
\(878\) −15.8505 −0.534930
\(879\) 23.1861 0.782049
\(880\) 2.58147 0.0870214
\(881\) −15.0028 −0.505456 −0.252728 0.967537i \(-0.581328\pi\)
−0.252728 + 0.967537i \(0.581328\pi\)
\(882\) 0.878774 0.0295899
\(883\) −4.09571 −0.137832 −0.0689158 0.997622i \(-0.521954\pi\)
−0.0689158 + 0.997622i \(0.521954\pi\)
\(884\) 37.8255 1.27221
\(885\) 18.7802 0.631290
\(886\) −13.2914 −0.446534
\(887\) 16.1647 0.542756 0.271378 0.962473i \(-0.412521\pi\)
0.271378 + 0.962473i \(0.412521\pi\)
\(888\) −4.54777 −0.152613
\(889\) 9.38799 0.314863
\(890\) 21.6549 0.725875
\(891\) −0.957887 −0.0320904
\(892\) 17.8179 0.596587
\(893\) 13.9603 0.467163
\(894\) −3.40365 −0.113835
\(895\) 7.80431 0.260869
\(896\) −25.5778 −0.854495
\(897\) −35.2012 −1.17533
\(898\) 27.6514 0.922741
\(899\) 0 0
\(900\) 1.40855 0.0469515
\(901\) −8.65457 −0.288325
\(902\) 7.87368 0.262165
\(903\) 8.87153 0.295226
\(904\) 7.59753 0.252690
\(905\) −33.5557 −1.11543
\(906\) −11.8325 −0.393108
\(907\) 41.3224 1.37209 0.686044 0.727560i \(-0.259346\pi\)
0.686044 + 0.727560i \(0.259346\pi\)
\(908\) 32.3241 1.07271
\(909\) 9.25649 0.307018
\(910\) −21.9400 −0.727303
\(911\) 31.3566 1.03889 0.519446 0.854504i \(-0.326138\pi\)
0.519446 + 0.854504i \(0.326138\pi\)
\(912\) −5.76770 −0.190988
\(913\) −15.4998 −0.512969
\(914\) −20.3040 −0.671596
\(915\) −6.33292 −0.209360
\(916\) −0.278097 −0.00918858
\(917\) 39.5035 1.30452
\(918\) 2.65217 0.0875348
\(919\) 29.9401 0.987633 0.493817 0.869566i \(-0.335601\pi\)
0.493817 + 0.869566i \(0.335601\pi\)
\(920\) 26.5727 0.876077
\(921\) −18.8555 −0.621310
\(922\) −0.682878 −0.0224894
\(923\) −30.0752 −0.989936
\(924\) −3.48018 −0.114489
\(925\) 1.72759 0.0568028
\(926\) 7.04809 0.231615
\(927\) 10.5946 0.347971
\(928\) 0 0
\(929\) −1.38920 −0.0455781 −0.0227891 0.999740i \(-0.507255\pi\)
−0.0227891 + 0.999740i \(0.507255\pi\)
\(930\) 3.83464 0.125743
\(931\) 5.46084 0.178972
\(932\) 36.2289 1.18672
\(933\) 27.1467 0.888744
\(934\) −12.4935 −0.408801
\(935\) −7.37647 −0.241236
\(936\) 15.9681 0.521933
\(937\) −7.08484 −0.231451 −0.115726 0.993281i \(-0.536919\pi\)
−0.115726 + 0.993281i \(0.536919\pi\)
\(938\) 20.1400 0.657595
\(939\) 7.41189 0.241878
\(940\) −9.89572 −0.322763
\(941\) 56.3655 1.83746 0.918731 0.394883i \(-0.129215\pi\)
0.918731 + 0.394883i \(0.129215\pi\)
\(942\) −14.1696 −0.461671
\(943\) −63.7306 −2.07535
\(944\) −12.4307 −0.404585
\(945\) 4.83240 0.157198
\(946\) −2.46590 −0.0801732
\(947\) 23.7926 0.773155 0.386578 0.922257i \(-0.373657\pi\)
0.386578 + 0.922257i \(0.373657\pi\)
\(948\) −6.50487 −0.211268
\(949\) 59.3956 1.92806
\(950\) −2.78640 −0.0904027
\(951\) 2.23194 0.0723755
\(952\) 22.3391 0.724015
\(953\) 21.7614 0.704920 0.352460 0.935827i \(-0.385345\pi\)
0.352460 + 0.935827i \(0.385345\pi\)
\(954\) −1.57593 −0.0510225
\(955\) 5.32927 0.172451
\(956\) 12.7575 0.412608
\(957\) 0 0
\(958\) −14.3106 −0.462355
\(959\) 7.29255 0.235489
\(960\) −2.76617 −0.0892776
\(961\) −23.5218 −0.758767
\(962\) 8.44783 0.272369
\(963\) −0.125704 −0.00405076
\(964\) 0.816729 0.0263051
\(965\) −13.1987 −0.424880
\(966\) −8.96730 −0.288518
\(967\) 24.8725 0.799846 0.399923 0.916549i \(-0.369037\pi\)
0.399923 + 0.916549i \(0.369037\pi\)
\(968\) −24.6429 −0.792054
\(969\) 16.4810 0.529447
\(970\) 22.1039 0.709713
\(971\) 59.9657 1.92439 0.962196 0.272358i \(-0.0878036\pi\)
0.962196 + 0.272358i \(0.0878036\pi\)
\(972\) −1.51706 −0.0486597
\(973\) −27.0156 −0.866080
\(974\) −11.1131 −0.356086
\(975\) −6.06589 −0.194264
\(976\) 4.19179 0.134176
\(977\) −46.1910 −1.47778 −0.738891 0.673825i \(-0.764650\pi\)
−0.738891 + 0.673825i \(0.764650\pi\)
\(978\) −5.30256 −0.169557
\(979\) −14.7927 −0.472775
\(980\) −3.87090 −0.123651
\(981\) −9.64659 −0.307992
\(982\) 7.08871 0.226210
\(983\) −0.667578 −0.0212924 −0.0106462 0.999943i \(-0.503389\pi\)
−0.0106462 + 0.999943i \(0.503389\pi\)
\(984\) 28.9097 0.921607
\(985\) 19.8236 0.631632
\(986\) 0 0
\(987\) 7.74194 0.246429
\(988\) 42.8014 1.36169
\(989\) 19.9593 0.634669
\(990\) −1.34320 −0.0426896
\(991\) −44.8159 −1.42362 −0.711811 0.702371i \(-0.752125\pi\)
−0.711811 + 0.702371i \(0.752125\pi\)
\(992\) −15.9058 −0.505011
\(993\) −23.2235 −0.736977
\(994\) −7.66148 −0.243007
\(995\) −1.05877 −0.0335651
\(996\) −24.5479 −0.777831
\(997\) −11.1717 −0.353812 −0.176906 0.984228i \(-0.556609\pi\)
−0.176906 + 0.984228i \(0.556609\pi\)
\(998\) 4.27526 0.135331
\(999\) −1.86068 −0.0588694
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.r.1.3 9
3.2 odd 2 7569.2.a.bj.1.7 9
29.7 even 7 87.2.g.a.49.3 yes 18
29.25 even 7 87.2.g.a.16.3 18
29.28 even 2 2523.2.a.o.1.7 9
87.65 odd 14 261.2.k.c.136.1 18
87.83 odd 14 261.2.k.c.190.1 18
87.86 odd 2 7569.2.a.bm.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.16.3 18 29.25 even 7
87.2.g.a.49.3 yes 18 29.7 even 7
261.2.k.c.136.1 18 87.65 odd 14
261.2.k.c.190.1 18 87.83 odd 14
2523.2.a.o.1.7 9 29.28 even 2
2523.2.a.r.1.3 9 1.1 even 1 trivial
7569.2.a.bj.1.7 9 3.2 odd 2
7569.2.a.bm.1.3 9 87.86 odd 2