Properties

Label 2523.2.a.r.1.1
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,2,Mod(1,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 4x^{8} - 6x^{7} + 33x^{6} + 6x^{5} - 90x^{4} + 21x^{3} + 84x^{2} - 36x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.19178\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.19178 q^{2} +1.00000 q^{3} +2.80388 q^{4} -2.39677 q^{5} -2.19178 q^{6} +1.35191 q^{7} -1.76193 q^{8} +1.00000 q^{9} +5.25319 q^{10} +3.50954 q^{11} +2.80388 q^{12} +6.03467 q^{13} -2.96308 q^{14} -2.39677 q^{15} -1.74601 q^{16} +3.05437 q^{17} -2.19178 q^{18} +5.63574 q^{19} -6.72027 q^{20} +1.35191 q^{21} -7.69212 q^{22} +1.01478 q^{23} -1.76193 q^{24} +0.744514 q^{25} -13.2266 q^{26} +1.00000 q^{27} +3.79059 q^{28} +5.25319 q^{30} +8.11166 q^{31} +7.35072 q^{32} +3.50954 q^{33} -6.69450 q^{34} -3.24021 q^{35} +2.80388 q^{36} +5.49645 q^{37} -12.3523 q^{38} +6.03467 q^{39} +4.22294 q^{40} -6.85782 q^{41} -2.96308 q^{42} -7.80197 q^{43} +9.84033 q^{44} -2.39677 q^{45} -2.22416 q^{46} -0.418254 q^{47} -1.74601 q^{48} -5.17235 q^{49} -1.63181 q^{50} +3.05437 q^{51} +16.9205 q^{52} -13.3425 q^{53} -2.19178 q^{54} -8.41156 q^{55} -2.38197 q^{56} +5.63574 q^{57} +3.56102 q^{59} -6.72027 q^{60} +7.20954 q^{61} -17.7790 q^{62} +1.35191 q^{63} -12.6191 q^{64} -14.4637 q^{65} -7.69212 q^{66} +8.31317 q^{67} +8.56410 q^{68} +1.01478 q^{69} +7.10182 q^{70} -9.78678 q^{71} -1.76193 q^{72} -0.303730 q^{73} -12.0470 q^{74} +0.744514 q^{75} +15.8019 q^{76} +4.74457 q^{77} -13.2266 q^{78} +4.00638 q^{79} +4.18478 q^{80} +1.00000 q^{81} +15.0308 q^{82} -4.31434 q^{83} +3.79059 q^{84} -7.32063 q^{85} +17.1002 q^{86} -6.18356 q^{88} +13.9924 q^{89} +5.25319 q^{90} +8.15831 q^{91} +2.84532 q^{92} +8.11166 q^{93} +0.916719 q^{94} -13.5076 q^{95} +7.35072 q^{96} -3.80357 q^{97} +11.3366 q^{98} +3.50954 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 5 q^{2} + 9 q^{3} + 11 q^{4} - 4 q^{5} + 5 q^{6} + 5 q^{7} + 24 q^{8} + 9 q^{9} - q^{11} + 11 q^{12} + q^{13} + 9 q^{14} - 4 q^{15} + 35 q^{16} + 2 q^{17} + 5 q^{18} + 9 q^{19} - 18 q^{20} + 5 q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.19178 −1.54982 −0.774910 0.632072i \(-0.782205\pi\)
−0.774910 + 0.632072i \(0.782205\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.80388 1.40194
\(5\) −2.39677 −1.07187 −0.535934 0.844260i \(-0.680041\pi\)
−0.535934 + 0.844260i \(0.680041\pi\)
\(6\) −2.19178 −0.894789
\(7\) 1.35191 0.510973 0.255486 0.966813i \(-0.417764\pi\)
0.255486 + 0.966813i \(0.417764\pi\)
\(8\) −1.76193 −0.622936
\(9\) 1.00000 0.333333
\(10\) 5.25319 1.66120
\(11\) 3.50954 1.05817 0.529083 0.848570i \(-0.322536\pi\)
0.529083 + 0.848570i \(0.322536\pi\)
\(12\) 2.80388 0.809411
\(13\) 6.03467 1.67372 0.836858 0.547420i \(-0.184390\pi\)
0.836858 + 0.547420i \(0.184390\pi\)
\(14\) −2.96308 −0.791916
\(15\) −2.39677 −0.618844
\(16\) −1.74601 −0.436502
\(17\) 3.05437 0.740794 0.370397 0.928874i \(-0.379222\pi\)
0.370397 + 0.928874i \(0.379222\pi\)
\(18\) −2.19178 −0.516607
\(19\) 5.63574 1.29293 0.646463 0.762945i \(-0.276247\pi\)
0.646463 + 0.762945i \(0.276247\pi\)
\(20\) −6.72027 −1.50270
\(21\) 1.35191 0.295010
\(22\) −7.69212 −1.63997
\(23\) 1.01478 0.211596 0.105798 0.994388i \(-0.466260\pi\)
0.105798 + 0.994388i \(0.466260\pi\)
\(24\) −1.76193 −0.359653
\(25\) 0.744514 0.148903
\(26\) −13.2266 −2.59396
\(27\) 1.00000 0.192450
\(28\) 3.79059 0.716354
\(29\) 0 0
\(30\) 5.25319 0.959096
\(31\) 8.11166 1.45690 0.728449 0.685100i \(-0.240242\pi\)
0.728449 + 0.685100i \(0.240242\pi\)
\(32\) 7.35072 1.29944
\(33\) 3.50954 0.610932
\(34\) −6.69450 −1.14810
\(35\) −3.24021 −0.547696
\(36\) 2.80388 0.467314
\(37\) 5.49645 0.903610 0.451805 0.892117i \(-0.350780\pi\)
0.451805 + 0.892117i \(0.350780\pi\)
\(38\) −12.3523 −2.00380
\(39\) 6.03467 0.966320
\(40\) 4.22294 0.667706
\(41\) −6.85782 −1.07101 −0.535506 0.844531i \(-0.679879\pi\)
−0.535506 + 0.844531i \(0.679879\pi\)
\(42\) −2.96308 −0.457213
\(43\) −7.80197 −1.18979 −0.594895 0.803804i \(-0.702806\pi\)
−0.594895 + 0.803804i \(0.702806\pi\)
\(44\) 9.84033 1.48349
\(45\) −2.39677 −0.357290
\(46\) −2.22416 −0.327935
\(47\) −0.418254 −0.0610086 −0.0305043 0.999535i \(-0.509711\pi\)
−0.0305043 + 0.999535i \(0.509711\pi\)
\(48\) −1.74601 −0.252015
\(49\) −5.17235 −0.738907
\(50\) −1.63181 −0.230773
\(51\) 3.05437 0.427698
\(52\) 16.9205 2.34645
\(53\) −13.3425 −1.83273 −0.916367 0.400340i \(-0.868892\pi\)
−0.916367 + 0.400340i \(0.868892\pi\)
\(54\) −2.19178 −0.298263
\(55\) −8.41156 −1.13421
\(56\) −2.38197 −0.318304
\(57\) 5.63574 0.746471
\(58\) 0 0
\(59\) 3.56102 0.463606 0.231803 0.972763i \(-0.425538\pi\)
0.231803 + 0.972763i \(0.425538\pi\)
\(60\) −6.72027 −0.867583
\(61\) 7.20954 0.923086 0.461543 0.887118i \(-0.347296\pi\)
0.461543 + 0.887118i \(0.347296\pi\)
\(62\) −17.7790 −2.25793
\(63\) 1.35191 0.170324
\(64\) −12.6191 −1.57739
\(65\) −14.4637 −1.79400
\(66\) −7.69212 −0.946835
\(67\) 8.31317 1.01562 0.507808 0.861471i \(-0.330456\pi\)
0.507808 + 0.861471i \(0.330456\pi\)
\(68\) 8.56410 1.03855
\(69\) 1.01478 0.122165
\(70\) 7.10182 0.848830
\(71\) −9.78678 −1.16148 −0.580739 0.814090i \(-0.697236\pi\)
−0.580739 + 0.814090i \(0.697236\pi\)
\(72\) −1.76193 −0.207645
\(73\) −0.303730 −0.0355489 −0.0177745 0.999842i \(-0.505658\pi\)
−0.0177745 + 0.999842i \(0.505658\pi\)
\(74\) −12.0470 −1.40043
\(75\) 0.744514 0.0859691
\(76\) 15.8019 1.81261
\(77\) 4.74457 0.540694
\(78\) −13.2266 −1.49762
\(79\) 4.00638 0.450753 0.225377 0.974272i \(-0.427639\pi\)
0.225377 + 0.974272i \(0.427639\pi\)
\(80\) 4.18478 0.467873
\(81\) 1.00000 0.111111
\(82\) 15.0308 1.65988
\(83\) −4.31434 −0.473560 −0.236780 0.971563i \(-0.576092\pi\)
−0.236780 + 0.971563i \(0.576092\pi\)
\(84\) 3.79059 0.413587
\(85\) −7.32063 −0.794034
\(86\) 17.1002 1.84396
\(87\) 0 0
\(88\) −6.18356 −0.659170
\(89\) 13.9924 1.48320 0.741598 0.670844i \(-0.234068\pi\)
0.741598 + 0.670844i \(0.234068\pi\)
\(90\) 5.25319 0.553734
\(91\) 8.15831 0.855224
\(92\) 2.84532 0.296645
\(93\) 8.11166 0.841140
\(94\) 0.916719 0.0945523
\(95\) −13.5076 −1.38585
\(96\) 7.35072 0.750230
\(97\) −3.80357 −0.386194 −0.193097 0.981180i \(-0.561853\pi\)
−0.193097 + 0.981180i \(0.561853\pi\)
\(98\) 11.3366 1.14517
\(99\) 3.50954 0.352722
\(100\) 2.08753 0.208753
\(101\) −0.0422219 −0.00420124 −0.00210062 0.999998i \(-0.500669\pi\)
−0.00210062 + 0.999998i \(0.500669\pi\)
\(102\) −6.69450 −0.662854
\(103\) 11.7804 1.16075 0.580377 0.814348i \(-0.302905\pi\)
0.580377 + 0.814348i \(0.302905\pi\)
\(104\) −10.6327 −1.04262
\(105\) −3.24021 −0.316212
\(106\) 29.2438 2.84041
\(107\) −6.26717 −0.605870 −0.302935 0.953011i \(-0.597967\pi\)
−0.302935 + 0.953011i \(0.597967\pi\)
\(108\) 2.80388 0.269804
\(109\) −14.8073 −1.41828 −0.709141 0.705067i \(-0.750917\pi\)
−0.709141 + 0.705067i \(0.750917\pi\)
\(110\) 18.4363 1.75783
\(111\) 5.49645 0.521700
\(112\) −2.36044 −0.223041
\(113\) 11.8933 1.11882 0.559411 0.828890i \(-0.311027\pi\)
0.559411 + 0.828890i \(0.311027\pi\)
\(114\) −12.3523 −1.15690
\(115\) −2.43219 −0.226803
\(116\) 0 0
\(117\) 6.03467 0.557905
\(118\) −7.80497 −0.718506
\(119\) 4.12923 0.378526
\(120\) 4.22294 0.385500
\(121\) 1.31686 0.119714
\(122\) −15.8017 −1.43062
\(123\) −6.85782 −0.618349
\(124\) 22.7442 2.04249
\(125\) 10.1994 0.912265
\(126\) −2.96308 −0.263972
\(127\) −15.0938 −1.33935 −0.669677 0.742652i \(-0.733567\pi\)
−0.669677 + 0.742652i \(0.733567\pi\)
\(128\) 12.9568 1.14523
\(129\) −7.80197 −0.686925
\(130\) 31.7012 2.78038
\(131\) 10.4468 0.912739 0.456369 0.889790i \(-0.349150\pi\)
0.456369 + 0.889790i \(0.349150\pi\)
\(132\) 9.84033 0.856491
\(133\) 7.61899 0.660650
\(134\) −18.2206 −1.57402
\(135\) −2.39677 −0.206281
\(136\) −5.38159 −0.461468
\(137\) −3.67212 −0.313731 −0.156865 0.987620i \(-0.550139\pi\)
−0.156865 + 0.987620i \(0.550139\pi\)
\(138\) −2.22416 −0.189333
\(139\) 5.78134 0.490367 0.245183 0.969477i \(-0.421152\pi\)
0.245183 + 0.969477i \(0.421152\pi\)
\(140\) −9.08518 −0.767838
\(141\) −0.418254 −0.0352233
\(142\) 21.4504 1.80008
\(143\) 21.1789 1.77107
\(144\) −1.74601 −0.145501
\(145\) 0 0
\(146\) 0.665709 0.0550944
\(147\) −5.17235 −0.426608
\(148\) 15.4114 1.26681
\(149\) −8.58416 −0.703242 −0.351621 0.936142i \(-0.614369\pi\)
−0.351621 + 0.936142i \(0.614369\pi\)
\(150\) −1.63181 −0.133237
\(151\) 11.9406 0.971714 0.485857 0.874038i \(-0.338508\pi\)
0.485857 + 0.874038i \(0.338508\pi\)
\(152\) −9.92977 −0.805411
\(153\) 3.05437 0.246931
\(154\) −10.3990 −0.837978
\(155\) −19.4418 −1.56160
\(156\) 16.9205 1.35472
\(157\) −12.2535 −0.977936 −0.488968 0.872302i \(-0.662626\pi\)
−0.488968 + 0.872302i \(0.662626\pi\)
\(158\) −8.78109 −0.698586
\(159\) −13.3425 −1.05813
\(160\) −17.6180 −1.39282
\(161\) 1.37189 0.108120
\(162\) −2.19178 −0.172202
\(163\) −7.93140 −0.621235 −0.310618 0.950535i \(-0.600536\pi\)
−0.310618 + 0.950535i \(0.600536\pi\)
\(164\) −19.2285 −1.50150
\(165\) −8.41156 −0.654839
\(166\) 9.45607 0.733933
\(167\) 12.9244 1.00012 0.500061 0.865990i \(-0.333311\pi\)
0.500061 + 0.865990i \(0.333311\pi\)
\(168\) −2.38197 −0.183773
\(169\) 23.4172 1.80133
\(170\) 16.0452 1.23061
\(171\) 5.63574 0.430975
\(172\) −21.8758 −1.66801
\(173\) 2.65357 0.201747 0.100874 0.994899i \(-0.467836\pi\)
0.100874 + 0.994899i \(0.467836\pi\)
\(174\) 0 0
\(175\) 1.00651 0.0760853
\(176\) −6.12768 −0.461891
\(177\) 3.56102 0.267663
\(178\) −30.6683 −2.29869
\(179\) −13.3988 −1.00147 −0.500735 0.865601i \(-0.666937\pi\)
−0.500735 + 0.865601i \(0.666937\pi\)
\(180\) −6.72027 −0.500899
\(181\) 1.51389 0.112527 0.0562634 0.998416i \(-0.482081\pi\)
0.0562634 + 0.998416i \(0.482081\pi\)
\(182\) −17.8812 −1.32544
\(183\) 7.20954 0.532944
\(184\) −1.78797 −0.131811
\(185\) −13.1737 −0.968552
\(186\) −17.7790 −1.30362
\(187\) 10.7194 0.783883
\(188\) −1.17273 −0.0855305
\(189\) 1.35191 0.0983368
\(190\) 29.6056 2.14781
\(191\) −11.6187 −0.840696 −0.420348 0.907363i \(-0.638092\pi\)
−0.420348 + 0.907363i \(0.638092\pi\)
\(192\) −12.6191 −0.910706
\(193\) −6.16179 −0.443536 −0.221768 0.975100i \(-0.571183\pi\)
−0.221768 + 0.975100i \(0.571183\pi\)
\(194\) 8.33658 0.598532
\(195\) −14.4637 −1.03577
\(196\) −14.5027 −1.03590
\(197\) −2.52672 −0.180021 −0.0900107 0.995941i \(-0.528690\pi\)
−0.0900107 + 0.995941i \(0.528690\pi\)
\(198\) −7.69212 −0.546655
\(199\) 13.2818 0.941524 0.470762 0.882260i \(-0.343979\pi\)
0.470762 + 0.882260i \(0.343979\pi\)
\(200\) −1.31178 −0.0927570
\(201\) 8.31317 0.586366
\(202\) 0.0925410 0.00651116
\(203\) 0 0
\(204\) 8.56410 0.599607
\(205\) 16.4366 1.14798
\(206\) −25.8199 −1.79896
\(207\) 1.01478 0.0705319
\(208\) −10.5366 −0.730580
\(209\) 19.7788 1.36813
\(210\) 7.10182 0.490072
\(211\) −8.30478 −0.571724 −0.285862 0.958271i \(-0.592280\pi\)
−0.285862 + 0.958271i \(0.592280\pi\)
\(212\) −37.4108 −2.56938
\(213\) −9.78678 −0.670579
\(214\) 13.7362 0.938990
\(215\) 18.6995 1.27530
\(216\) −1.76193 −0.119884
\(217\) 10.9662 0.744435
\(218\) 32.4543 2.19808
\(219\) −0.303730 −0.0205242
\(220\) −23.5850 −1.59010
\(221\) 18.4321 1.23988
\(222\) −12.0470 −0.808540
\(223\) 25.0119 1.67492 0.837461 0.546496i \(-0.184039\pi\)
0.837461 + 0.546496i \(0.184039\pi\)
\(224\) 9.93749 0.663977
\(225\) 0.744514 0.0496343
\(226\) −26.0673 −1.73397
\(227\) 3.04387 0.202029 0.101014 0.994885i \(-0.467791\pi\)
0.101014 + 0.994885i \(0.467791\pi\)
\(228\) 15.8019 1.04651
\(229\) −21.9086 −1.44776 −0.723879 0.689927i \(-0.757643\pi\)
−0.723879 + 0.689927i \(0.757643\pi\)
\(230\) 5.33082 0.351504
\(231\) 4.74457 0.312170
\(232\) 0 0
\(233\) 9.96464 0.652805 0.326403 0.945231i \(-0.394163\pi\)
0.326403 + 0.945231i \(0.394163\pi\)
\(234\) −13.2266 −0.864653
\(235\) 1.00246 0.0653932
\(236\) 9.98469 0.649948
\(237\) 4.00638 0.260242
\(238\) −9.05034 −0.586647
\(239\) −7.78097 −0.503309 −0.251655 0.967817i \(-0.580975\pi\)
−0.251655 + 0.967817i \(0.580975\pi\)
\(240\) 4.18478 0.270127
\(241\) −23.1891 −1.49374 −0.746872 0.664968i \(-0.768445\pi\)
−0.746872 + 0.664968i \(0.768445\pi\)
\(242\) −2.88626 −0.185536
\(243\) 1.00000 0.0641500
\(244\) 20.2147 1.29411
\(245\) 12.3969 0.792011
\(246\) 15.0308 0.958329
\(247\) 34.0098 2.16399
\(248\) −14.2922 −0.907555
\(249\) −4.31434 −0.273410
\(250\) −22.3549 −1.41385
\(251\) 1.18054 0.0745150 0.0372575 0.999306i \(-0.488138\pi\)
0.0372575 + 0.999306i \(0.488138\pi\)
\(252\) 3.79059 0.238785
\(253\) 3.56140 0.223903
\(254\) 33.0821 2.07576
\(255\) −7.32063 −0.458436
\(256\) −3.16025 −0.197516
\(257\) 15.9745 0.996461 0.498231 0.867044i \(-0.333983\pi\)
0.498231 + 0.867044i \(0.333983\pi\)
\(258\) 17.1002 1.06461
\(259\) 7.43069 0.461720
\(260\) −40.5546 −2.51509
\(261\) 0 0
\(262\) −22.8970 −1.41458
\(263\) 14.6106 0.900927 0.450463 0.892795i \(-0.351259\pi\)
0.450463 + 0.892795i \(0.351259\pi\)
\(264\) −6.18356 −0.380572
\(265\) 31.9789 1.96445
\(266\) −16.6991 −1.02389
\(267\) 13.9924 0.856324
\(268\) 23.3091 1.42383
\(269\) 22.1146 1.34835 0.674174 0.738573i \(-0.264500\pi\)
0.674174 + 0.738573i \(0.264500\pi\)
\(270\) 5.25319 0.319699
\(271\) −23.1151 −1.40414 −0.702072 0.712106i \(-0.747742\pi\)
−0.702072 + 0.712106i \(0.747742\pi\)
\(272\) −5.33296 −0.323358
\(273\) 8.15831 0.493764
\(274\) 8.04847 0.486226
\(275\) 2.61290 0.157564
\(276\) 2.84532 0.171268
\(277\) 18.7130 1.12435 0.562177 0.827017i \(-0.309964\pi\)
0.562177 + 0.827017i \(0.309964\pi\)
\(278\) −12.6714 −0.759980
\(279\) 8.11166 0.485633
\(280\) 5.70903 0.341180
\(281\) −8.66587 −0.516962 −0.258481 0.966016i \(-0.583222\pi\)
−0.258481 + 0.966016i \(0.583222\pi\)
\(282\) 0.916719 0.0545898
\(283\) 5.58496 0.331991 0.165996 0.986126i \(-0.446916\pi\)
0.165996 + 0.986126i \(0.446916\pi\)
\(284\) −27.4410 −1.62832
\(285\) −13.5076 −0.800119
\(286\) −46.4194 −2.74484
\(287\) −9.27114 −0.547258
\(288\) 7.35072 0.433145
\(289\) −7.67081 −0.451224
\(290\) 0 0
\(291\) −3.80357 −0.222969
\(292\) −0.851624 −0.0498375
\(293\) −4.71899 −0.275686 −0.137843 0.990454i \(-0.544017\pi\)
−0.137843 + 0.990454i \(0.544017\pi\)
\(294\) 11.3366 0.661165
\(295\) −8.53496 −0.496925
\(296\) −9.68436 −0.562892
\(297\) 3.50954 0.203644
\(298\) 18.8146 1.08990
\(299\) 6.12385 0.354151
\(300\) 2.08753 0.120524
\(301\) −10.5475 −0.607950
\(302\) −26.1712 −1.50598
\(303\) −0.0422219 −0.00242559
\(304\) −9.84004 −0.564365
\(305\) −17.2796 −0.989428
\(306\) −6.69450 −0.382699
\(307\) 11.7362 0.669821 0.334910 0.942250i \(-0.391294\pi\)
0.334910 + 0.942250i \(0.391294\pi\)
\(308\) 13.3032 0.758021
\(309\) 11.7804 0.670161
\(310\) 42.6121 2.42020
\(311\) 16.8038 0.952858 0.476429 0.879213i \(-0.341931\pi\)
0.476429 + 0.879213i \(0.341931\pi\)
\(312\) −10.6327 −0.601956
\(313\) −11.9599 −0.676012 −0.338006 0.941144i \(-0.609752\pi\)
−0.338006 + 0.941144i \(0.609752\pi\)
\(314\) 26.8569 1.51562
\(315\) −3.24021 −0.182565
\(316\) 11.2334 0.631929
\(317\) −14.1360 −0.793954 −0.396977 0.917829i \(-0.629941\pi\)
−0.396977 + 0.917829i \(0.629941\pi\)
\(318\) 29.2438 1.63991
\(319\) 0 0
\(320\) 30.2451 1.69075
\(321\) −6.26717 −0.349799
\(322\) −3.00686 −0.167566
\(323\) 17.2136 0.957792
\(324\) 2.80388 0.155771
\(325\) 4.49290 0.249221
\(326\) 17.3839 0.962803
\(327\) −14.8073 −0.818845
\(328\) 12.0830 0.667172
\(329\) −0.565441 −0.0311737
\(330\) 18.4363 1.01488
\(331\) 23.0236 1.26549 0.632747 0.774359i \(-0.281927\pi\)
0.632747 + 0.774359i \(0.281927\pi\)
\(332\) −12.0969 −0.663904
\(333\) 5.49645 0.301203
\(334\) −28.3275 −1.55001
\(335\) −19.9248 −1.08861
\(336\) −2.36044 −0.128773
\(337\) −2.55630 −0.139250 −0.0696252 0.997573i \(-0.522180\pi\)
−0.0696252 + 0.997573i \(0.522180\pi\)
\(338\) −51.3253 −2.79173
\(339\) 11.8933 0.645953
\(340\) −20.5262 −1.11319
\(341\) 28.4682 1.54164
\(342\) −12.3523 −0.667934
\(343\) −16.4559 −0.888534
\(344\) 13.7465 0.741163
\(345\) −2.43219 −0.130945
\(346\) −5.81604 −0.312672
\(347\) −0.891885 −0.0478789 −0.0239394 0.999713i \(-0.507621\pi\)
−0.0239394 + 0.999713i \(0.507621\pi\)
\(348\) 0 0
\(349\) −0.755575 −0.0404450 −0.0202225 0.999796i \(-0.506437\pi\)
−0.0202225 + 0.999796i \(0.506437\pi\)
\(350\) −2.20605 −0.117919
\(351\) 6.03467 0.322107
\(352\) 25.7976 1.37502
\(353\) 19.2406 1.02407 0.512036 0.858964i \(-0.328891\pi\)
0.512036 + 0.858964i \(0.328891\pi\)
\(354\) −7.80497 −0.414829
\(355\) 23.4567 1.24495
\(356\) 39.2332 2.07935
\(357\) 4.12923 0.218542
\(358\) 29.3671 1.55210
\(359\) 17.6146 0.929661 0.464830 0.885400i \(-0.346115\pi\)
0.464830 + 0.885400i \(0.346115\pi\)
\(360\) 4.22294 0.222569
\(361\) 12.7615 0.671658
\(362\) −3.31812 −0.174396
\(363\) 1.31686 0.0691171
\(364\) 22.8750 1.19897
\(365\) 0.727972 0.0381038
\(366\) −15.8017 −0.825967
\(367\) 3.79787 0.198247 0.0991235 0.995075i \(-0.468396\pi\)
0.0991235 + 0.995075i \(0.468396\pi\)
\(368\) −1.77181 −0.0923620
\(369\) −6.85782 −0.357004
\(370\) 28.8739 1.50108
\(371\) −18.0378 −0.936477
\(372\) 22.7442 1.17923
\(373\) −8.29264 −0.429377 −0.214688 0.976683i \(-0.568874\pi\)
−0.214688 + 0.976683i \(0.568874\pi\)
\(374\) −23.4946 −1.21488
\(375\) 10.1994 0.526696
\(376\) 0.736934 0.0380045
\(377\) 0 0
\(378\) −2.96308 −0.152404
\(379\) −8.93238 −0.458826 −0.229413 0.973329i \(-0.573681\pi\)
−0.229413 + 0.973329i \(0.573681\pi\)
\(380\) −37.8736 −1.94288
\(381\) −15.0938 −0.773277
\(382\) 25.4655 1.30293
\(383\) 35.8530 1.83200 0.916001 0.401176i \(-0.131398\pi\)
0.916001 + 0.401176i \(0.131398\pi\)
\(384\) 12.9568 0.661201
\(385\) −11.3717 −0.579553
\(386\) 13.5053 0.687400
\(387\) −7.80197 −0.396596
\(388\) −10.6648 −0.541422
\(389\) 11.3446 0.575194 0.287597 0.957752i \(-0.407144\pi\)
0.287597 + 0.957752i \(0.407144\pi\)
\(390\) 31.7012 1.60525
\(391\) 3.09951 0.156749
\(392\) 9.11331 0.460292
\(393\) 10.4468 0.526970
\(394\) 5.53800 0.279001
\(395\) −9.60238 −0.483148
\(396\) 9.84033 0.494495
\(397\) −24.1353 −1.21131 −0.605657 0.795726i \(-0.707090\pi\)
−0.605657 + 0.795726i \(0.707090\pi\)
\(398\) −29.1108 −1.45919
\(399\) 7.61899 0.381427
\(400\) −1.29993 −0.0649964
\(401\) 19.3564 0.966611 0.483305 0.875452i \(-0.339436\pi\)
0.483305 + 0.875452i \(0.339436\pi\)
\(402\) −18.2206 −0.908761
\(403\) 48.9512 2.43843
\(404\) −0.118385 −0.00588989
\(405\) −2.39677 −0.119097
\(406\) 0 0
\(407\) 19.2900 0.956169
\(408\) −5.38159 −0.266428
\(409\) 11.4459 0.565963 0.282981 0.959125i \(-0.408677\pi\)
0.282981 + 0.959125i \(0.408677\pi\)
\(410\) −36.0254 −1.77917
\(411\) −3.67212 −0.181132
\(412\) 33.0308 1.62731
\(413\) 4.81418 0.236890
\(414\) −2.22416 −0.109312
\(415\) 10.3405 0.507595
\(416\) 44.3592 2.17489
\(417\) 5.78134 0.283113
\(418\) −43.3508 −2.12036
\(419\) −21.1185 −1.03171 −0.515854 0.856677i \(-0.672525\pi\)
−0.515854 + 0.856677i \(0.672525\pi\)
\(420\) −9.08518 −0.443311
\(421\) 27.5131 1.34090 0.670452 0.741953i \(-0.266100\pi\)
0.670452 + 0.741953i \(0.266100\pi\)
\(422\) 18.2022 0.886070
\(423\) −0.418254 −0.0203362
\(424\) 23.5086 1.14168
\(425\) 2.27402 0.110306
\(426\) 21.4504 1.03928
\(427\) 9.74662 0.471672
\(428\) −17.5724 −0.849394
\(429\) 21.1789 1.02253
\(430\) −40.9852 −1.97648
\(431\) −1.94954 −0.0939060 −0.0469530 0.998897i \(-0.514951\pi\)
−0.0469530 + 0.998897i \(0.514951\pi\)
\(432\) −1.74601 −0.0840049
\(433\) 7.83478 0.376516 0.188258 0.982120i \(-0.439716\pi\)
0.188258 + 0.982120i \(0.439716\pi\)
\(434\) −24.0355 −1.15374
\(435\) 0 0
\(436\) −41.5179 −1.98835
\(437\) 5.71902 0.273578
\(438\) 0.665709 0.0318088
\(439\) 2.38989 0.114063 0.0570317 0.998372i \(-0.481836\pi\)
0.0570317 + 0.998372i \(0.481836\pi\)
\(440\) 14.8206 0.706544
\(441\) −5.17235 −0.246302
\(442\) −40.3991 −1.92159
\(443\) 38.3497 1.82205 0.911024 0.412354i \(-0.135293\pi\)
0.911024 + 0.412354i \(0.135293\pi\)
\(444\) 15.4114 0.731392
\(445\) −33.5367 −1.58979
\(446\) −54.8206 −2.59583
\(447\) −8.58416 −0.406017
\(448\) −17.0599 −0.806003
\(449\) −31.3441 −1.47922 −0.739609 0.673037i \(-0.764990\pi\)
−0.739609 + 0.673037i \(0.764990\pi\)
\(450\) −1.63181 −0.0769242
\(451\) −24.0678 −1.13331
\(452\) 33.3473 1.56852
\(453\) 11.9406 0.561020
\(454\) −6.67148 −0.313108
\(455\) −19.5536 −0.916688
\(456\) −9.92977 −0.465004
\(457\) −32.2643 −1.50926 −0.754630 0.656151i \(-0.772183\pi\)
−0.754630 + 0.656151i \(0.772183\pi\)
\(458\) 48.0187 2.24376
\(459\) 3.05437 0.142566
\(460\) −6.81957 −0.317964
\(461\) −5.67806 −0.264454 −0.132227 0.991219i \(-0.542213\pi\)
−0.132227 + 0.991219i \(0.542213\pi\)
\(462\) −10.3990 −0.483807
\(463\) 23.2339 1.07977 0.539886 0.841738i \(-0.318467\pi\)
0.539886 + 0.841738i \(0.318467\pi\)
\(464\) 0 0
\(465\) −19.4418 −0.901592
\(466\) −21.8403 −1.01173
\(467\) 12.0771 0.558861 0.279430 0.960166i \(-0.409854\pi\)
0.279430 + 0.960166i \(0.409854\pi\)
\(468\) 16.9205 0.782150
\(469\) 11.2386 0.518952
\(470\) −2.19717 −0.101348
\(471\) −12.2535 −0.564611
\(472\) −6.27428 −0.288797
\(473\) −27.3813 −1.25899
\(474\) −8.78109 −0.403329
\(475\) 4.19588 0.192520
\(476\) 11.5779 0.530671
\(477\) −13.3425 −0.610911
\(478\) 17.0541 0.780038
\(479\) −30.5109 −1.39408 −0.697039 0.717033i \(-0.745500\pi\)
−0.697039 + 0.717033i \(0.745500\pi\)
\(480\) −17.6180 −0.804148
\(481\) 33.1692 1.51239
\(482\) 50.8254 2.31503
\(483\) 1.37189 0.0624229
\(484\) 3.69231 0.167832
\(485\) 9.11630 0.413950
\(486\) −2.19178 −0.0994210
\(487\) −23.5248 −1.06601 −0.533005 0.846112i \(-0.678937\pi\)
−0.533005 + 0.846112i \(0.678937\pi\)
\(488\) −12.7027 −0.575024
\(489\) −7.93140 −0.358670
\(490\) −27.1713 −1.22747
\(491\) 27.5887 1.24506 0.622531 0.782595i \(-0.286104\pi\)
0.622531 + 0.782595i \(0.286104\pi\)
\(492\) −19.2285 −0.866889
\(493\) 0 0
\(494\) −74.5419 −3.35380
\(495\) −8.41156 −0.378072
\(496\) −14.1630 −0.635939
\(497\) −13.2308 −0.593483
\(498\) 9.45607 0.423737
\(499\) −38.3679 −1.71758 −0.858791 0.512327i \(-0.828784\pi\)
−0.858791 + 0.512327i \(0.828784\pi\)
\(500\) 28.5980 1.27894
\(501\) 12.9244 0.577421
\(502\) −2.58748 −0.115485
\(503\) −4.95969 −0.221142 −0.110571 0.993868i \(-0.535268\pi\)
−0.110571 + 0.993868i \(0.535268\pi\)
\(504\) −2.38197 −0.106101
\(505\) 0.101196 0.00450318
\(506\) −7.80579 −0.347010
\(507\) 23.4172 1.04000
\(508\) −42.3211 −1.87770
\(509\) −16.4294 −0.728220 −0.364110 0.931356i \(-0.618627\pi\)
−0.364110 + 0.931356i \(0.618627\pi\)
\(510\) 16.0452 0.710493
\(511\) −0.410615 −0.0181645
\(512\) −18.9871 −0.839119
\(513\) 5.63574 0.248824
\(514\) −35.0125 −1.54434
\(515\) −28.2348 −1.24418
\(516\) −21.8758 −0.963029
\(517\) −1.46788 −0.0645572
\(518\) −16.2864 −0.715583
\(519\) 2.65357 0.116479
\(520\) 25.4841 1.11755
\(521\) −30.7040 −1.34517 −0.672583 0.740021i \(-0.734815\pi\)
−0.672583 + 0.740021i \(0.734815\pi\)
\(522\) 0 0
\(523\) 37.0601 1.62052 0.810262 0.586068i \(-0.199325\pi\)
0.810262 + 0.586068i \(0.199325\pi\)
\(524\) 29.2915 1.27961
\(525\) 1.00651 0.0439279
\(526\) −32.0231 −1.39627
\(527\) 24.7760 1.07926
\(528\) −6.12768 −0.266673
\(529\) −21.9702 −0.955227
\(530\) −70.0906 −3.04454
\(531\) 3.56102 0.154535
\(532\) 21.3628 0.926193
\(533\) −41.3847 −1.79257
\(534\) −30.6683 −1.32715
\(535\) 15.0210 0.649413
\(536\) −14.6472 −0.632664
\(537\) −13.3988 −0.578199
\(538\) −48.4701 −2.08970
\(539\) −18.1525 −0.781886
\(540\) −6.72027 −0.289194
\(541\) 34.0254 1.46287 0.731434 0.681913i \(-0.238852\pi\)
0.731434 + 0.681913i \(0.238852\pi\)
\(542\) 50.6632 2.17617
\(543\) 1.51389 0.0649674
\(544\) 22.4518 0.962614
\(545\) 35.4897 1.52021
\(546\) −17.8812 −0.765245
\(547\) 17.1964 0.735265 0.367633 0.929971i \(-0.380168\pi\)
0.367633 + 0.929971i \(0.380168\pi\)
\(548\) −10.2962 −0.439832
\(549\) 7.20954 0.307695
\(550\) −5.72689 −0.244196
\(551\) 0 0
\(552\) −1.78797 −0.0761009
\(553\) 5.41626 0.230323
\(554\) −41.0147 −1.74255
\(555\) −13.1737 −0.559194
\(556\) 16.2102 0.687466
\(557\) −29.6847 −1.25778 −0.628890 0.777494i \(-0.716490\pi\)
−0.628890 + 0.777494i \(0.716490\pi\)
\(558\) −17.7790 −0.752643
\(559\) −47.0823 −1.99137
\(560\) 5.65744 0.239070
\(561\) 10.7194 0.452575
\(562\) 18.9936 0.801198
\(563\) −27.8621 −1.17425 −0.587125 0.809497i \(-0.699740\pi\)
−0.587125 + 0.809497i \(0.699740\pi\)
\(564\) −1.17273 −0.0493810
\(565\) −28.5054 −1.19923
\(566\) −12.2410 −0.514527
\(567\) 1.35191 0.0567748
\(568\) 17.2436 0.723526
\(569\) −9.78846 −0.410354 −0.205177 0.978725i \(-0.565777\pi\)
−0.205177 + 0.978725i \(0.565777\pi\)
\(570\) 29.6056 1.24004
\(571\) −32.3247 −1.35275 −0.676374 0.736559i \(-0.736450\pi\)
−0.676374 + 0.736559i \(0.736450\pi\)
\(572\) 59.3831 2.48293
\(573\) −11.6187 −0.485376
\(574\) 20.3203 0.848151
\(575\) 0.755516 0.0315072
\(576\) −12.6191 −0.525796
\(577\) −43.6057 −1.81533 −0.907664 0.419698i \(-0.862136\pi\)
−0.907664 + 0.419698i \(0.862136\pi\)
\(578\) 16.8127 0.699316
\(579\) −6.16179 −0.256075
\(580\) 0 0
\(581\) −5.83259 −0.241977
\(582\) 8.33658 0.345562
\(583\) −46.8260 −1.93934
\(584\) 0.535152 0.0221447
\(585\) −14.4637 −0.598001
\(586\) 10.3430 0.427264
\(587\) −43.6633 −1.80218 −0.901088 0.433636i \(-0.857231\pi\)
−0.901088 + 0.433636i \(0.857231\pi\)
\(588\) −14.5027 −0.598079
\(589\) 45.7152 1.88366
\(590\) 18.7067 0.770144
\(591\) −2.52672 −0.103935
\(592\) −9.59684 −0.394428
\(593\) 24.0076 0.985873 0.492937 0.870065i \(-0.335923\pi\)
0.492937 + 0.870065i \(0.335923\pi\)
\(594\) −7.69212 −0.315612
\(595\) −9.89682 −0.405730
\(596\) −24.0690 −0.985904
\(597\) 13.2818 0.543589
\(598\) −13.4221 −0.548870
\(599\) 3.63501 0.148522 0.0742612 0.997239i \(-0.476340\pi\)
0.0742612 + 0.997239i \(0.476340\pi\)
\(600\) −1.31178 −0.0535533
\(601\) −15.2601 −0.622474 −0.311237 0.950332i \(-0.600743\pi\)
−0.311237 + 0.950332i \(0.600743\pi\)
\(602\) 23.1178 0.942213
\(603\) 8.31317 0.338538
\(604\) 33.4801 1.36229
\(605\) −3.15621 −0.128318
\(606\) 0.0925410 0.00375922
\(607\) −2.89009 −0.117305 −0.0586526 0.998278i \(-0.518680\pi\)
−0.0586526 + 0.998278i \(0.518680\pi\)
\(608\) 41.4267 1.68007
\(609\) 0 0
\(610\) 37.8730 1.53343
\(611\) −2.52402 −0.102111
\(612\) 8.56410 0.346183
\(613\) −4.40402 −0.177877 −0.0889384 0.996037i \(-0.528347\pi\)
−0.0889384 + 0.996037i \(0.528347\pi\)
\(614\) −25.7231 −1.03810
\(615\) 16.4366 0.662789
\(616\) −8.35960 −0.336818
\(617\) 6.95938 0.280174 0.140087 0.990139i \(-0.455262\pi\)
0.140087 + 0.990139i \(0.455262\pi\)
\(618\) −25.8199 −1.03863
\(619\) 13.1480 0.528461 0.264230 0.964460i \(-0.414882\pi\)
0.264230 + 0.964460i \(0.414882\pi\)
\(620\) −54.5125 −2.18928
\(621\) 1.01478 0.0407216
\(622\) −36.8302 −1.47676
\(623\) 18.9165 0.757873
\(624\) −10.5366 −0.421801
\(625\) −28.1683 −1.12673
\(626\) 26.2134 1.04770
\(627\) 19.7788 0.789890
\(628\) −34.3574 −1.37101
\(629\) 16.7882 0.669389
\(630\) 7.10182 0.282943
\(631\) −13.2938 −0.529217 −0.264609 0.964356i \(-0.585243\pi\)
−0.264609 + 0.964356i \(0.585243\pi\)
\(632\) −7.05896 −0.280790
\(633\) −8.30478 −0.330085
\(634\) 30.9828 1.23049
\(635\) 36.1763 1.43561
\(636\) −37.4108 −1.48343
\(637\) −31.2134 −1.23672
\(638\) 0 0
\(639\) −9.78678 −0.387159
\(640\) −31.0546 −1.22754
\(641\) 20.1373 0.795376 0.397688 0.917521i \(-0.369813\pi\)
0.397688 + 0.917521i \(0.369813\pi\)
\(642\) 13.7362 0.542126
\(643\) 44.1506 1.74113 0.870565 0.492053i \(-0.163753\pi\)
0.870565 + 0.492053i \(0.163753\pi\)
\(644\) 3.84660 0.151577
\(645\) 18.6995 0.736294
\(646\) −37.7284 −1.48440
\(647\) 18.2323 0.716784 0.358392 0.933571i \(-0.383325\pi\)
0.358392 + 0.933571i \(0.383325\pi\)
\(648\) −1.76193 −0.0692152
\(649\) 12.4976 0.490572
\(650\) −9.84742 −0.386248
\(651\) 10.9662 0.429800
\(652\) −22.2387 −0.870935
\(653\) −15.1966 −0.594688 −0.297344 0.954770i \(-0.596101\pi\)
−0.297344 + 0.954770i \(0.596101\pi\)
\(654\) 32.4543 1.26906
\(655\) −25.0385 −0.978336
\(656\) 11.9738 0.467499
\(657\) −0.303730 −0.0118496
\(658\) 1.23932 0.0483137
\(659\) −16.7811 −0.653699 −0.326849 0.945076i \(-0.605987\pi\)
−0.326849 + 0.945076i \(0.605987\pi\)
\(660\) −23.5850 −0.918046
\(661\) −1.34387 −0.0522705 −0.0261352 0.999658i \(-0.508320\pi\)
−0.0261352 + 0.999658i \(0.508320\pi\)
\(662\) −50.4627 −1.96129
\(663\) 18.4321 0.715844
\(664\) 7.60157 0.294998
\(665\) −18.2610 −0.708131
\(666\) −12.0470 −0.466811
\(667\) 0 0
\(668\) 36.2386 1.40211
\(669\) 25.0119 0.967017
\(670\) 43.6706 1.68714
\(671\) 25.3021 0.976778
\(672\) 9.93749 0.383347
\(673\) 11.9193 0.459457 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(674\) 5.60283 0.215813
\(675\) 0.744514 0.0286564
\(676\) 65.6592 2.52535
\(677\) 16.2061 0.622850 0.311425 0.950271i \(-0.399194\pi\)
0.311425 + 0.950271i \(0.399194\pi\)
\(678\) −26.0673 −1.00111
\(679\) −5.14208 −0.197335
\(680\) 12.8984 0.494633
\(681\) 3.04387 0.116641
\(682\) −62.3959 −2.38926
\(683\) −28.8129 −1.10249 −0.551247 0.834342i \(-0.685848\pi\)
−0.551247 + 0.834342i \(0.685848\pi\)
\(684\) 15.8019 0.604202
\(685\) 8.80124 0.336278
\(686\) 36.0676 1.37707
\(687\) −21.9086 −0.835864
\(688\) 13.6223 0.519345
\(689\) −80.5176 −3.06747
\(690\) 5.33082 0.202941
\(691\) −25.3535 −0.964492 −0.482246 0.876036i \(-0.660179\pi\)
−0.482246 + 0.876036i \(0.660179\pi\)
\(692\) 7.44031 0.282838
\(693\) 4.74457 0.180231
\(694\) 1.95481 0.0742037
\(695\) −13.8566 −0.525609
\(696\) 0 0
\(697\) −20.9463 −0.793399
\(698\) 1.65605 0.0626825
\(699\) 9.96464 0.376897
\(700\) 2.82215 0.106667
\(701\) 13.2108 0.498965 0.249482 0.968379i \(-0.419740\pi\)
0.249482 + 0.968379i \(0.419740\pi\)
\(702\) −13.2266 −0.499207
\(703\) 30.9765 1.16830
\(704\) −44.2873 −1.66914
\(705\) 1.00246 0.0377548
\(706\) −42.1710 −1.58713
\(707\) −0.0570801 −0.00214672
\(708\) 9.98469 0.375248
\(709\) −35.6702 −1.33962 −0.669811 0.742532i \(-0.733625\pi\)
−0.669811 + 0.742532i \(0.733625\pi\)
\(710\) −51.4118 −1.92945
\(711\) 4.00638 0.150251
\(712\) −24.6537 −0.923937
\(713\) 8.23153 0.308273
\(714\) −9.05034 −0.338701
\(715\) −50.7610 −1.89835
\(716\) −37.5685 −1.40400
\(717\) −7.78097 −0.290586
\(718\) −38.6072 −1.44081
\(719\) 2.02313 0.0754500 0.0377250 0.999288i \(-0.487989\pi\)
0.0377250 + 0.999288i \(0.487989\pi\)
\(720\) 4.18478 0.155958
\(721\) 15.9260 0.593114
\(722\) −27.9704 −1.04095
\(723\) −23.1891 −0.862414
\(724\) 4.24478 0.157756
\(725\) 0 0
\(726\) −2.88626 −0.107119
\(727\) −10.5449 −0.391091 −0.195545 0.980695i \(-0.562648\pi\)
−0.195545 + 0.980695i \(0.562648\pi\)
\(728\) −14.3744 −0.532750
\(729\) 1.00000 0.0370370
\(730\) −1.59555 −0.0590540
\(731\) −23.8301 −0.881389
\(732\) 20.2147 0.747156
\(733\) −19.0185 −0.702464 −0.351232 0.936289i \(-0.614237\pi\)
−0.351232 + 0.936289i \(0.614237\pi\)
\(734\) −8.32408 −0.307247
\(735\) 12.3969 0.457268
\(736\) 7.45934 0.274955
\(737\) 29.1754 1.07469
\(738\) 15.0308 0.553292
\(739\) −43.0359 −1.58310 −0.791550 0.611104i \(-0.790726\pi\)
−0.791550 + 0.611104i \(0.790726\pi\)
\(740\) −36.9376 −1.35785
\(741\) 34.0098 1.24938
\(742\) 39.5349 1.45137
\(743\) −3.32534 −0.121995 −0.0609974 0.998138i \(-0.519428\pi\)
−0.0609974 + 0.998138i \(0.519428\pi\)
\(744\) −14.2922 −0.523977
\(745\) 20.5743 0.753783
\(746\) 18.1756 0.665456
\(747\) −4.31434 −0.157853
\(748\) 30.0560 1.09896
\(749\) −8.47263 −0.309583
\(750\) −22.3549 −0.816284
\(751\) 20.4786 0.747274 0.373637 0.927575i \(-0.378111\pi\)
0.373637 + 0.927575i \(0.378111\pi\)
\(752\) 0.730275 0.0266304
\(753\) 1.18054 0.0430212
\(754\) 0 0
\(755\) −28.6190 −1.04155
\(756\) 3.79059 0.137862
\(757\) −8.42636 −0.306261 −0.153131 0.988206i \(-0.548936\pi\)
−0.153131 + 0.988206i \(0.548936\pi\)
\(758\) 19.5778 0.711097
\(759\) 3.56140 0.129271
\(760\) 23.7994 0.863295
\(761\) −26.1414 −0.947625 −0.473812 0.880626i \(-0.657123\pi\)
−0.473812 + 0.880626i \(0.657123\pi\)
\(762\) 33.0821 1.19844
\(763\) −20.0181 −0.724703
\(764\) −32.5773 −1.17861
\(765\) −7.32063 −0.264678
\(766\) −78.5817 −2.83927
\(767\) 21.4896 0.775945
\(768\) −3.16025 −0.114036
\(769\) 41.1420 1.48362 0.741808 0.670612i \(-0.233968\pi\)
0.741808 + 0.670612i \(0.233968\pi\)
\(770\) 24.9241 0.898203
\(771\) 15.9745 0.575307
\(772\) −17.2769 −0.621811
\(773\) 34.8669 1.25407 0.627037 0.778990i \(-0.284268\pi\)
0.627037 + 0.778990i \(0.284268\pi\)
\(774\) 17.1002 0.614653
\(775\) 6.03925 0.216936
\(776\) 6.70163 0.240575
\(777\) 7.43069 0.266574
\(778\) −24.8648 −0.891446
\(779\) −38.6489 −1.38474
\(780\) −40.5546 −1.45209
\(781\) −34.3471 −1.22904
\(782\) −6.79343 −0.242932
\(783\) 0 0
\(784\) 9.03096 0.322534
\(785\) 29.3688 1.04822
\(786\) −22.8970 −0.816708
\(787\) 15.9557 0.568759 0.284380 0.958712i \(-0.408212\pi\)
0.284380 + 0.958712i \(0.408212\pi\)
\(788\) −7.08463 −0.252379
\(789\) 14.6106 0.520150
\(790\) 21.0463 0.748792
\(791\) 16.0786 0.571688
\(792\) −6.18356 −0.219723
\(793\) 43.5072 1.54498
\(794\) 52.8991 1.87732
\(795\) 31.9789 1.13418
\(796\) 37.2407 1.31996
\(797\) 38.0735 1.34863 0.674316 0.738443i \(-0.264439\pi\)
0.674316 + 0.738443i \(0.264439\pi\)
\(798\) −16.6991 −0.591143
\(799\) −1.27750 −0.0451948
\(800\) 5.47271 0.193490
\(801\) 13.9924 0.494399
\(802\) −42.4248 −1.49807
\(803\) −1.06595 −0.0376167
\(804\) 23.3091 0.822050
\(805\) −3.28810 −0.115890
\(806\) −107.290 −3.77913
\(807\) 22.1146 0.778469
\(808\) 0.0743921 0.00261710
\(809\) −52.1314 −1.83284 −0.916421 0.400216i \(-0.868935\pi\)
−0.916421 + 0.400216i \(0.868935\pi\)
\(810\) 5.25319 0.184578
\(811\) 6.35528 0.223164 0.111582 0.993755i \(-0.464408\pi\)
0.111582 + 0.993755i \(0.464408\pi\)
\(812\) 0 0
\(813\) −23.1151 −0.810683
\(814\) −42.2793 −1.48189
\(815\) 19.0098 0.665883
\(816\) −5.33296 −0.186691
\(817\) −43.9698 −1.53831
\(818\) −25.0868 −0.877140
\(819\) 8.15831 0.285075
\(820\) 46.0864 1.60941
\(821\) 0.213766 0.00746047 0.00373024 0.999993i \(-0.498813\pi\)
0.00373024 + 0.999993i \(0.498813\pi\)
\(822\) 8.04847 0.280723
\(823\) 25.4184 0.886029 0.443015 0.896514i \(-0.353909\pi\)
0.443015 + 0.896514i \(0.353909\pi\)
\(824\) −20.7562 −0.723076
\(825\) 2.61290 0.0909695
\(826\) −10.5516 −0.367137
\(827\) 39.3267 1.36752 0.683761 0.729706i \(-0.260343\pi\)
0.683761 + 0.729706i \(0.260343\pi\)
\(828\) 2.84532 0.0988816
\(829\) 2.14332 0.0744405 0.0372203 0.999307i \(-0.488150\pi\)
0.0372203 + 0.999307i \(0.488150\pi\)
\(830\) −22.6640 −0.786680
\(831\) 18.7130 0.649146
\(832\) −76.1522 −2.64010
\(833\) −15.7983 −0.547378
\(834\) −12.6714 −0.438775
\(835\) −30.9769 −1.07200
\(836\) 55.4575 1.91804
\(837\) 8.11166 0.280380
\(838\) 46.2871 1.59896
\(839\) −15.6125 −0.539002 −0.269501 0.963000i \(-0.586859\pi\)
−0.269501 + 0.963000i \(0.586859\pi\)
\(840\) 5.70903 0.196980
\(841\) 0 0
\(842\) −60.3025 −2.07816
\(843\) −8.66587 −0.298468
\(844\) −23.2856 −0.801524
\(845\) −56.1257 −1.93078
\(846\) 0.916719 0.0315174
\(847\) 1.78027 0.0611708
\(848\) 23.2961 0.799992
\(849\) 5.58496 0.191675
\(850\) −4.98415 −0.170955
\(851\) 5.57767 0.191200
\(852\) −27.4410 −0.940112
\(853\) 36.4571 1.24827 0.624133 0.781318i \(-0.285452\pi\)
0.624133 + 0.781318i \(0.285452\pi\)
\(854\) −21.3624 −0.731007
\(855\) −13.5076 −0.461949
\(856\) 11.0423 0.377419
\(857\) −0.490297 −0.0167482 −0.00837412 0.999965i \(-0.502666\pi\)
−0.00837412 + 0.999965i \(0.502666\pi\)
\(858\) −46.4194 −1.58473
\(859\) −36.7217 −1.25293 −0.626465 0.779450i \(-0.715499\pi\)
−0.626465 + 0.779450i \(0.715499\pi\)
\(860\) 52.4313 1.78789
\(861\) −9.27114 −0.315960
\(862\) 4.27295 0.145537
\(863\) 40.0757 1.36419 0.682096 0.731263i \(-0.261069\pi\)
0.682096 + 0.731263i \(0.261069\pi\)
\(864\) 7.35072 0.250077
\(865\) −6.36001 −0.216247
\(866\) −17.1721 −0.583531
\(867\) −7.67081 −0.260514
\(868\) 30.7480 1.04365
\(869\) 14.0605 0.476971
\(870\) 0 0
\(871\) 50.1672 1.69985
\(872\) 26.0894 0.883499
\(873\) −3.80357 −0.128731
\(874\) −12.5348 −0.423996
\(875\) 13.7887 0.466143
\(876\) −0.851624 −0.0287737
\(877\) 29.2270 0.986925 0.493463 0.869767i \(-0.335731\pi\)
0.493463 + 0.869767i \(0.335731\pi\)
\(878\) −5.23811 −0.176778
\(879\) −4.71899 −0.159168
\(880\) 14.6867 0.495087
\(881\) 23.3679 0.787285 0.393643 0.919264i \(-0.371215\pi\)
0.393643 + 0.919264i \(0.371215\pi\)
\(882\) 11.3366 0.381724
\(883\) −22.0878 −0.743314 −0.371657 0.928370i \(-0.621210\pi\)
−0.371657 + 0.928370i \(0.621210\pi\)
\(884\) 51.6815 1.73824
\(885\) −8.53496 −0.286900
\(886\) −84.0539 −2.82384
\(887\) 16.2336 0.545072 0.272536 0.962146i \(-0.412138\pi\)
0.272536 + 0.962146i \(0.412138\pi\)
\(888\) −9.68436 −0.324986
\(889\) −20.4054 −0.684374
\(890\) 73.5049 2.46389
\(891\) 3.50954 0.117574
\(892\) 70.1305 2.34814
\(893\) −2.35717 −0.0788796
\(894\) 18.8146 0.629253
\(895\) 32.1138 1.07344
\(896\) 17.5164 0.585183
\(897\) 6.12385 0.204469
\(898\) 68.6992 2.29252
\(899\) 0 0
\(900\) 2.08753 0.0695843
\(901\) −40.7530 −1.35768
\(902\) 52.7512 1.75642
\(903\) −10.5475 −0.351000
\(904\) −20.9551 −0.696956
\(905\) −3.62846 −0.120614
\(906\) −26.1712 −0.869479
\(907\) −3.44533 −0.114400 −0.0572002 0.998363i \(-0.518217\pi\)
−0.0572002 + 0.998363i \(0.518217\pi\)
\(908\) 8.53466 0.283233
\(909\) −0.0422219 −0.00140041
\(910\) 42.8571 1.42070
\(911\) −18.9945 −0.629315 −0.314658 0.949205i \(-0.601890\pi\)
−0.314658 + 0.949205i \(0.601890\pi\)
\(912\) −9.84004 −0.325836
\(913\) −15.1413 −0.501105
\(914\) 70.7161 2.33908
\(915\) −17.2796 −0.571246
\(916\) −61.4290 −2.02967
\(917\) 14.1231 0.466385
\(918\) −6.69450 −0.220951
\(919\) −16.7391 −0.552171 −0.276086 0.961133i \(-0.589037\pi\)
−0.276086 + 0.961133i \(0.589037\pi\)
\(920\) 4.28535 0.141284
\(921\) 11.7362 0.386721
\(922\) 12.4450 0.409856
\(923\) −59.0600 −1.94398
\(924\) 13.3032 0.437644
\(925\) 4.09218 0.134550
\(926\) −50.9236 −1.67345
\(927\) 11.7804 0.386918
\(928\) 0 0
\(929\) −57.7025 −1.89316 −0.946578 0.322474i \(-0.895485\pi\)
−0.946578 + 0.322474i \(0.895485\pi\)
\(930\) 42.6121 1.39731
\(931\) −29.1500 −0.955352
\(932\) 27.9397 0.915194
\(933\) 16.8038 0.550133
\(934\) −26.4703 −0.866133
\(935\) −25.6920 −0.840219
\(936\) −10.6327 −0.347540
\(937\) −40.1165 −1.31055 −0.655274 0.755391i \(-0.727447\pi\)
−0.655274 + 0.755391i \(0.727447\pi\)
\(938\) −24.6326 −0.804282
\(939\) −11.9599 −0.390296
\(940\) 2.81078 0.0916774
\(941\) 37.2722 1.21504 0.607520 0.794305i \(-0.292165\pi\)
0.607520 + 0.794305i \(0.292165\pi\)
\(942\) 26.8569 0.875046
\(943\) −6.95916 −0.226622
\(944\) −6.21758 −0.202365
\(945\) −3.24021 −0.105404
\(946\) 60.0137 1.95121
\(947\) −27.4624 −0.892408 −0.446204 0.894931i \(-0.647224\pi\)
−0.446204 + 0.894931i \(0.647224\pi\)
\(948\) 11.2334 0.364845
\(949\) −1.83291 −0.0594988
\(950\) −9.19644 −0.298372
\(951\) −14.1360 −0.458390
\(952\) −7.27541 −0.235797
\(953\) 2.42289 0.0784851 0.0392425 0.999230i \(-0.487506\pi\)
0.0392425 + 0.999230i \(0.487506\pi\)
\(954\) 29.2438 0.946802
\(955\) 27.8473 0.901116
\(956\) −21.8169 −0.705610
\(957\) 0 0
\(958\) 66.8731 2.16057
\(959\) −4.96437 −0.160308
\(960\) 30.2451 0.976158
\(961\) 34.7991 1.12255
\(962\) −72.6995 −2.34393
\(963\) −6.26717 −0.201957
\(964\) −65.0196 −2.09414
\(965\) 14.7684 0.475412
\(966\) −3.00686 −0.0967443
\(967\) 37.8518 1.21723 0.608616 0.793465i \(-0.291725\pi\)
0.608616 + 0.793465i \(0.291725\pi\)
\(968\) −2.32021 −0.0745744
\(969\) 17.2136 0.552981
\(970\) −19.9809 −0.641548
\(971\) −12.8802 −0.413346 −0.206673 0.978410i \(-0.566264\pi\)
−0.206673 + 0.978410i \(0.566264\pi\)
\(972\) 2.80388 0.0899346
\(973\) 7.81584 0.250564
\(974\) 51.5611 1.65212
\(975\) 4.49290 0.143888
\(976\) −12.5879 −0.402929
\(977\) 1.41211 0.0451775 0.0225887 0.999745i \(-0.492809\pi\)
0.0225887 + 0.999745i \(0.492809\pi\)
\(978\) 17.3839 0.555874
\(979\) 49.1070 1.56947
\(980\) 34.7595 1.11035
\(981\) −14.8073 −0.472760
\(982\) −60.4683 −1.92962
\(983\) 12.0413 0.384059 0.192030 0.981389i \(-0.438493\pi\)
0.192030 + 0.981389i \(0.438493\pi\)
\(984\) 12.0830 0.385192
\(985\) 6.05597 0.192959
\(986\) 0 0
\(987\) −0.565441 −0.0179982
\(988\) 95.3595 3.03379
\(989\) −7.91726 −0.251754
\(990\) 18.4363 0.585943
\(991\) −44.9003 −1.42630 −0.713152 0.701009i \(-0.752733\pi\)
−0.713152 + 0.701009i \(0.752733\pi\)
\(992\) 59.6266 1.89315
\(993\) 23.0236 0.730633
\(994\) 28.9990 0.919792
\(995\) −31.8335 −1.00919
\(996\) −12.0969 −0.383305
\(997\) 18.2114 0.576762 0.288381 0.957516i \(-0.406883\pi\)
0.288381 + 0.957516i \(0.406883\pi\)
\(998\) 84.0938 2.66194
\(999\) 5.49645 0.173900
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.r.1.1 9
3.2 odd 2 7569.2.a.bj.1.9 9
29.23 even 7 87.2.g.a.7.3 18
29.24 even 7 87.2.g.a.25.3 yes 18
29.28 even 2 2523.2.a.o.1.9 9
87.23 odd 14 261.2.k.c.181.1 18
87.53 odd 14 261.2.k.c.199.1 18
87.86 odd 2 7569.2.a.bm.1.1 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.a.7.3 18 29.23 even 7
87.2.g.a.25.3 yes 18 29.24 even 7
261.2.k.c.181.1 18 87.23 odd 14
261.2.k.c.199.1 18 87.53 odd 14
2523.2.a.o.1.9 9 29.28 even 2
2523.2.a.r.1.1 9 1.1 even 1 trivial
7569.2.a.bj.1.9 9 3.2 odd 2
7569.2.a.bm.1.1 9 87.86 odd 2