Properties

Label 2523.1.j.b
Level $2523$
Weight $1$
Character orbit 2523.j
Analytic conductor $1.259$
Analytic rank $0$
Dimension $12$
Projective image $D_{3}$
CM discriminant -87
Inner twists $24$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,1,Mod(605,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.605");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2523.j (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.25914102687\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{28})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.87.1
Artin image: $S_3\times C_{28}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{84} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{28}^{5} q^{2} + \zeta_{28}^{11} q^{3} - \zeta_{28}^{2} q^{6} - \zeta_{28}^{4} q^{7} + \zeta_{28} q^{8} - \zeta_{28}^{8} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{28}^{5} q^{2} + \zeta_{28}^{11} q^{3} - \zeta_{28}^{2} q^{6} - \zeta_{28}^{4} q^{7} + \zeta_{28} q^{8} - \zeta_{28}^{8} q^{9} + \zeta_{28}^{13} q^{11} - \zeta_{28}^{6} q^{13} - \zeta_{28}^{9} q^{14} + \zeta_{28}^{6} q^{16} - \zeta_{28}^{7} q^{17} - \zeta_{28}^{13} q^{18} + \zeta_{28} q^{21} - \zeta_{28}^{4} q^{22} + \zeta_{28}^{12} q^{24} - \zeta_{28}^{10} q^{25} - \zeta_{28}^{11} q^{26} + \zeta_{28}^{5} q^{27} - \zeta_{28}^{10} q^{33} - \zeta_{28}^{12} q^{34} + \zeta_{28}^{3} q^{39} - 2 \zeta_{28}^{7} q^{41} + \zeta_{28}^{6} q^{42} - \zeta_{28}^{13} q^{47} - \zeta_{28}^{3} q^{48} + \zeta_{28} q^{50} + \zeta_{28}^{4} q^{51} + \zeta_{28}^{10} q^{54} - \zeta_{28}^{5} q^{56} + \zeta_{28}^{12} q^{63} + \zeta_{28}^{2} q^{64} + \zeta_{28} q^{66} + \zeta_{28}^{8} q^{67} - \zeta_{28}^{9} q^{72} + \zeta_{28}^{7} q^{75} + \zeta_{28}^{3} q^{77} + \zeta_{28}^{8} q^{78} - \zeta_{28}^{2} q^{81} - 2 \zeta_{28}^{12} q^{82} - q^{88} + \zeta_{28}^{5} q^{89} + \zeta_{28}^{10} q^{91} + \zeta_{28}^{4} q^{94} + \zeta_{28}^{7} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{6} + 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 2 q^{6} + 2 q^{7} + 2 q^{9} - 2 q^{13} + 2 q^{16} + 2 q^{22} - 2 q^{24} - 2 q^{25} - 2 q^{33} + 2 q^{34} + 2 q^{42} - 2 q^{51} + 2 q^{54} - 2 q^{63} + 2 q^{64} - 2 q^{67} - 2 q^{78} - 2 q^{81} + 4 q^{82} - 12 q^{88} + 2 q^{91} - 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2523\mathbb{Z}\right)^\times\).

\(n\) \(842\) \(1684\)
\(\chi(n)\) \(-1\) \(-\zeta_{28}^{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
605.1
0.781831 + 0.623490i
−0.781831 0.623490i
−0.974928 + 0.222521i
0.974928 0.222521i
−0.974928 0.222521i
0.974928 + 0.222521i
−0.433884 + 0.900969i
0.433884 0.900969i
−0.433884 0.900969i
0.433884 + 0.900969i
0.781831 0.623490i
−0.781831 + 0.623490i
−0.974928 0.222521i 0.433884 + 0.900969i 0 0 −0.222521 0.974928i 0.900969 0.433884i 0.781831 + 0.623490i −0.623490 + 0.781831i 0
605.2 0.974928 + 0.222521i −0.433884 0.900969i 0 0 −0.222521 0.974928i 0.900969 0.433884i −0.781831 0.623490i −0.623490 + 0.781831i 0
1031.1 −0.433884 + 0.900969i 0.781831 + 0.623490i 0 0 −0.900969 + 0.433884i −0.623490 + 0.781831i −0.974928 + 0.222521i 0.222521 + 0.974928i 0
1031.2 0.433884 0.900969i −0.781831 0.623490i 0 0 −0.900969 + 0.433884i −0.623490 + 0.781831i 0.974928 0.222521i 0.222521 + 0.974928i 0
1412.1 −0.433884 0.900969i 0.781831 0.623490i 0 0 −0.900969 0.433884i −0.623490 0.781831i −0.974928 0.222521i 0.222521 0.974928i 0
1412.2 0.433884 + 0.900969i −0.781831 + 0.623490i 0 0 −0.900969 0.433884i −0.623490 0.781831i 0.974928 + 0.222521i 0.222521 0.974928i 0
1415.1 −0.781831 0.623490i −0.974928 0.222521i 0 0 0.623490 + 0.781831i 0.222521 0.974928i −0.433884 + 0.900969i 0.900969 + 0.433884i 0
1415.2 0.781831 + 0.623490i 0.974928 + 0.222521i 0 0 0.623490 + 0.781831i 0.222521 0.974928i 0.433884 0.900969i 0.900969 + 0.433884i 0
1619.1 −0.781831 + 0.623490i −0.974928 + 0.222521i 0 0 0.623490 0.781831i 0.222521 + 0.974928i −0.433884 0.900969i 0.900969 0.433884i 0
1619.2 0.781831 0.623490i 0.974928 0.222521i 0 0 0.623490 0.781831i 0.222521 + 0.974928i 0.433884 + 0.900969i 0.900969 0.433884i 0
2327.1 −0.974928 + 0.222521i 0.433884 0.900969i 0 0 −0.222521 + 0.974928i 0.900969 + 0.433884i 0.781831 0.623490i −0.623490 0.781831i 0
2327.2 0.974928 0.222521i −0.433884 + 0.900969i 0 0 −0.222521 + 0.974928i 0.900969 + 0.433884i −0.781831 + 0.623490i −0.623490 0.781831i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 605.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
87.d odd 2 1 CM by \(\Q(\sqrt{-87}) \)
3.b odd 2 1 inner
29.b even 2 1 inner
29.d even 7 5 inner
29.e even 14 5 inner
87.h odd 14 5 inner
87.j odd 14 5 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2523.1.j.b 12
3.b odd 2 1 inner 2523.1.j.b 12
29.b even 2 1 inner 2523.1.j.b 12
29.c odd 4 1 2523.1.h.a 6
29.c odd 4 1 2523.1.h.b 6
29.d even 7 1 2523.1.b.b 2
29.d even 7 5 inner 2523.1.j.b 12
29.e even 14 1 2523.1.b.b 2
29.e even 14 5 inner 2523.1.j.b 12
29.f odd 28 1 87.1.d.a 1
29.f odd 28 1 87.1.d.b yes 1
29.f odd 28 5 2523.1.h.a 6
29.f odd 28 5 2523.1.h.b 6
87.d odd 2 1 CM 2523.1.j.b 12
87.f even 4 1 2523.1.h.a 6
87.f even 4 1 2523.1.h.b 6
87.h odd 14 1 2523.1.b.b 2
87.h odd 14 5 inner 2523.1.j.b 12
87.j odd 14 1 2523.1.b.b 2
87.j odd 14 5 inner 2523.1.j.b 12
87.k even 28 1 87.1.d.a 1
87.k even 28 1 87.1.d.b yes 1
87.k even 28 5 2523.1.h.a 6
87.k even 28 5 2523.1.h.b 6
116.l even 28 1 1392.1.i.a 1
116.l even 28 1 1392.1.i.b 1
145.o even 28 1 2175.1.b.a 2
145.o even 28 1 2175.1.b.b 2
145.s odd 28 1 2175.1.h.a 1
145.s odd 28 1 2175.1.h.b 1
145.t even 28 1 2175.1.b.a 2
145.t even 28 1 2175.1.b.b 2
261.w odd 84 2 2349.1.h.a 2
261.w odd 84 2 2349.1.h.b 2
261.x even 84 2 2349.1.h.a 2
261.x even 84 2 2349.1.h.b 2
348.v odd 28 1 1392.1.i.a 1
348.v odd 28 1 1392.1.i.b 1
435.bc odd 28 1 2175.1.b.a 2
435.bc odd 28 1 2175.1.b.b 2
435.bk even 28 1 2175.1.h.a 1
435.bk even 28 1 2175.1.h.b 1
435.bn odd 28 1 2175.1.b.a 2
435.bn odd 28 1 2175.1.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
87.1.d.a 1 29.f odd 28 1
87.1.d.a 1 87.k even 28 1
87.1.d.b yes 1 29.f odd 28 1
87.1.d.b yes 1 87.k even 28 1
1392.1.i.a 1 116.l even 28 1
1392.1.i.a 1 348.v odd 28 1
1392.1.i.b 1 116.l even 28 1
1392.1.i.b 1 348.v odd 28 1
2175.1.b.a 2 145.o even 28 1
2175.1.b.a 2 145.t even 28 1
2175.1.b.a 2 435.bc odd 28 1
2175.1.b.a 2 435.bn odd 28 1
2175.1.b.b 2 145.o even 28 1
2175.1.b.b 2 145.t even 28 1
2175.1.b.b 2 435.bc odd 28 1
2175.1.b.b 2 435.bn odd 28 1
2175.1.h.a 1 145.s odd 28 1
2175.1.h.a 1 435.bk even 28 1
2175.1.h.b 1 145.s odd 28 1
2175.1.h.b 1 435.bk even 28 1
2349.1.h.a 2 261.w odd 84 2
2349.1.h.a 2 261.x even 84 2
2349.1.h.b 2 261.w odd 84 2
2349.1.h.b 2 261.x even 84 2
2523.1.b.b 2 29.d even 7 1
2523.1.b.b 2 29.e even 14 1
2523.1.b.b 2 87.h odd 14 1
2523.1.b.b 2 87.j odd 14 1
2523.1.h.a 6 29.c odd 4 1
2523.1.h.a 6 29.f odd 28 5
2523.1.h.a 6 87.f even 4 1
2523.1.h.a 6 87.k even 28 5
2523.1.h.b 6 29.c odd 4 1
2523.1.h.b 6 29.f odd 28 5
2523.1.h.b 6 87.f even 4 1
2523.1.h.b 6 87.k even 28 5
2523.1.j.b 12 1.a even 1 1 trivial
2523.1.j.b 12 3.b odd 2 1 inner
2523.1.j.b 12 29.b even 2 1 inner
2523.1.j.b 12 29.d even 7 5 inner
2523.1.j.b 12 29.e even 14 5 inner
2523.1.j.b 12 87.d odd 2 1 CM
2523.1.j.b 12 87.h odd 14 5 inner
2523.1.j.b 12 87.j odd 14 5 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2523, [\chi])\):

\( T_{2}^{12} - T_{2}^{10} + T_{2}^{8} - T_{2}^{6} + T_{2}^{4} - T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - T^{10} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{12} - T^{10} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{12} \) Copy content Toggle raw display
$7$ \( (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{12} - T^{10} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( (T^{6} + T^{5} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$19$ \( T^{12} \) Copy content Toggle raw display
$23$ \( T^{12} \) Copy content Toggle raw display
$29$ \( T^{12} \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( T^{12} \) Copy content Toggle raw display
$41$ \( (T^{2} + 4)^{6} \) Copy content Toggle raw display
$43$ \( T^{12} \) Copy content Toggle raw display
$47$ \( T^{12} - T^{10} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{12} \) Copy content Toggle raw display
$59$ \( T^{12} \) Copy content Toggle raw display
$61$ \( T^{12} \) Copy content Toggle raw display
$67$ \( (T^{6} + T^{5} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{12} \) Copy content Toggle raw display
$73$ \( T^{12} \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( T^{12} \) Copy content Toggle raw display
$89$ \( T^{12} - T^{10} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( T^{12} \) Copy content Toggle raw display
show more
show less