Properties

Label 2523.1.h.c
Level $2523$
Weight $1$
Character orbit 2523.h
Analytic conductor $1.259$
Analytic rank $0$
Dimension $24$
Projective image $D_{5}$
CM discriminant -3
Inner twists $24$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,1,Mod(236,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.236");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2523.h (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.25914102687\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Coefficient field: 24.0.326829122755018756096000000000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - 3 x^{22} + 8 x^{20} - 21 x^{18} + 55 x^{16} - 144 x^{14} + 377 x^{12} - 144 x^{10} + 55 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.6365529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{23}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} - \beta_{13} q^{4} + ( - \beta_{17} - \beta_{16}) q^{7} + \beta_{5} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{3} q^{3} - \beta_{13} q^{4} + ( - \beta_{17} - \beta_{16}) q^{7} + \beta_{5} q^{9} + \beta_{15} q^{12} + (\beta_{20} + \beta_{16} + \cdots + \beta_{2}) q^{13}+ \cdots + ( - \beta_{23} - \beta_{21} + \cdots - \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} + 2 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 4 q^{4} + 2 q^{7} + 4 q^{9} - 2 q^{13} - 4 q^{16} - 4 q^{25} + 12 q^{28} - 4 q^{36} - 2 q^{49} + 2 q^{52} + 12 q^{57} - 2 q^{63} + 4 q^{64} - 2 q^{67} - 4 q^{81} - 4 q^{91} - 2 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{24} - 3 x^{22} + 8 x^{20} - 21 x^{18} + 55 x^{16} - 144 x^{14} + 377 x^{12} - 144 x^{10} + 55 x^{8} + \cdots + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{14} + 233 ) / 377 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{15} + 610\nu ) / 377 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{16} - 610\nu^{2} ) / 377 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{16} + 987\nu^{2} ) / 377 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{17} + 987\nu^{3} ) / 377 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -2\nu^{17} - 1597\nu^{3} ) / 377 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -2\nu^{18} - 1597\nu^{4} ) / 377 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -3\nu^{18} - 2584\nu^{4} ) / 377 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -3\nu^{19} - 2584\nu^{5} ) / 377 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -5\nu^{19} - 4181\nu^{5} ) / 377 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 5\nu^{20} + 4181\nu^{6} ) / 377 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -8\nu^{20} - 6765\nu^{6} ) / 377 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( -8\nu^{21} - 6765\nu^{7} ) / 377 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( \nu^{21} + 842\nu^{7} ) / 29 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( \nu^{22} + 842\nu^{8} ) / 29 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 21\nu^{22} + 17711\nu^{8} ) / 377 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 21\nu^{23} + 17711\nu^{9} ) / 377 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 34\nu^{23} + 28657\nu^{9} ) / 377 \) Copy content Toggle raw display
\(\beta_{20}\)\(=\) \( ( - 102 \nu^{22} + 272 \nu^{20} - 714 \nu^{18} + 1870 \nu^{16} - 4896 \nu^{14} + 12818 \nu^{12} + \cdots + 34 ) / 377 \) Copy content Toggle raw display
\(\beta_{21}\)\(=\) \( ( - 165 \nu^{23} + 440 \nu^{21} - 1155 \nu^{19} + 3025 \nu^{17} - 7920 \nu^{15} + 20735 \nu^{13} + \cdots + 55 \nu ) / 377 \) Copy content Toggle raw display
\(\beta_{22}\)\(=\) \( ( - 144 \nu^{22} + 432 \nu^{20} - 1152 \nu^{18} + 3024 \nu^{16} - 7920 \nu^{14} + 20735 \nu^{12} + \cdots + 432 ) / 377 \) Copy content Toggle raw display
\(\beta_{23}\)\(=\) \( ( - 267 \nu^{23} + 712 \nu^{21} - 1869 \nu^{19} + 4895 \nu^{17} - 12816 \nu^{15} + 33553 \nu^{13} + \cdots + 89 \nu ) / 377 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + 2\beta_{6} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{9} + 3\beta_{8} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{11} - 5\beta_{10} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -5\beta_{13} - 8\beta_{12} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -8\beta_{15} - 13\beta_{14} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 13\beta_{17} - 21\beta_{16} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -21\beta_{19} + 34\beta_{18} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -34\beta_{22} + 55\beta_{20} + 34\beta_{17} + 34\beta_{13} - 34\beta_{9} - 34\beta_{5} + 34 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 55\beta_{23} - 89\beta_{21} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -89\beta_{22} + 144\beta_{20} + 144\beta_{16} - 144\beta_{12} - 144\beta_{8} + 144\beta_{4} + 144\beta_{2} \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 144 \beta_{23} - 233 \beta_{21} + 144 \beta_{19} - 233 \beta_{18} - 144 \beta_{15} - 233 \beta_{14} + \cdots - 233 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 377\beta_{2} - 233 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 377\beta_{3} - 610\beta_1 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( -610\beta_{5} - 987\beta_{4} \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( -987\beta_{7} - 1597\beta_{6} \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 1597\beta_{9} - 2584\beta_{8} \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( -2584\beta_{11} + 4181\beta_{10} \) Copy content Toggle raw display
\(\nu^{20}\)\(=\) \( 4181\beta_{13} + 6765\beta_{12} \) Copy content Toggle raw display
\(\nu^{21}\)\(=\) \( 6765\beta_{15} + 10946\beta_{14} \) Copy content Toggle raw display
\(\nu^{22}\)\(=\) \( -10946\beta_{17} + 17711\beta_{16} \) Copy content Toggle raw display
\(\nu^{23}\)\(=\) \( 17711\beta_{19} - 28657\beta_{18} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2523\mathbb{Z}\right)^\times\).

\(n\) \(842\) \(1684\)
\(\chi(n)\) \(-1\) \(-\beta_{13}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
236.1
0.702039 + 1.45780i
−0.268155 0.556829i
−0.702039 1.45780i
0.268155 + 0.556829i
0.702039 1.45780i
−0.268155 + 0.556829i
−0.702039 + 1.45780i
0.268155 0.556829i
1.57747 0.360046i
−0.602539 + 0.137526i
−1.57747 + 0.360046i
0.602539 0.137526i
1.57747 + 0.360046i
−0.602539 0.137526i
−1.57747 0.360046i
0.602539 + 0.137526i
−0.483198 + 0.385338i
1.26503 1.00883i
0.483198 0.385338i
−1.26503 + 1.00883i
0 −0.433884 0.900969i 0.900969 + 0.433884i 0 0 −0.556829 + 0.268155i 0 −0.623490 + 0.781831i 0
236.2 0 −0.433884 0.900969i 0.900969 + 0.433884i 0 0 1.45780 0.702039i 0 −0.623490 + 0.781831i 0
236.3 0 0.433884 + 0.900969i 0.900969 + 0.433884i 0 0 −0.556829 + 0.268155i 0 −0.623490 + 0.781831i 0
236.4 0 0.433884 + 0.900969i 0.900969 + 0.433884i 0 0 1.45780 0.702039i 0 −0.623490 + 0.781831i 0
1037.1 0 −0.433884 + 0.900969i 0.900969 0.433884i 0 0 −0.556829 0.268155i 0 −0.623490 0.781831i 0
1037.2 0 −0.433884 + 0.900969i 0.900969 0.433884i 0 0 1.45780 + 0.702039i 0 −0.623490 0.781831i 0
1037.3 0 0.433884 0.900969i 0.900969 0.433884i 0 0 −0.556829 0.268155i 0 −0.623490 0.781831i 0
1037.4 0 0.433884 0.900969i 0.900969 0.433884i 0 0 1.45780 + 0.702039i 0 −0.623490 0.781831i 0
1745.1 0 −0.974928 + 0.222521i 0.222521 0.974928i 0 0 −0.137526 0.602539i 0 0.900969 0.433884i 0
1745.2 0 −0.974928 + 0.222521i 0.222521 0.974928i 0 0 0.360046 + 1.57747i 0 0.900969 0.433884i 0
1745.3 0 0.974928 0.222521i 0.222521 0.974928i 0 0 −0.137526 0.602539i 0 0.900969 0.433884i 0
1745.4 0 0.974928 0.222521i 0.222521 0.974928i 0 0 0.360046 + 1.57747i 0 0.900969 0.433884i 0
1949.1 0 −0.974928 0.222521i 0.222521 + 0.974928i 0 0 −0.137526 + 0.602539i 0 0.900969 + 0.433884i 0
1949.2 0 −0.974928 0.222521i 0.222521 + 0.974928i 0 0 0.360046 1.57747i 0 0.900969 + 0.433884i 0
1949.3 0 0.974928 + 0.222521i 0.222521 + 0.974928i 0 0 −0.137526 + 0.602539i 0 0.900969 + 0.433884i 0
1949.4 0 0.974928 + 0.222521i 0.222521 + 0.974928i 0 0 0.360046 1.57747i 0 0.900969 + 0.433884i 0
1952.1 0 −0.781831 + 0.623490i −0.623490 + 0.781831i 0 0 −1.00883 1.26503i 0 0.222521 0.974928i 0
1952.2 0 −0.781831 + 0.623490i −0.623490 + 0.781831i 0 0 0.385338 + 0.483198i 0 0.222521 0.974928i 0
1952.3 0 0.781831 0.623490i −0.623490 + 0.781831i 0 0 −1.00883 1.26503i 0 0.222521 0.974928i 0
1952.4 0 0.781831 0.623490i −0.623490 + 0.781831i 0 0 0.385338 + 0.483198i 0 0.222521 0.974928i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 236.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
29.b even 2 1 inner
29.d even 7 5 inner
29.e even 14 5 inner
87.d odd 2 1 inner
87.h odd 14 5 inner
87.j odd 14 5 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2523.1.h.c 24
3.b odd 2 1 CM 2523.1.h.c 24
29.b even 2 1 inner 2523.1.h.c 24
29.c odd 4 1 2523.1.j.a 12
29.c odd 4 1 2523.1.j.c 12
29.d even 7 1 2523.1.d.a 4
29.d even 7 5 inner 2523.1.h.c 24
29.e even 14 1 2523.1.d.a 4
29.e even 14 5 inner 2523.1.h.c 24
29.f odd 28 1 2523.1.b.a 2
29.f odd 28 1 2523.1.b.c yes 2
29.f odd 28 5 2523.1.j.a 12
29.f odd 28 5 2523.1.j.c 12
87.d odd 2 1 inner 2523.1.h.c 24
87.f even 4 1 2523.1.j.a 12
87.f even 4 1 2523.1.j.c 12
87.h odd 14 1 2523.1.d.a 4
87.h odd 14 5 inner 2523.1.h.c 24
87.j odd 14 1 2523.1.d.a 4
87.j odd 14 5 inner 2523.1.h.c 24
87.k even 28 1 2523.1.b.a 2
87.k even 28 1 2523.1.b.c yes 2
87.k even 28 5 2523.1.j.a 12
87.k even 28 5 2523.1.j.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2523.1.b.a 2 29.f odd 28 1
2523.1.b.a 2 87.k even 28 1
2523.1.b.c yes 2 29.f odd 28 1
2523.1.b.c yes 2 87.k even 28 1
2523.1.d.a 4 29.d even 7 1
2523.1.d.a 4 29.e even 14 1
2523.1.d.a 4 87.h odd 14 1
2523.1.d.a 4 87.j odd 14 1
2523.1.h.c 24 1.a even 1 1 trivial
2523.1.h.c 24 3.b odd 2 1 CM
2523.1.h.c 24 29.b even 2 1 inner
2523.1.h.c 24 29.d even 7 5 inner
2523.1.h.c 24 29.e even 14 5 inner
2523.1.h.c 24 87.d odd 2 1 inner
2523.1.h.c 24 87.h odd 14 5 inner
2523.1.h.c 24 87.j odd 14 5 inner
2523.1.j.a 12 29.c odd 4 1
2523.1.j.a 12 29.f odd 28 5
2523.1.j.a 12 87.f even 4 1
2523.1.j.a 12 87.k even 28 5
2523.1.j.c 12 29.c odd 4 1
2523.1.j.c 12 29.f odd 28 5
2523.1.j.c 12 87.f even 4 1
2523.1.j.c 12 87.k even 28 5

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{1}^{\mathrm{new}}(2523, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{24} \) Copy content Toggle raw display
$3$ \( (T^{12} - T^{10} + T^{8} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{24} \) Copy content Toggle raw display
$7$ \( (T^{12} - T^{11} + 2 T^{10} + \cdots + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{24} \) Copy content Toggle raw display
$13$ \( (T^{12} + T^{11} + 2 T^{10} + \cdots + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{24} \) Copy content Toggle raw display
$19$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{24} \) Copy content Toggle raw display
$29$ \( T^{24} \) Copy content Toggle raw display
$31$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{24} \) Copy content Toggle raw display
$43$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{24} \) Copy content Toggle raw display
$53$ \( T^{24} \) Copy content Toggle raw display
$59$ \( T^{24} \) Copy content Toggle raw display
$61$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( (T^{12} + T^{11} + 2 T^{10} + \cdots + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{24} \) Copy content Toggle raw display
$73$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{24} \) Copy content Toggle raw display
$89$ \( T^{24} \) Copy content Toggle raw display
$97$ \( T^{24} - 3 T^{22} + \cdots + 1 \) Copy content Toggle raw display
show more
show less