Properties

Label 2523.1.h.a.236.1
Level $2523$
Weight $1$
Character 2523.236
Analytic conductor $1.259$
Analytic rank $0$
Dimension $6$
Projective image $D_{3}$
CM discriminant -87
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2523,1,Mod(236,2523)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2523, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2523.236");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2523.h (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.25914102687\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.87.1
Artin image: $S_3\times C_{14}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{42} - \cdots)\)

Embedding invariants

Embedding label 236.1
Root \(0.222521 + 0.974928i\) of defining polynomial
Character \(\chi\) \(=\) 2523.236
Dual form 2523.1.h.a.1037.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.222521 + 0.974928i) q^{2} +(0.900969 - 0.433884i) q^{3} +(0.222521 + 0.974928i) q^{6} +(0.900969 - 0.433884i) q^{7} +(-0.623490 + 0.781831i) q^{8} +(0.623490 - 0.781831i) q^{9} +O(q^{10})\) \(q+(-0.222521 + 0.974928i) q^{2} +(0.900969 - 0.433884i) q^{3} +(0.222521 + 0.974928i) q^{6} +(0.900969 - 0.433884i) q^{7} +(-0.623490 + 0.781831i) q^{8} +(0.623490 - 0.781831i) q^{9} +(0.623490 + 0.781831i) q^{11} +(-0.623490 - 0.781831i) q^{13} +(0.222521 + 0.974928i) q^{14} +(-0.623490 - 0.781831i) q^{16} +1.00000 q^{17} +(0.623490 + 0.781831i) q^{18} +(0.623490 - 0.781831i) q^{21} +(-0.900969 + 0.433884i) q^{22} +(-0.222521 + 0.974928i) q^{24} +(-0.900969 - 0.433884i) q^{25} +(0.900969 - 0.433884i) q^{26} +(0.222521 - 0.974928i) q^{27} +(0.900969 + 0.433884i) q^{33} +(-0.222521 + 0.974928i) q^{34} +(-0.900969 - 0.433884i) q^{39} -2.00000 q^{41} +(0.623490 + 0.781831i) q^{42} +(0.623490 + 0.781831i) q^{47} +(-0.900969 - 0.433884i) q^{48} +(0.623490 - 0.781831i) q^{50} +(0.900969 - 0.433884i) q^{51} +(0.900969 + 0.433884i) q^{54} +(-0.222521 + 0.974928i) q^{56} +(0.222521 - 0.974928i) q^{63} +(-0.222521 - 0.974928i) q^{64} +(-0.623490 + 0.781831i) q^{66} +(-0.623490 + 0.781831i) q^{67} +(0.222521 + 0.974928i) q^{72} -1.00000 q^{75} +(0.900969 + 0.433884i) q^{77} +(0.623490 - 0.781831i) q^{78} +(-0.222521 - 0.974928i) q^{81} +(0.445042 - 1.94986i) q^{82} -1.00000 q^{88} +(-0.222521 + 0.974928i) q^{89} +(-0.900969 - 0.433884i) q^{91} +(-0.900969 + 0.433884i) q^{94} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + q^{3} + q^{6} + q^{7} + q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} + q^{3} + q^{6} + q^{7} + q^{8} - q^{9} - q^{11} + q^{13} + q^{14} + q^{16} + 6 q^{17} - q^{18} - q^{21} - q^{22} - q^{24} - q^{25} + q^{26} + q^{27} + q^{33} - q^{34} - q^{39} - 12 q^{41} - q^{42} - q^{47} - q^{48} - q^{50} + q^{51} + q^{54} - q^{56} + q^{63} - q^{64} + q^{66} + q^{67} + q^{72} - 6 q^{75} + q^{77} - q^{78} - q^{81} + 2 q^{82} - 6 q^{88} - q^{89} - q^{91} - q^{94} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2523\mathbb{Z}\right)^\times\).

\(n\) \(842\) \(1684\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.222521 + 0.974928i −0.222521 + 0.974928i 0.733052 + 0.680173i \(0.238095\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(3\) 0.900969 0.433884i 0.900969 0.433884i
\(4\) 0 0
\(5\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(6\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(7\) 0.900969 0.433884i 0.900969 0.433884i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(8\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(9\) 0.623490 0.781831i 0.623490 0.781831i
\(10\) 0 0
\(11\) 0.623490 + 0.781831i 0.623490 + 0.781831i 0.988831 0.149042i \(-0.0476190\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(12\) 0 0
\(13\) −0.623490 0.781831i −0.623490 0.781831i 0.365341 0.930874i \(-0.380952\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(14\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(15\) 0 0
\(16\) −0.623490 0.781831i −0.623490 0.781831i
\(17\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(19\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(20\) 0 0
\(21\) 0.623490 0.781831i 0.623490 0.781831i
\(22\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(23\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(24\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(25\) −0.900969 0.433884i −0.900969 0.433884i
\(26\) 0.900969 0.433884i 0.900969 0.433884i
\(27\) 0.222521 0.974928i 0.222521 0.974928i
\(28\) 0 0
\(29\) 0 0
\(30\) 0 0
\(31\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(32\) 0 0
\(33\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(34\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(38\) 0 0
\(39\) −0.900969 0.433884i −0.900969 0.433884i
\(40\) 0 0
\(41\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(42\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(43\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.623490 + 0.781831i 0.623490 + 0.781831i 0.988831 0.149042i \(-0.0476190\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(48\) −0.900969 0.433884i −0.900969 0.433884i
\(49\) 0 0
\(50\) 0.623490 0.781831i 0.623490 0.781831i
\(51\) 0.900969 0.433884i 0.900969 0.433884i
\(52\) 0 0
\(53\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(54\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(55\) 0 0
\(56\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(62\) 0 0
\(63\) 0.222521 0.974928i 0.222521 0.974928i
\(64\) −0.222521 0.974928i −0.222521 0.974928i
\(65\) 0 0
\(66\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(67\) −0.623490 + 0.781831i −0.623490 + 0.781831i −0.988831 0.149042i \(-0.952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(72\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(73\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(74\) 0 0
\(75\) −1.00000 −1.00000
\(76\) 0 0
\(77\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(78\) 0.623490 0.781831i 0.623490 0.781831i
\(79\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(80\) 0 0
\(81\) −0.222521 0.974928i −0.222521 0.974928i
\(82\) 0.445042 1.94986i 0.445042 1.94986i
\(83\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) −1.00000 −1.00000
\(89\) −0.222521 + 0.974928i −0.222521 + 0.974928i 0.733052 + 0.680173i \(0.238095\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(90\) 0 0
\(91\) −0.900969 0.433884i −0.900969 0.433884i
\(92\) 0 0
\(93\) 0 0
\(94\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(98\) 0 0
\(99\) 1.00000 1.00000
\(100\) 0 0
\(101\) −0.222521 0.974928i −0.222521 0.974928i −0.955573 0.294755i \(-0.904762\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(102\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(103\) 1.24698 + 1.56366i 1.24698 + 1.56366i 0.623490 + 0.781831i \(0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(104\) 1.00000 1.00000
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(108\) 0 0
\(109\) 0.900969 0.433884i 0.900969 0.433884i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.900969 0.433884i −0.900969 0.433884i
\(113\) −0.900969 + 0.433884i −0.900969 + 0.433884i −0.826239 0.563320i \(-0.809524\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.00000 −1.00000
\(118\) 0 0
\(119\) 0.900969 0.433884i 0.900969 0.433884i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −1.80194 + 0.867767i −1.80194 + 0.867767i
\(124\) 0 0
\(125\) 0 0
\(126\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(127\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) −0.222521 0.974928i −0.222521 0.974928i −0.955573 0.294755i \(-0.904762\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.623490 0.781831i −0.623490 0.781831i
\(135\) 0 0
\(136\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(137\) −1.24698 + 1.56366i −1.24698 + 1.56366i −0.623490 + 0.781831i \(0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(138\) 0 0
\(139\) 0.222521 + 0.974928i 0.222521 + 0.974928i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(140\) 0 0
\(141\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(142\) 0 0
\(143\) 0.222521 0.974928i 0.222521 0.974928i
\(144\) −1.00000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(150\) 0.222521 0.974928i 0.222521 0.974928i
\(151\) −0.445042 1.94986i −0.445042 1.94986i −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(152\) 0 0
\(153\) 0.623490 0.781831i 0.623490 0.781831i
\(154\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000 1.00000
\(163\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(168\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −1.00000 −1.00000
\(176\) 0.222521 0.974928i 0.222521 0.974928i
\(177\) 0 0
\(178\) −0.900969 0.433884i −0.900969 0.433884i
\(179\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(180\) 0 0
\(181\) 0.900969 0.433884i 0.900969 0.433884i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(182\) 0.623490 0.781831i 0.623490 0.781831i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(188\) 0 0
\(189\) −0.222521 0.974928i −0.222521 0.974928i
\(190\) 0 0
\(191\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(192\) −0.623490 0.781831i −0.623490 0.781831i
\(193\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(198\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(199\) 0.900969 + 0.433884i 0.900969 + 0.433884i 0.826239 0.563320i \(-0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(200\) 0.900969 0.433884i 0.900969 0.433884i
\(201\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(202\) 1.00000 1.00000
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −1.80194 + 0.867767i −1.80194 + 0.867767i
\(207\) 0 0
\(208\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(217\) 0 0
\(218\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.623490 0.781831i −0.623490 0.781831i
\(222\) 0 0
\(223\) −0.623490 + 0.781831i −0.623490 + 0.781831i −0.988831 0.149042i \(-0.952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(224\) 0 0
\(225\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(226\) −0.222521 0.974928i −0.222521 0.974928i
\(227\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(228\) 0 0
\(229\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(230\) 0 0
\(231\) 1.00000 1.00000
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0.222521 0.974928i 0.222521 0.974928i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(239\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(240\) 0 0
\(241\) −0.623490 + 0.781831i −0.623490 + 0.781831i −0.988831 0.149042i \(-0.952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(242\) 0 0
\(243\) −0.623490 0.781831i −0.623490 0.781831i
\(244\) 0 0
\(245\) 0 0
\(246\) −0.445042 1.94986i −0.445042 1.94986i
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.900969 0.433884i −0.900969 0.433884i −0.0747301 0.997204i \(-0.523810\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.00000 1.00000
\(263\) 0.445042 1.94986i 0.445042 1.94986i 0.222521 0.974928i \(-0.428571\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(264\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(268\) 0 0
\(269\) 0.623490 0.781831i 0.623490 0.781831i −0.365341 0.930874i \(-0.619048\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(270\) 0 0
\(271\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(272\) −0.623490 0.781831i −0.623490 0.781831i
\(273\) −1.00000 −1.00000
\(274\) −1.24698 1.56366i −1.24698 1.56366i
\(275\) −0.222521 0.974928i −0.222521 0.974928i
\(276\) 0 0
\(277\) −0.623490 0.781831i −0.623490 0.781831i 0.365341 0.930874i \(-0.380952\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(278\) −1.00000 −1.00000
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(282\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(283\) −1.80194 + 0.867767i −1.80194 + 0.867767i −0.900969 + 0.433884i \(0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(287\) −1.80194 + 0.867767i −1.80194 + 0.867767i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.900969 + 0.433884i −0.900969 + 0.433884i −0.826239 0.563320i \(-0.809524\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0.900969 0.433884i 0.900969 0.433884i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 2.00000 2.00000
\(303\) −0.623490 0.781831i −0.623490 0.781831i
\(304\) 0 0
\(305\) 0 0
\(306\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 1.80194 + 0.867767i 1.80194 + 0.867767i
\(310\) 0 0
\(311\) 0.623490 0.781831i 0.623490 0.781831i −0.365341 0.930874i \(-0.619048\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(312\) 0.900969 0.433884i 0.900969 0.433884i
\(313\) 0.222521 + 0.974928i 0.222521 + 0.974928i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.222521 + 0.974928i −0.222521 + 0.974928i 0.733052 + 0.680173i \(0.238095\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(326\) 0 0
\(327\) 0.623490 0.781831i 0.623490 0.781831i
\(328\) 1.24698 1.56366i 1.24698 1.56366i
\(329\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −1.00000 −1.00000
\(337\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(338\) 0 0
\(339\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(350\) 0.222521 0.974928i 0.222521 0.974928i
\(351\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(352\) 0 0
\(353\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0.623490 0.781831i 0.623490 0.781831i
\(358\) 0 0
\(359\) −1.24698 1.56366i −1.24698 1.56366i −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 0.781831i \(-0.714286\pi\)
\(360\) 0 0
\(361\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(362\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(368\) 0 0
\(369\) −1.24698 + 1.56366i −1.24698 + 1.56366i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.80194 0.867767i −1.80194 0.867767i −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 0.433884i \(-0.857143\pi\)
\(374\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(375\) 0 0
\(376\) −1.00000 −1.00000
\(377\) 0 0
\(378\) 1.00000 1.00000
\(379\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.445042 1.94986i 0.445042 1.94986i
\(383\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(384\) 0.900969 0.433884i 0.900969 0.433884i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −0.623490 0.781831i −0.623490 0.781831i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.24698 1.56366i 1.24698 1.56366i 0.623490 0.781831i \(-0.285714\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(398\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(399\) 0 0
\(400\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(401\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(402\) −0.900969 0.433884i −0.900969 0.433884i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(409\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(410\) 0 0
\(411\) −0.445042 + 1.94986i −0.445042 + 1.94986i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(418\) 0 0
\(419\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(420\) 0 0
\(421\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(422\) 0 0
\(423\) 1.00000 1.00000
\(424\) 0 0
\(425\) −0.900969 0.433884i −0.900969 0.433884i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.222521 0.974928i −0.222521 0.974928i
\(430\) 0 0
\(431\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(432\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(433\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.900969 + 0.433884i 0.900969 + 0.433884i 0.826239 0.563320i \(-0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.900969 0.433884i 0.900969 0.433884i
\(443\) 0.623490 0.781831i 0.623490 0.781831i −0.365341 0.930874i \(-0.619048\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −0.623490 0.781831i −0.623490 0.781831i
\(447\) 0 0
\(448\) −0.623490 0.781831i −0.623490 0.781831i
\(449\) −0.222521 0.974928i −0.222521 0.974928i −0.955573 0.294755i \(-0.904762\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(450\) −0.222521 0.974928i −0.222521 0.974928i
\(451\) −1.24698 1.56366i −1.24698 1.56366i
\(452\) 0 0
\(453\) −1.24698 1.56366i −1.24698 1.56366i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.900969 0.433884i 0.900969 0.433884i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(458\) 0 0
\(459\) 0.222521 0.974928i 0.222521 0.974928i
\(460\) 0 0
\(461\) 1.80194 0.867767i 1.80194 0.867767i 0.900969 0.433884i \(-0.142857\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(462\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(463\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.80194 0.867767i 1.80194 0.867767i 0.900969 0.433884i \(-0.142857\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(468\) 0 0
\(469\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.445042 + 1.94986i 0.445042 + 1.94986i 0.222521 + 0.974928i \(0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.623490 0.781831i −0.623490 0.781831i
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0.900969 0.433884i 0.900969 0.433884i
\(487\) −0.445042 1.94986i −0.445042 1.94986i −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.445042 1.94986i 0.445042 1.94986i 0.222521 0.974928i \(-0.428571\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.222521 + 0.974928i 0.222521 + 0.974928i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.623490 0.781831i 0.623490 0.781831i
\(503\) −0.900969 0.433884i −0.900969 0.433884i −0.0747301 0.997204i \(-0.523810\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(504\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(526\) 1.80194 + 0.867767i 1.80194 + 0.867767i
\(527\) 0 0
\(528\) −0.222521 0.974928i −0.222521 0.974928i
\(529\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.24698 + 1.56366i 1.24698 + 1.56366i
\(534\) −1.00000 −1.00000
\(535\) 0 0
\(536\) −0.222521 0.974928i −0.222521 0.974928i
\(537\) 0 0
\(538\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(542\) 0 0
\(543\) 0.623490 0.781831i 0.623490 0.781831i
\(544\) 0 0
\(545\) 0 0
\(546\) 0.222521 0.974928i 0.222521 0.974928i
\(547\) 0.900969 + 0.433884i 0.900969 + 0.433884i 0.826239 0.563320i \(-0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.00000 1.00000
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.900969 0.433884i 0.900969 0.433884i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(562\) 0 0
\(563\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.445042 1.94986i −0.445042 1.94986i
\(567\) −0.623490 0.781831i −0.623490 0.781831i
\(568\) 0 0
\(569\) 0.623490 + 0.781831i 0.623490 + 0.781831i 0.988831 0.149042i \(-0.0476190\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(570\) 0 0
\(571\) 1.24698 1.56366i 1.24698 1.56366i 0.623490 0.781831i \(-0.285714\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(572\) 0 0
\(573\) −1.80194 + 0.867767i −1.80194 + 0.867767i
\(574\) −0.445042 1.94986i −0.445042 1.94986i
\(575\) 0 0
\(576\) −0.900969 0.433884i −0.900969 0.433884i
\(577\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −0.222521 0.974928i −0.222521 0.974928i
\(587\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(594\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(595\) 0 0
\(596\) 0 0
\(597\) 1.00000 1.00000
\(598\) 0 0
\(599\) −0.900969 0.433884i −0.900969 0.433884i −0.0747301 0.997204i \(-0.523810\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(600\) 0.623490 0.781831i 0.623490 0.781831i
\(601\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(602\) 0 0
\(603\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(604\) 0 0
\(605\) 0 0
\(606\) 0.900969 0.433884i 0.900969 0.433884i
\(607\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.222521 0.974928i 0.222521 0.974928i
\(612\) 0 0
\(613\) 0.900969 + 0.433884i 0.900969 + 0.433884i 0.826239 0.563320i \(-0.190476\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(617\) −1.24698 + 1.56366i −1.24698 + 1.56366i −0.623490 + 0.781831i \(0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(618\) −1.24698 + 1.56366i −1.24698 + 1.56366i
\(619\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(623\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(624\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(625\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(626\) −1.00000 −1.00000
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.900969 0.433884i 0.900969 0.433884i 0.0747301 0.997204i \(-0.476190\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −0.900969 0.433884i −0.900969 0.433884i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.900969 + 0.433884i −0.900969 + 0.433884i −0.826239 0.563320i \(-0.809524\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(642\) 0 0
\(643\) 0.222521 0.974928i 0.222521 0.974928i −0.733052 0.680173i \(-0.761905\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(648\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(649\) 0 0
\(650\) −1.00000 −1.00000
\(651\) 0 0
\(652\) 0 0
\(653\) −0.222521 0.974928i −0.222521 0.974928i −0.955573 0.294755i \(-0.904762\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(654\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(655\) 0 0
\(656\) 1.24698 + 1.56366i 1.24698 + 1.56366i
\(657\) 0 0
\(658\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(659\) 0.623490 0.781831i 0.623490 0.781831i −0.365341 0.930874i \(-0.619048\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(660\) 0 0
\(661\) 0.222521 + 0.974928i 0.222521 + 0.974928i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(662\) 0 0
\(663\) −0.900969 0.433884i −0.900969 0.433884i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.222521 + 0.974928i 0.222521 + 0.974928i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(674\) 0 0
\(675\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(676\) 0 0
\(677\) −0.900969 0.433884i −0.900969 0.433884i −0.0747301 0.997204i \(-0.523810\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(678\) −0.623490 0.781831i −0.623490 0.781831i
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.900969 0.433884i −0.900969 0.433884i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0.222521 0.974928i 0.222521 0.974928i −0.733052 0.680173i \(-0.761905\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(692\) 0 0
\(693\) 0.900969 0.433884i 0.900969 0.433884i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −2.00000 −2.00000
\(698\) −0.445042 + 1.94986i −0.445042 + 1.94986i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(702\) −0.222521 0.974928i −0.222521 0.974928i
\(703\) 0 0
\(704\) 0.623490 0.781831i 0.623490 0.781831i
\(705\) 0 0
\(706\) 0 0
\(707\) −0.623490 0.781831i −0.623490 0.781831i
\(708\) 0 0
\(709\) 1.24698 + 1.56366i 1.24698 + 1.56366i 0.623490 + 0.781831i \(0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.623490 0.781831i −0.623490 0.781831i
\(713\) 0 0
\(714\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 1.80194 0.867767i 1.80194 0.867767i
\(719\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(720\) 0 0
\(721\) 1.80194 + 0.867767i 1.80194 + 0.867767i
\(722\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(723\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(728\) 0.900969 0.433884i 0.900969 0.433884i
\(729\) −0.900969 0.433884i −0.900969 0.433884i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.00000 −1.00000
\(738\) −1.24698 1.56366i −1.24698 1.56366i
\(739\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.623490 + 0.781831i 0.623490 + 0.781831i 0.988831 0.149042i \(-0.0476190\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.24698 1.56366i 1.24698 1.56366i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(752\) 0.222521 0.974928i 0.222521 0.974928i
\(753\) −1.00000 −1.00000
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(762\) 0 0
\(763\) 0.623490 0.781831i 0.623490 0.781831i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.80194 + 0.867767i 1.80194 + 0.867767i 0.900969 + 0.433884i \(0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0.900969 0.433884i 0.900969 0.433884i
\(787\) −1.80194 0.867767i −1.80194 0.867767i −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 0.433884i \(-0.857143\pi\)
\(788\) 0 0
\(789\) −0.445042 1.94986i −0.445042 1.94986i
\(790\) 0 0
\(791\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(792\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(793\) 0 0
\(794\) 1.24698 + 1.56366i 1.24698 +