# Properties

 Label 2520.2.t.g Level $2520$ Weight $2$ Character orbit 2520.t Analytic conductor $20.122$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2520.t (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$20.1223013094$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: 6.0.5161984.1 Defining polynomial: $$x^{6} - 4 x^{3} + 25 x^{2} - 20 x + 8$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 280) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -\beta_{1} + \beta_{5} ) q^{5} + \beta_{4} q^{7} +O(q^{10})$$ $$q + ( -\beta_{1} + \beta_{5} ) q^{5} + \beta_{4} q^{7} + ( -2 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{11} + ( 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} - \beta_{5} ) q^{13} + ( -\beta_{1} + \beta_{2} - \beta_{5} ) q^{17} + ( -2 - \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{19} + ( 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{4} ) q^{23} + ( -2 - 2 \beta_{1} - \beta_{3} - \beta_{4} - \beta_{5} ) q^{25} + ( -3 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} ) q^{29} + ( 4 + 2 \beta_{3} ) q^{31} + ( -\beta_{2} - \beta_{3} ) q^{35} + 6 \beta_{4} q^{37} + ( -6 - 2 \beta_{1} - 2 \beta_{2} ) q^{41} + ( 2 \beta_{1} - 2 \beta_{2} ) q^{43} + ( 3 \beta_{1} - 3 \beta_{2} + 2 \beta_{4} - 3 \beta_{5} ) q^{47} - q^{49} + ( 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{4} - 4 \beta_{5} ) q^{53} + ( -2 + 3 \beta_{1} + \beta_{2} + 4 \beta_{4} - \beta_{5} ) q^{55} + ( 2 - 3 \beta_{1} - 3 \beta_{2} ) q^{59} + ( 8 - \beta_{1} - \beta_{2} ) q^{61} + ( 5 + \beta_{1} - \beta_{2} + 4 \beta_{3} + 5 \beta_{4} - \beta_{5} ) q^{65} + ( -2 \beta_{1} + 2 \beta_{2} - 4 \beta_{4} - 2 \beta_{5} ) q^{67} + ( -2 - 2 \beta_{3} ) q^{71} + ( -2 \beta_{1} + 2 \beta_{2} + 2 \beta_{4} ) q^{73} + ( -\beta_{1} + \beta_{2} - 2 \beta_{4} + \beta_{5} ) q^{77} + ( -4 + \beta_{1} + \beta_{2} + 5 \beta_{3} ) q^{79} + ( \beta_{1} - \beta_{2} - 6 \beta_{4} - 6 \beta_{5} ) q^{83} + ( 2 + \beta_{1} + 3 \beta_{2} - \beta_{3} - 4 \beta_{4} + 2 \beta_{5} ) q^{85} + ( 2 + 2 \beta_{1} + 2 \beta_{2} + 6 \beta_{3} ) q^{89} + ( 2 + 2 \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{91} + ( 1 + 2 \beta_{1} - 2 \beta_{2} + \beta_{3} - 7 \beta_{4} - 3 \beta_{5} ) q^{95} + ( \beta_{1} - \beta_{2} - 4 \beta_{4} - 3 \beta_{5} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q + O(q^{10})$$ $$6q - 14q^{11} - 8q^{19} - 10q^{25} + 6q^{29} + 20q^{31} + 2q^{35} - 36q^{41} - 6q^{49} - 12q^{55} + 12q^{59} + 48q^{61} + 22q^{65} - 8q^{71} - 34q^{79} + 14q^{85} + 10q^{91} + 4q^{95} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} - 4 x^{3} + 25 x^{2} - 20 x + 8$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$-5 \nu^{5} - 2 \nu^{4} - 25 \nu^{3} + 10 \nu^{2} - 121 \nu + 100$$$$)/121$$ $$\beta_{3}$$ $$=$$ $$($$$$7 \nu^{5} + 27 \nu^{4} + 35 \nu^{3} - 14 \nu^{2} + 223$$$$)/121$$ $$\beta_{4}$$ $$=$$ $$($$$$-25 \nu^{5} - 10 \nu^{4} - 4 \nu^{3} + 50 \nu^{2} - 605 \nu + 258$$$$)/242$$ $$\beta_{5}$$ $$=$$ $$($$$$-65 \nu^{5} - 26 \nu^{4} + 38 \nu^{3} + 372 \nu^{2} - 1331 \nu + 574$$$$)/242$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{5} - 3 \beta_{4} + \beta_{2} - \beta_{1}$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{4} - 5 \beta_{2} + 2$$ $$\nu^{4}$$ $$=$$ $$5 \beta_{3} + 7 \beta_{2} + 7 \beta_{1} - 15$$ $$\nu^{5}$$ $$=$$ $$2 \beta_{5} - 16 \beta_{4} - 2 \beta_{3} - 29 \beta_{1} + 16$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times$$.

 $$n$$ $$281$$ $$631$$ $$1081$$ $$1261$$ $$2017$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1009.1
 1.32001 − 1.32001i 1.32001 + 1.32001i 0.432320 + 0.432320i 0.432320 − 0.432320i −1.75233 + 1.75233i −1.75233 − 1.75233i
0 0 0 −1.32001 1.80487i 0 1.00000i 0 0 0
1009.2 0 0 0 −1.32001 + 1.80487i 0 1.00000i 0 0 0
1009.3 0 0 0 −0.432320 2.19388i 0 1.00000i 0 0 0
1009.4 0 0 0 −0.432320 + 2.19388i 0 1.00000i 0 0 0
1009.5 0 0 0 1.75233 1.38900i 0 1.00000i 0 0 0
1009.6 0 0 0 1.75233 + 1.38900i 0 1.00000i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1009.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2520.2.t.g 6
3.b odd 2 1 280.2.g.b 6
4.b odd 2 1 5040.2.t.y 6
5.b even 2 1 inner 2520.2.t.g 6
12.b even 2 1 560.2.g.f 6
15.d odd 2 1 280.2.g.b 6
15.e even 4 1 1400.2.a.s 3
15.e even 4 1 1400.2.a.t 3
20.d odd 2 1 5040.2.t.y 6
21.c even 2 1 1960.2.g.c 6
24.f even 2 1 2240.2.g.m 6
24.h odd 2 1 2240.2.g.l 6
60.h even 2 1 560.2.g.f 6
60.l odd 4 1 2800.2.a.bq 3
60.l odd 4 1 2800.2.a.br 3
105.g even 2 1 1960.2.g.c 6
105.k odd 4 1 9800.2.a.cd 3
105.k odd 4 1 9800.2.a.cg 3
120.i odd 2 1 2240.2.g.l 6
120.m even 2 1 2240.2.g.m 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.g.b 6 3.b odd 2 1
280.2.g.b 6 15.d odd 2 1
560.2.g.f 6 12.b even 2 1
560.2.g.f 6 60.h even 2 1
1400.2.a.s 3 15.e even 4 1
1400.2.a.t 3 15.e even 4 1
1960.2.g.c 6 21.c even 2 1
1960.2.g.c 6 105.g even 2 1
2240.2.g.l 6 24.h odd 2 1
2240.2.g.l 6 120.i odd 2 1
2240.2.g.m 6 24.f even 2 1
2240.2.g.m 6 120.m even 2 1
2520.2.t.g 6 1.a even 1 1 trivial
2520.2.t.g 6 5.b even 2 1 inner
2800.2.a.bq 3 60.l odd 4 1
2800.2.a.br 3 60.l odd 4 1
5040.2.t.y 6 4.b odd 2 1
5040.2.t.y 6 20.d odd 2 1
9800.2.a.cd 3 105.k odd 4 1
9800.2.a.cg 3 105.k odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2520, [\chi])$$:

 $$T_{11}^{3} + 7 T_{11}^{2} + 8 T_{11} - 8$$ $$T_{13}^{6} + 69 T_{13}^{4} + 1544 T_{13}^{2} + 11236$$ $$T_{17}^{6} + 49 T_{17}^{4} + 536 T_{17}^{2} + 400$$ $$T_{19}^{3} + 4 T_{19}^{2} - 14 T_{19} + 8$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{6}$$
$3$ $$T^{6}$$
$5$ $$125 + 25 T^{2} - 8 T^{3} + 5 T^{4} + T^{6}$$
$7$ $$( 1 + T^{2} )^{3}$$
$11$ $$( -8 + 8 T + 7 T^{2} + T^{3} )^{2}$$
$13$ $$11236 + 1544 T^{2} + 69 T^{4} + T^{6}$$
$17$ $$400 + 536 T^{2} + 49 T^{4} + T^{6}$$
$19$ $$( 8 - 14 T + 4 T^{2} + T^{3} )^{2}$$
$23$ $$18496 + 2416 T^{2} + 92 T^{4} + T^{6}$$
$29$ $$( 108 - 72 T - 3 T^{2} + T^{3} )^{2}$$
$31$ $$( 80 + 8 T - 10 T^{2} + T^{3} )^{2}$$
$37$ $$( 36 + T^{2} )^{3}$$
$41$ $$( -88 + 68 T + 18 T^{2} + T^{3} )^{2}$$
$43$ $$4096 + 1600 T^{2} + 80 T^{4} + T^{6}$$
$47$ $$53824 + 6480 T^{2} + 177 T^{4} + T^{6}$$
$53$ $$222784 + 11376 T^{2} + 188 T^{4} + T^{6}$$
$59$ $$( -44 - 78 T - 6 T^{2} + T^{3} )^{2}$$
$61$ $$( -440 + 182 T - 24 T^{2} + T^{3} )^{2}$$
$67$ $$262144 + 14336 T^{2} + 228 T^{4} + T^{6}$$
$71$ $$( -64 - 20 T + 4 T^{2} + T^{3} )^{2}$$
$73$ $$18496 + 2416 T^{2} + 92 T^{4} + T^{6}$$
$79$ $$( -548 - 32 T + 17 T^{2} + T^{3} )^{2}$$
$83$ $$678976 + 39940 T^{2} + 428 T^{4} + T^{6}$$
$89$ $$( -464 - 172 T + T^{3} )^{2}$$
$97$ $$1936 + 1048 T^{2} + 113 T^{4} + T^{6}$$