# Properties

 Label 2520.2.t.c Level $2520$ Weight $2$ Character orbit 2520.t Analytic conductor $20.122$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2520.t (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$20.1223013094$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 840) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 - 2 i ) q^{5} + i q^{7} +O(q^{10})$$ $$q + ( 1 - 2 i ) q^{5} + i q^{7} -2 q^{11} + 2 i q^{13} -2 q^{19} -8 i q^{23} + ( -3 - 4 i ) q^{25} + 2 q^{29} -6 q^{31} + ( 2 + i ) q^{35} -8 i q^{37} + 10 q^{41} -12 i q^{47} - q^{49} + 2 i q^{53} + ( -2 + 4 i ) q^{55} + 2 q^{61} + ( 4 + 2 i ) q^{65} -4 i q^{67} -14 q^{71} -2 i q^{73} -2 i q^{77} -4 q^{79} -16 i q^{83} -6 q^{89} -2 q^{91} + ( -2 + 4 i ) q^{95} -2 i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{5} + O(q^{10})$$ $$2 q + 2 q^{5} - 4 q^{11} - 4 q^{19} - 6 q^{25} + 4 q^{29} - 12 q^{31} + 4 q^{35} + 20 q^{41} - 2 q^{49} - 4 q^{55} + 4 q^{61} + 8 q^{65} - 28 q^{71} - 8 q^{79} - 12 q^{89} - 4 q^{91} - 4 q^{95} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times$$.

 $$n$$ $$281$$ $$631$$ $$1081$$ $$1261$$ $$2017$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1009.1
 1.00000i − 1.00000i
0 0 0 1.00000 2.00000i 0 1.00000i 0 0 0
1009.2 0 0 0 1.00000 + 2.00000i 0 1.00000i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2520.2.t.c 2
3.b odd 2 1 840.2.t.a 2
4.b odd 2 1 5040.2.t.n 2
5.b even 2 1 inner 2520.2.t.c 2
12.b even 2 1 1680.2.t.c 2
15.d odd 2 1 840.2.t.a 2
15.e even 4 1 4200.2.a.k 1
15.e even 4 1 4200.2.a.x 1
20.d odd 2 1 5040.2.t.n 2
60.h even 2 1 1680.2.t.c 2
60.l odd 4 1 8400.2.a.u 1
60.l odd 4 1 8400.2.a.br 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.2.t.a 2 3.b odd 2 1
840.2.t.a 2 15.d odd 2 1
1680.2.t.c 2 12.b even 2 1
1680.2.t.c 2 60.h even 2 1
2520.2.t.c 2 1.a even 1 1 trivial
2520.2.t.c 2 5.b even 2 1 inner
4200.2.a.k 1 15.e even 4 1
4200.2.a.x 1 15.e even 4 1
5040.2.t.n 2 4.b odd 2 1
5040.2.t.n 2 20.d odd 2 1
8400.2.a.u 1 60.l odd 4 1
8400.2.a.br 1 60.l odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2520, [\chi])$$:

 $$T_{11} + 2$$ $$T_{13}^{2} + 4$$ $$T_{17}$$ $$T_{19} + 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$5 - 2 T + T^{2}$$
$7$ $$1 + T^{2}$$
$11$ $$( 2 + T )^{2}$$
$13$ $$4 + T^{2}$$
$17$ $$T^{2}$$
$19$ $$( 2 + T )^{2}$$
$23$ $$64 + T^{2}$$
$29$ $$( -2 + T )^{2}$$
$31$ $$( 6 + T )^{2}$$
$37$ $$64 + T^{2}$$
$41$ $$( -10 + T )^{2}$$
$43$ $$T^{2}$$
$47$ $$144 + T^{2}$$
$53$ $$4 + T^{2}$$
$59$ $$T^{2}$$
$61$ $$( -2 + T )^{2}$$
$67$ $$16 + T^{2}$$
$71$ $$( 14 + T )^{2}$$
$73$ $$4 + T^{2}$$
$79$ $$( 4 + T )^{2}$$
$83$ $$256 + T^{2}$$
$89$ $$( 6 + T )^{2}$$
$97$ $$4 + T^{2}$$