Properties

Label 2520.2.bi.r.1801.3
Level $2520$
Weight $2$
Character 2520.1801
Analytic conductor $20.122$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2520.bi (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(20.1223013094\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Defining polynomial: \(x^{10} + 29 x^{8} + 247 x^{6} + 855 x^{4} + 1212 x^{2} + 588\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1801.3
Root \(2.03852i\) of defining polynomial
Character \(\chi\) \(=\) 2520.1801
Dual form 2520.2.bi.r.361.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(0.194868 - 2.63857i) q^{7} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{5} +(0.194868 - 2.63857i) q^{7} +(1.26541 + 2.19175i) q^{11} +5.45654 q^{13} +(-3.25817 - 5.64332i) q^{17} +(-0.0406394 + 0.0703895i) q^{19} +(1.23551 - 2.13996i) q^{23} +(-0.500000 - 0.866025i) q^{25} -8.37709 q^{29} +(-0.852597 - 1.47674i) q^{31} +(2.18763 + 1.48804i) q^{35} +(1.18763 - 2.05704i) q^{37} +3.75135 q^{41} +9.44207 q^{43} +(-0.962862 + 1.66773i) q^{47} +(-6.92405 - 1.02834i) q^{49} +(2.49368 + 4.31918i) q^{53} -2.53082 q^{55} +(1.65773 + 2.87127i) q^{59} +(-0.150904 + 0.261373i) q^{61} +(-2.72827 + 4.72550i) q^{65} +(-1.58460 - 2.74461i) q^{67} -0.684541 q^{71} +(-7.64159 - 13.2356i) q^{73} +(6.02967 - 2.91176i) q^{77} +(7.29931 - 12.6428i) q^{79} +12.0753 q^{83} +6.51634 q^{85} +(1.79881 - 3.11563i) q^{89} +(1.06330 - 14.3974i) q^{91} +(-0.0406394 - 0.0703895i) q^{95} +9.20088 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q - 5q^{5} - q^{7} + O(q^{10}) \) \( 10q - 5q^{5} - q^{7} - 2q^{11} + 6q^{13} + 2q^{17} + q^{19} + 8q^{23} - 5q^{25} + 7q^{31} - q^{35} - 11q^{37} + 20q^{41} + 6q^{43} - 23q^{49} - 14q^{53} + 4q^{55} + 4q^{59} - 6q^{61} - 3q^{65} - 7q^{67} - 32q^{71} + 3q^{73} + 8q^{77} - 19q^{79} + 28q^{83} - 4q^{85} - 18q^{89} - 21q^{91} + q^{95} + 48q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(1081\) \(1261\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0.194868 2.63857i 0.0736531 0.997284i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.26541 + 2.19175i 0.381535 + 0.660838i 0.991282 0.131758i \(-0.0420623\pi\)
−0.609747 + 0.792596i \(0.708729\pi\)
\(12\) 0 0
\(13\) 5.45654 1.51337 0.756686 0.653779i \(-0.226817\pi\)
0.756686 + 0.653779i \(0.226817\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.25817 5.64332i −0.790223 1.36871i −0.925829 0.377943i \(-0.876632\pi\)
0.135606 0.990763i \(-0.456702\pi\)
\(18\) 0 0
\(19\) −0.0406394 + 0.0703895i −0.00932331 + 0.0161484i −0.870649 0.491904i \(-0.836301\pi\)
0.861326 + 0.508052i \(0.169634\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.23551 2.13996i 0.257621 0.446213i −0.707983 0.706229i \(-0.750395\pi\)
0.965604 + 0.260017i \(0.0837281\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.37709 −1.55559 −0.777793 0.628520i \(-0.783661\pi\)
−0.777793 + 0.628520i \(0.783661\pi\)
\(30\) 0 0
\(31\) −0.852597 1.47674i −0.153131 0.265231i 0.779246 0.626718i \(-0.215602\pi\)
−0.932377 + 0.361488i \(0.882269\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.18763 + 1.48804i 0.369777 + 0.251525i
\(36\) 0 0
\(37\) 1.18763 2.05704i 0.195245 0.338175i −0.751736 0.659465i \(-0.770783\pi\)
0.946981 + 0.321290i \(0.104116\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.75135 0.585862 0.292931 0.956134i \(-0.405369\pi\)
0.292931 + 0.956134i \(0.405369\pi\)
\(42\) 0 0
\(43\) 9.44207 1.43990 0.719951 0.694025i \(-0.244164\pi\)
0.719951 + 0.694025i \(0.244164\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.962862 + 1.66773i −0.140448 + 0.243263i −0.927665 0.373413i \(-0.878188\pi\)
0.787218 + 0.616675i \(0.211521\pi\)
\(48\) 0 0
\(49\) −6.92405 1.02834i −0.989150 0.146906i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.49368 + 4.31918i 0.342533 + 0.593285i 0.984902 0.173111i \(-0.0553818\pi\)
−0.642369 + 0.766395i \(0.722048\pi\)
\(54\) 0 0
\(55\) −2.53082 −0.341255
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.65773 + 2.87127i 0.215818 + 0.373808i 0.953525 0.301313i \(-0.0974249\pi\)
−0.737707 + 0.675121i \(0.764092\pi\)
\(60\) 0 0
\(61\) −0.150904 + 0.261373i −0.0193213 + 0.0334654i −0.875524 0.483174i \(-0.839484\pi\)
0.856203 + 0.516639i \(0.172817\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.72827 + 4.72550i −0.338400 + 0.586126i
\(66\) 0 0
\(67\) −1.58460 2.74461i −0.193590 0.335308i 0.752847 0.658195i \(-0.228680\pi\)
−0.946437 + 0.322887i \(0.895347\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.684541 −0.0812401 −0.0406200 0.999175i \(-0.512933\pi\)
−0.0406200 + 0.999175i \(0.512933\pi\)
\(72\) 0 0
\(73\) −7.64159 13.2356i −0.894380 1.54911i −0.834570 0.550902i \(-0.814284\pi\)
−0.0598097 0.998210i \(-0.519049\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.02967 2.91176i 0.687144 0.331826i
\(78\) 0 0
\(79\) 7.29931 12.6428i 0.821237 1.42242i −0.0835245 0.996506i \(-0.526618\pi\)
0.904762 0.425919i \(-0.140049\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0753 1.32543 0.662717 0.748870i \(-0.269403\pi\)
0.662717 + 0.748870i \(0.269403\pi\)
\(84\) 0 0
\(85\) 6.51634 0.706797
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.79881 3.11563i 0.190674 0.330256i −0.754800 0.655955i \(-0.772266\pi\)
0.945474 + 0.325699i \(0.105599\pi\)
\(90\) 0 0
\(91\) 1.06330 14.3974i 0.111464 1.50926i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0406394 0.0703895i −0.00416951 0.00722181i
\(96\) 0 0
\(97\) 9.20088 0.934208 0.467104 0.884202i \(-0.345297\pi\)
0.467104 + 0.884202i \(0.345297\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.42273 11.1245i −0.639085 1.10693i −0.985634 0.168896i \(-0.945980\pi\)
0.346549 0.938032i \(-0.387354\pi\)
\(102\) 0 0
\(103\) 4.63975 8.03629i 0.457169 0.791839i −0.541641 0.840610i \(-0.682197\pi\)
0.998810 + 0.0487704i \(0.0155303\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.25817 + 3.91127i −0.218306 + 0.378116i −0.954290 0.298882i \(-0.903386\pi\)
0.735984 + 0.676998i \(0.236720\pi\)
\(108\) 0 0
\(109\) −3.84277 6.65588i −0.368071 0.637518i 0.621193 0.783658i \(-0.286648\pi\)
−0.989264 + 0.146140i \(0.953315\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.77947 0.261471 0.130735 0.991417i \(-0.458266\pi\)
0.130735 + 0.991417i \(0.458266\pi\)
\(114\) 0 0
\(115\) 1.23551 + 2.13996i 0.115212 + 0.199552i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −15.5252 + 7.49720i −1.42319 + 0.687267i
\(120\) 0 0
\(121\) 2.29748 3.97936i 0.208862 0.361760i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −3.76765 −0.334325 −0.167162 0.985929i \(-0.553460\pi\)
−0.167162 + 0.985929i \(0.553460\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.92314 5.06302i 0.255396 0.442358i −0.709607 0.704597i \(-0.751128\pi\)
0.965003 + 0.262239i \(0.0844609\pi\)
\(132\) 0 0
\(133\) 0.177808 + 0.120946i 0.0154179 + 0.0104874i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.57363 16.5820i −0.817930 1.41670i −0.907204 0.420690i \(-0.861788\pi\)
0.0892740 0.996007i \(-0.471545\pi\)
\(138\) 0 0
\(139\) 12.1266 1.02857 0.514283 0.857621i \(-0.328058\pi\)
0.514283 + 0.857621i \(0.328058\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.90475 + 11.9594i 0.577404 + 1.00009i
\(144\) 0 0
\(145\) 4.18855 7.25477i 0.347840 0.602476i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.90425 6.76235i 0.319848 0.553994i −0.660608 0.750731i \(-0.729701\pi\)
0.980456 + 0.196738i \(0.0630347\pi\)
\(150\) 0 0
\(151\) −0.928544 1.60829i −0.0755638 0.130880i 0.825767 0.564011i \(-0.190742\pi\)
−0.901331 + 0.433130i \(0.857409\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.70519 0.136965
\(156\) 0 0
\(157\) 0.158141 + 0.273908i 0.0126210 + 0.0218603i 0.872267 0.489030i \(-0.162649\pi\)
−0.859646 + 0.510890i \(0.829316\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.40567 3.67698i −0.426026 0.289786i
\(162\) 0 0
\(163\) −11.5976 + 20.0877i −0.908396 + 1.57339i −0.0921029 + 0.995749i \(0.529359\pi\)
−0.816293 + 0.577638i \(0.803974\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.471014 −0.0364482 −0.0182241 0.999834i \(-0.505801\pi\)
−0.0182241 + 0.999834i \(0.505801\pi\)
\(168\) 0 0
\(169\) 16.7738 1.29029
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.88341 4.99422i 0.219222 0.379703i −0.735348 0.677689i \(-0.762981\pi\)
0.954570 + 0.297986i \(0.0963148\pi\)
\(174\) 0 0
\(175\) −2.38250 + 1.15052i −0.180100 + 0.0869713i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.29840 + 12.6412i 0.545508 + 0.944848i 0.998575 + 0.0533709i \(0.0169966\pi\)
−0.453067 + 0.891477i \(0.649670\pi\)
\(180\) 0 0
\(181\) 13.5333 1.00592 0.502962 0.864308i \(-0.332243\pi\)
0.502962 + 0.864308i \(0.332243\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.18763 + 2.05704i 0.0873163 + 0.151236i
\(186\) 0 0
\(187\) 8.24583 14.2822i 0.602995 1.04442i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.12661 8.87954i 0.370948 0.642501i −0.618763 0.785577i \(-0.712366\pi\)
0.989712 + 0.143076i \(0.0456994\pi\)
\(192\) 0 0
\(193\) −7.02949 12.1754i −0.505994 0.876407i −0.999976 0.00693486i \(-0.997793\pi\)
0.493982 0.869472i \(-0.335541\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.19423 0.655062 0.327531 0.944840i \(-0.393783\pi\)
0.327531 + 0.944840i \(0.393783\pi\)
\(198\) 0 0
\(199\) 9.05698 + 15.6872i 0.642032 + 1.11203i 0.984978 + 0.172678i \(0.0552419\pi\)
−0.342946 + 0.939355i \(0.611425\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.63242 + 22.1035i −0.114574 + 1.55136i
\(204\) 0 0
\(205\) −1.87567 + 3.24876i −0.131003 + 0.226903i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.205702 −0.0142287
\(210\) 0 0
\(211\) −14.6566 −1.00900 −0.504501 0.863411i \(-0.668324\pi\)
−0.504501 + 0.863411i \(0.668324\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.72103 + 8.17707i −0.321972 + 0.557671i
\(216\) 0 0
\(217\) −4.06262 + 1.96186i −0.275789 + 0.133180i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −17.7783 30.7930i −1.19590 2.07136i
\(222\) 0 0
\(223\) 1.86639 0.124983 0.0624914 0.998046i \(-0.480095\pi\)
0.0624914 + 0.998046i \(0.480095\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.2455 + 22.9419i 0.879137 + 1.52271i 0.852290 + 0.523070i \(0.175213\pi\)
0.0268466 + 0.999640i \(0.491453\pi\)
\(228\) 0 0
\(229\) 5.44839 9.43688i 0.360040 0.623607i −0.627927 0.778272i \(-0.716097\pi\)
0.987967 + 0.154665i \(0.0494298\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.29398 + 5.70535i −0.215796 + 0.373770i −0.953519 0.301334i \(-0.902568\pi\)
0.737723 + 0.675104i \(0.235901\pi\)
\(234\) 0 0
\(235\) −0.962862 1.66773i −0.0628102 0.108790i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.12327 0.525450 0.262725 0.964871i \(-0.415379\pi\)
0.262725 + 0.964871i \(0.415379\pi\)
\(240\) 0 0
\(241\) 13.3951 + 23.2010i 0.862855 + 1.49451i 0.869162 + 0.494528i \(0.164659\pi\)
−0.00630723 + 0.999980i \(0.502008\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.35260 5.48223i 0.278077 0.350247i
\(246\) 0 0
\(247\) −0.221750 + 0.384083i −0.0141096 + 0.0244386i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.2561 −0.962954 −0.481477 0.876459i \(-0.659899\pi\)
−0.481477 + 0.876459i \(0.659899\pi\)
\(252\) 0 0
\(253\) 6.25368 0.393166
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.1063 + 26.1648i −0.942304 + 1.63212i −0.181242 + 0.983439i \(0.558012\pi\)
−0.761062 + 0.648679i \(0.775322\pi\)
\(258\) 0 0
\(259\) −5.19619 3.53449i −0.322876 0.219623i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.4557 + 25.0380i 0.891378 + 1.54391i 0.838225 + 0.545325i \(0.183594\pi\)
0.0531531 + 0.998586i \(0.483073\pi\)
\(264\) 0 0
\(265\) −4.98736 −0.306371
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.08046 12.2637i −0.431703 0.747732i 0.565317 0.824874i \(-0.308754\pi\)
−0.997020 + 0.0771421i \(0.975420\pi\)
\(270\) 0 0
\(271\) 6.76300 11.7139i 0.410823 0.711566i −0.584157 0.811641i \(-0.698575\pi\)
0.994980 + 0.100074i \(0.0319081\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.26541 2.19175i 0.0763070 0.132168i
\(276\) 0 0
\(277\) −10.0177 17.3511i −0.601903 1.04253i −0.992533 0.121979i \(-0.961076\pi\)
0.390629 0.920548i \(-0.372257\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.1557 −1.08308 −0.541540 0.840675i \(-0.682159\pi\)
−0.541540 + 0.840675i \(0.682159\pi\)
\(282\) 0 0
\(283\) −6.62711 11.4785i −0.393941 0.682326i 0.599025 0.800731i \(-0.295555\pi\)
−0.992965 + 0.118405i \(0.962222\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.731016 9.89817i 0.0431505 0.584271i
\(288\) 0 0
\(289\) −12.7314 + 22.0514i −0.748904 + 1.29714i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.46102 −0.435878 −0.217939 0.975962i \(-0.569933\pi\)
−0.217939 + 0.975962i \(0.569933\pi\)
\(294\) 0 0
\(295\) −3.31546 −0.193033
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.74159 11.6768i 0.389876 0.675286i
\(300\) 0 0
\(301\) 1.83995 24.9135i 0.106053 1.43599i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.150904 0.261373i −0.00864073 0.0149662i
\(306\) 0 0
\(307\) 32.9561 1.88090 0.940451 0.339928i \(-0.110403\pi\)
0.940451 + 0.339928i \(0.110403\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.5638 26.9573i −0.882543 1.52861i −0.848505 0.529188i \(-0.822497\pi\)
−0.0340379 0.999421i \(-0.510837\pi\)
\(312\) 0 0
\(313\) 2.87659 4.98240i 0.162594 0.281622i −0.773204 0.634157i \(-0.781347\pi\)
0.935798 + 0.352536i \(0.114680\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.5395 28.6473i 0.928951 1.60899i 0.143872 0.989596i \(-0.454045\pi\)
0.785080 0.619395i \(-0.212622\pi\)
\(318\) 0 0
\(319\) −10.6004 18.3605i −0.593511 1.02799i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.529640 0.0294700
\(324\) 0 0
\(325\) −2.72827 4.72550i −0.151337 0.262124i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.21277 + 2.86556i 0.232258 + 0.157983i
\(330\) 0 0
\(331\) −12.6547 + 21.9186i −0.695567 + 1.20476i 0.274422 + 0.961609i \(0.411513\pi\)
−0.969989 + 0.243148i \(0.921820\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.16921 0.173152
\(336\) 0 0
\(337\) −28.6450 −1.56039 −0.780195 0.625536i \(-0.784880\pi\)
−0.780195 + 0.625536i \(0.784880\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.15777 3.73736i 0.116850 0.202390i
\(342\) 0 0
\(343\) −4.06262 + 18.0692i −0.219361 + 0.975644i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.9602 31.1080i −0.964156 1.66997i −0.711865 0.702316i \(-0.752149\pi\)
−0.252291 0.967651i \(-0.581184\pi\)
\(348\) 0 0
\(349\) −10.8841 −0.582614 −0.291307 0.956630i \(-0.594090\pi\)
−0.291307 + 0.956630i \(0.594090\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.8026 + 23.9069i 0.734640 + 1.27243i 0.954881 + 0.296989i \(0.0959824\pi\)
−0.220241 + 0.975446i \(0.570684\pi\)
\(354\) 0 0
\(355\) 0.342271 0.592830i 0.0181658 0.0314641i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.45167 7.71053i 0.234950 0.406946i −0.724308 0.689477i \(-0.757841\pi\)
0.959258 + 0.282531i \(0.0911739\pi\)
\(360\) 0 0
\(361\) 9.49670 + 16.4488i 0.499826 + 0.865724i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.2832 0.799958
\(366\) 0 0
\(367\) 16.4788 + 28.5421i 0.860186 + 1.48989i 0.871749 + 0.489953i \(0.162986\pi\)
−0.0115631 + 0.999933i \(0.503681\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.8824 5.73806i 0.616902 0.297905i
\(372\) 0 0
\(373\) −8.17339 + 14.1567i −0.423202 + 0.733008i −0.996251 0.0865138i \(-0.972427\pi\)
0.573048 + 0.819521i \(0.305761\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −45.7099 −2.35418
\(378\) 0 0
\(379\) −27.1083 −1.39246 −0.696231 0.717818i \(-0.745141\pi\)
−0.696231 + 0.717818i \(0.745141\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.3853 + 21.4519i −0.632858 + 1.09614i 0.354106 + 0.935205i \(0.384785\pi\)
−0.986965 + 0.160938i \(0.948548\pi\)
\(384\) 0 0
\(385\) −0.493174 + 6.67772i −0.0251345 + 0.340328i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.04046 6.99829i −0.204860 0.354827i 0.745228 0.666809i \(-0.232340\pi\)
−0.950088 + 0.311982i \(0.899007\pi\)
\(390\) 0 0
\(391\) −16.1020 −0.814312
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.29931 + 12.6428i 0.367268 + 0.636127i
\(396\) 0 0
\(397\) −13.9374 + 24.1403i −0.699498 + 1.21157i 0.269143 + 0.963100i \(0.413260\pi\)
−0.968641 + 0.248466i \(0.920074\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.05722 + 13.9555i −0.402358 + 0.696905i −0.994010 0.109289i \(-0.965143\pi\)
0.591652 + 0.806194i \(0.298476\pi\)
\(402\) 0 0
\(403\) −4.65223 8.05790i −0.231744 0.401393i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.01135 0.297972
\(408\) 0 0
\(409\) −6.06048 10.4971i −0.299672 0.519046i 0.676389 0.736544i \(-0.263544\pi\)
−0.976061 + 0.217498i \(0.930210\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.89908 3.81451i 0.388688 0.187700i
\(414\) 0 0
\(415\) −6.03764 + 10.4575i −0.296376 + 0.513339i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 29.7920 1.45544 0.727718 0.685876i \(-0.240581\pi\)
0.727718 + 0.685876i \(0.240581\pi\)
\(420\) 0 0
\(421\) 6.96233 0.339323 0.169662 0.985502i \(-0.445733\pi\)
0.169662 + 0.985502i \(0.445733\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.25817 + 5.64332i −0.158045 + 0.273741i
\(426\) 0 0
\(427\) 0.660244 + 0.449103i 0.0319515 + 0.0217336i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.8326 + 23.9588i 0.666294 + 1.15406i 0.978933 + 0.204183i \(0.0654538\pi\)
−0.312639 + 0.949872i \(0.601213\pi\)
\(432\) 0 0
\(433\) 5.80177 0.278815 0.139408 0.990235i \(-0.455480\pi\)
0.139408 + 0.990235i \(0.455480\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.100420 + 0.173933i 0.00480376 + 0.00832036i
\(438\) 0 0
\(439\) −8.43224 + 14.6051i −0.402449 + 0.697062i −0.994021 0.109190i \(-0.965174\pi\)
0.591572 + 0.806252i \(0.298508\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.8173 + 29.1285i −0.799015 + 1.38394i 0.121243 + 0.992623i \(0.461312\pi\)
−0.920258 + 0.391312i \(0.872021\pi\)
\(444\) 0 0
\(445\) 1.79881 + 3.11563i 0.0852718 + 0.147695i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8.87896 −0.419024 −0.209512 0.977806i \(-0.567188\pi\)
−0.209512 + 0.977806i \(0.567188\pi\)
\(450\) 0 0
\(451\) 4.74698 + 8.22202i 0.223527 + 0.387160i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11.9369 + 8.11957i 0.559610 + 0.380651i
\(456\) 0 0
\(457\) −15.8641 + 27.4774i −0.742092 + 1.28534i 0.209449 + 0.977819i \(0.432833\pi\)
−0.951541 + 0.307521i \(0.900500\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 19.0714 0.888242 0.444121 0.895967i \(-0.353516\pi\)
0.444121 + 0.895967i \(0.353516\pi\)
\(462\) 0 0
\(463\) 21.5938 1.00355 0.501775 0.864998i \(-0.332681\pi\)
0.501775 + 0.864998i \(0.332681\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.4369 25.0054i 0.668060 1.15711i −0.310386 0.950611i \(-0.600458\pi\)
0.978446 0.206503i \(-0.0662083\pi\)
\(468\) 0 0
\(469\) −7.55063 + 3.64624i −0.348656 + 0.168368i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.9481 + 20.6947i 0.549373 + 0.951542i
\(474\) 0 0
\(475\) 0.0812787 0.00372932
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.97105 12.0742i −0.318515 0.551685i 0.661663 0.749801i \(-0.269851\pi\)
−0.980179 + 0.198116i \(0.936518\pi\)
\(480\) 0 0
\(481\) 6.48035 11.2243i 0.295479 0.511784i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.60044 + 7.96820i −0.208895 + 0.361817i
\(486\) 0 0
\(487\) −7.55831 13.0914i −0.342500 0.593227i 0.642397 0.766372i \(-0.277940\pi\)
−0.984896 + 0.173146i \(0.944607\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −31.5713 −1.42479 −0.712396 0.701777i \(-0.752390\pi\)
−0.712396 + 0.701777i \(0.752390\pi\)
\(492\) 0 0
\(493\) 27.2940 + 47.2746i 1.22926 + 2.12914i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.133395 + 1.80621i −0.00598358 + 0.0810194i
\(498\) 0 0
\(499\) −15.4432 + 26.7484i −0.691333 + 1.19742i 0.280068 + 0.959980i \(0.409643\pi\)
−0.971401 + 0.237444i \(0.923690\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 38.4451 1.71418 0.857091 0.515165i \(-0.172269\pi\)
0.857091 + 0.515165i \(0.172269\pi\)
\(504\) 0 0
\(505\) 12.8455 0.571615
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.1421 19.2987i 0.493864 0.855398i −0.506111 0.862469i \(-0.668917\pi\)
0.999975 + 0.00707034i \(0.00225058\pi\)
\(510\) 0 0
\(511\) −36.4121 + 17.5836i −1.61078 + 0.777854i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.63975 + 8.03629i 0.204452 + 0.354121i
\(516\) 0 0
\(517\) −4.87365 −0.214343
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.98111 12.0916i −0.305848 0.529744i 0.671602 0.740912i \(-0.265607\pi\)
−0.977450 + 0.211168i \(0.932273\pi\)
\(522\) 0 0
\(523\) 2.42987 4.20866i 0.106251 0.184032i −0.807998 0.589186i \(-0.799449\pi\)
0.914249 + 0.405154i \(0.132782\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.55582 + 9.62295i −0.242015 + 0.419182i
\(528\) 0 0
\(529\) 8.44704 + 14.6307i 0.367263 + 0.636118i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 20.4694 0.886627
\(534\) 0 0
\(535\) −2.25817 3.91127i −0.0976293 0.169099i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.50788 16.4771i −0.280314 0.709718i
\(540\) 0 0
\(541\) −11.0587 + 19.1541i −0.475449 + 0.823501i −0.999605 0.0281212i \(-0.991048\pi\)
0.524156 + 0.851622i \(0.324381\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.68555 0.329213
\(546\) 0 0
\(547\) 37.0636 1.58473 0.792364 0.610049i \(-0.208850\pi\)
0.792364 + 0.610049i \(0.208850\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.340440 0.589659i 0.0145032 0.0251203i
\(552\) 0 0
\(553\) −31.9364 21.7234i −1.35807 0.923772i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −16.4331 28.4629i −0.696291 1.20601i −0.969744 0.244126i \(-0.921499\pi\)
0.273453 0.961885i \(-0.411834\pi\)
\(558\) 0 0
\(559\) 51.5210 2.17911
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.83446 10.1056i −0.245893 0.425899i 0.716489 0.697598i \(-0.245748\pi\)
−0.962382 + 0.271699i \(0.912415\pi\)
\(564\) 0 0
\(565\) −1.38974 + 2.40709i −0.0584666 + 0.101267i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.88932 + 5.00446i −0.121127 + 0.209798i −0.920212 0.391420i \(-0.871984\pi\)
0.799086 + 0.601217i \(0.205317\pi\)
\(570\) 0 0
\(571\) −11.7522 20.3554i −0.491814 0.851847i 0.508142 0.861274i \(-0.330333\pi\)
−0.999956 + 0.00942676i \(0.996999\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.47101 −0.103048
\(576\) 0 0
\(577\) −3.48220 6.03135i −0.144966 0.251088i 0.784394 0.620263i \(-0.212974\pi\)
−0.929360 + 0.369174i \(0.879641\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.35308 31.8614i 0.0976223 1.32183i
\(582\) 0 0
\(583\) −6.31104 + 10.9310i −0.261377 + 0.452718i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.95568 −0.410915 −0.205457 0.978666i \(-0.565868\pi\)
−0.205457 + 0.978666i \(0.565868\pi\)
\(588\) 0 0
\(589\) 0.138596 0.00571075
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −17.8531 + 30.9225i −0.733141 + 1.26984i 0.222394 + 0.974957i \(0.428613\pi\)
−0.955534 + 0.294880i \(0.904720\pi\)
\(594\) 0 0
\(595\) 1.26982 17.1938i 0.0520577 0.704877i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.76582 + 15.1828i 0.358162 + 0.620354i 0.987654 0.156653i \(-0.0500703\pi\)
−0.629492 + 0.777007i \(0.716737\pi\)
\(600\) 0 0
\(601\) 24.9334 1.01705 0.508527 0.861046i \(-0.330190\pi\)
0.508527 + 0.861046i \(0.330190\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.29748 + 3.97936i 0.0934060 + 0.161784i
\(606\) 0 0
\(607\) −10.7969 + 18.7008i −0.438233 + 0.759042i −0.997553 0.0699099i \(-0.977729\pi\)
0.559320 + 0.828952i \(0.311062\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.25389 + 9.10001i −0.212550 + 0.368147i
\(612\) 0 0
\(613\) 8.54423 + 14.7990i 0.345098 + 0.597728i 0.985372 0.170419i \(-0.0545122\pi\)
−0.640273 + 0.768147i \(0.721179\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.7252 1.19669 0.598345 0.801239i \(-0.295825\pi\)
0.598345 + 0.801239i \(0.295825\pi\)
\(618\) 0 0
\(619\) 7.12909 + 12.3479i 0.286542 + 0.496306i 0.972982 0.230881i \(-0.0741608\pi\)
−0.686440 + 0.727187i \(0.740827\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −7.87027 5.35342i −0.315316 0.214480i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.4780 −0.617149
\(630\) 0 0
\(631\) −6.15725 −0.245116 −0.122558 0.992461i \(-0.539110\pi\)
−0.122558 + 0.992461i \(0.539110\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.88383 3.26288i 0.0747573 0.129483i
\(636\) 0 0
\(637\) −37.7814 5.61119i −1.49695 0.222323i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.2435 24.6704i −0.562583 0.974422i −0.997270 0.0738407i \(-0.976474\pi\)
0.434687 0.900582i \(-0.356859\pi\)
\(642\) 0 0
\(643\) 3.88877 0.153358 0.0766790 0.997056i \(-0.475568\pi\)
0.0766790 + 0.997056i \(0.475568\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.7725 18.6585i −0.423511 0.733542i 0.572769 0.819717i \(-0.305869\pi\)
−0.996280 + 0.0861744i \(0.972536\pi\)
\(648\) 0 0
\(649\) −4.19541 + 7.26666i −0.164684 + 0.285241i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.20738 + 3.82330i −0.0863815 + 0.149617i −0.905979 0.423322i \(-0.860864\pi\)
0.819598 + 0.572940i \(0.194197\pi\)
\(654\) 0 0
\(655\) 2.92314 + 5.06302i 0.114216 + 0.197829i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −41.7579 −1.62666 −0.813329 0.581804i \(-0.802347\pi\)
−0.813329 + 0.581804i \(0.802347\pi\)
\(660\) 0 0
\(661\) 5.13758 + 8.89855i 0.199829 + 0.346113i 0.948473 0.316859i \(-0.102628\pi\)
−0.748644 + 0.662972i \(0.769295\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.193646 + 0.0935130i −0.00750929 + 0.00362628i
\(666\) 0 0
\(667\) −10.3500 + 17.9267i −0.400752 + 0.694123i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.763820 −0.0294870
\(672\) 0 0
\(673\) −23.0484 −0.888450 −0.444225 0.895915i \(-0.646521\pi\)
−0.444225 + 0.895915i \(0.646521\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.64407 2.84760i 0.0631866 0.109442i −0.832702 0.553722i \(-0.813207\pi\)
0.895888 + 0.444280i \(0.146540\pi\)
\(678\) 0 0
\(679\) 1.79296 24.2771i 0.0688073 0.931671i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20.2241 + 35.0291i 0.773852 + 1.34035i 0.935438 + 0.353492i \(0.115006\pi\)
−0.161586 + 0.986859i \(0.551661\pi\)
\(684\) 0 0
\(685\) 19.1473 0.731579
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 13.6069 + 23.5678i 0.518380 + 0.897860i
\(690\) 0 0
\(691\) −17.2144 + 29.8162i −0.654866 + 1.13426i 0.327061 + 0.945003i \(0.393942\pi\)
−0.981927 + 0.189259i \(0.939392\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.06330 + 10.5019i −0.229994 + 0.398362i
\(696\) 0 0
\(697\) −12.2225 21.1700i −0.462961 0.801872i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.1396 0.571815 0.285907 0.958257i \(-0.407705\pi\)
0.285907 + 0.958257i \(0.407705\pi\)
\(702\) 0 0
\(703\) 0.0965291 + 0.167193i 0.00364067 + 0.00630582i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −30.6043 + 14.7790i −1.15099 + 0.555821i
\(708\) 0 0
\(709\) −19.0851 + 33.0564i −0.716756 + 1.24146i 0.245522 + 0.969391i \(0.421041\pi\)
−0.962278 + 0.272067i \(0.912293\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.21356 −0.157799
\(714\) 0 0
\(715\) −13.8095 −0.516446
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.29398 12.6335i 0.272020 0.471152i −0.697359 0.716722i \(-0.745642\pi\)
0.969379 + 0.245570i \(0.0789751\pi\)
\(720\) 0 0
\(721\) −20.3001 13.8083i −0.756017 0.514248i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.18855 + 7.25477i 0.155559 + 0.269436i
\(726\) 0 0
\(727\) 3.76798 0.139747 0.0698734 0.997556i \(-0.477740\pi\)
0.0698734 + 0.997556i \(0.477740\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −30.7639 53.2846i −1.13784 1.97080i
\(732\) 0 0
\(733\) −12.5404 + 21.7207i −0.463191 + 0.802271i −0.999118 0.0419938i \(-0.986629\pi\)
0.535927 + 0.844265i \(0.319962\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.01034 6.94611i 0.147723 0.255863i
\(738\) 0 0
\(739\) 8.32715 + 14.4230i 0.306319 + 0.530560i 0.977554 0.210684i \(-0.0675692\pi\)
−0.671235 + 0.741245i \(0.734236\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.8561 0.434959 0.217479 0.976065i \(-0.430217\pi\)
0.217479 + 0.976065i \(0.430217\pi\)
\(744\) 0 0
\(745\) 3.90425 + 6.76235i 0.143041 + 0.247753i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.88009 + 6.72051i 0.361011 + 0.245562i
\(750\) 0 0
\(751\) −20.0690 + 34.7605i −0.732327 + 1.26843i 0.223559 + 0.974690i \(0.428232\pi\)
−0.955886 + 0.293737i \(0.905101\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.85709 0.0675864
\(756\) 0 0
\(757\) −0.732857 −0.0266361 −0.0133181 0.999911i \(-0.504239\pi\)
−0.0133181 + 0.999911i \(0.504239\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.02042 10.4277i 0.218240 0.378003i −0.736030 0.676949i \(-0.763302\pi\)
0.954270 + 0.298946i \(0.0966351\pi\)
\(762\) 0 0
\(763\) −18.3108 + 8.84239i −0.662896 + 0.320116i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.04547 + 15.6672i 0.326613 + 0.565710i
\(768\) 0 0
\(769\) 20.3382 0.733413 0.366706 0.930337i \(-0.380485\pi\)
0.366706 + 0.930337i \(0.380485\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.4299 + 40.5818i 0.842716 + 1.45963i 0.887590 + 0.460634i \(0.152378\pi\)
−0.0448742 + 0.998993i \(0.514289\pi\)
\(774\) 0 0
\(775\) −0.852597 + 1.47674i −0.0306262 + 0.0530461i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.152452 + 0.264055i −0.00546217 + 0.00946076i
\(780\) 0 0
\(781\) −0.866224 1.50034i −0.0309959 0.0536865i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.316282 −0.0112886
\(786\) 0 0
\(787\) −10.2234 17.7074i −0.364424 0.631200i 0.624260 0.781217i \(-0.285401\pi\)
−0.988684 + 0.150016i \(0.952067\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.541629 7.33382i 0.0192581 0.260760i
\(792\) 0 0
\(793\) −0.823413 + 1.42619i −0.0292403 + 0.0506456i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.73313 −0.309344 −0.154672 0.987966i \(-0.549432\pi\)
−0.154672 + 0.987966i \(0.549432\pi\)
\(798\) 0 0
\(799\) 12.5487 0.443940
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 19.3394 33.4969i 0.682474 1.18208i
\(804\) 0 0