Properties

Label 2520.2.bi.q.361.1
Level $2520$
Weight $2$
Character 2520.361
Analytic conductor $20.122$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2520.bi (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(20.1223013094\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.11337408.1
Defining polynomial: \(x^{6} + 18 x^{4} + 81 x^{2} + 12\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.391571i\) of defining polynomial
Character \(\chi\) \(=\) 2520.361
Dual form 2520.2.bi.q.1801.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{5} +(-0.292113 + 2.62958i) q^{7} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{5} +(-0.292113 + 2.62958i) q^{7} +(0.839111 - 1.45338i) q^{11} -4.84667 q^{13} +(1.00000 - 1.73205i) q^{17} +(-3.42334 - 5.92939i) q^{19} +(-1.13122 - 1.95934i) q^{23} +(-0.500000 + 0.866025i) q^{25} -3.32178 q^{29} +(-4.58423 + 7.94011i) q^{31} +(-2.42334 + 1.06181i) q^{35} +(1.42334 + 2.46529i) q^{37} -9.52489 q^{41} +6.58423 q^{43} +(-6.10156 - 10.5682i) q^{47} +(-6.82934 - 1.53627i) q^{49} +(3.74511 - 6.48673i) q^{53} +1.67822 q^{55} +(4.00000 - 6.92820i) q^{59} +(3.24511 + 5.62070i) q^{61} +(-2.42334 - 4.19734i) q^{65} +(2.87634 - 4.98196i) q^{67} +(5.84667 - 10.1267i) q^{73} +(3.57666 + 2.63106i) q^{77} +(-2.84667 - 4.93058i) q^{79} +12.5842 q^{83} +2.00000 q^{85} +(-2.92334 - 5.06337i) q^{89} +(1.41577 - 12.7447i) q^{91} +(3.42334 - 5.92939i) q^{95} -2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 3q^{5} + 6q^{7} + O(q^{10}) \) \( 6q + 3q^{5} + 6q^{7} + 3q^{11} + 6q^{13} + 6q^{17} - 3q^{19} + 3q^{23} - 3q^{25} - 24q^{29} - 12q^{31} + 3q^{35} - 9q^{37} - 18q^{41} + 24q^{43} - 15q^{47} - 12q^{49} + 9q^{53} + 6q^{55} + 24q^{59} + 6q^{61} + 3q^{65} - 6q^{67} + 39q^{77} + 18q^{79} + 60q^{83} + 12q^{85} + 24q^{91} + 3q^{95} - 12q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(1081\) \(1261\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −0.292113 + 2.62958i −0.110408 + 0.993886i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.839111 1.45338i 0.253001 0.438211i −0.711349 0.702839i \(-0.751916\pi\)
0.964351 + 0.264627i \(0.0852490\pi\)
\(12\) 0 0
\(13\) −4.84667 −1.34422 −0.672112 0.740449i \(-0.734613\pi\)
−0.672112 + 0.740449i \(0.734613\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 1.73205i 0.242536 0.420084i −0.718900 0.695113i \(-0.755354\pi\)
0.961436 + 0.275029i \(0.0886875\pi\)
\(18\) 0 0
\(19\) −3.42334 5.92939i −0.785367 1.36030i −0.928779 0.370633i \(-0.879141\pi\)
0.143412 0.989663i \(-0.454192\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.13122 1.95934i −0.235876 0.408550i 0.723651 0.690166i \(-0.242463\pi\)
−0.959527 + 0.281617i \(0.909129\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.32178 −0.616839 −0.308419 0.951250i \(-0.599800\pi\)
−0.308419 + 0.951250i \(0.599800\pi\)
\(30\) 0 0
\(31\) −4.58423 + 7.94011i −0.823351 + 1.42609i 0.0798217 + 0.996809i \(0.474565\pi\)
−0.903173 + 0.429277i \(0.858768\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.42334 + 1.06181i −0.409619 + 0.179479i
\(36\) 0 0
\(37\) 1.42334 + 2.46529i 0.233995 + 0.405291i 0.958980 0.283473i \(-0.0914867\pi\)
−0.724985 + 0.688765i \(0.758153\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.52489 −1.48754 −0.743769 0.668437i \(-0.766964\pi\)
−0.743769 + 0.668437i \(0.766964\pi\)
\(42\) 0 0
\(43\) 6.58423 1.00408 0.502042 0.864843i \(-0.332582\pi\)
0.502042 + 0.864843i \(0.332582\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.10156 10.5682i −0.890004 1.54153i −0.839869 0.542789i \(-0.817368\pi\)
−0.0501344 0.998742i \(-0.515965\pi\)
\(48\) 0 0
\(49\) −6.82934 1.53627i −0.975620 0.219466i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.74511 6.48673i 0.514431 0.891021i −0.485429 0.874276i \(-0.661336\pi\)
0.999860 0.0167445i \(-0.00533020\pi\)
\(54\) 0 0
\(55\) 1.67822 0.226291
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000 6.92820i 0.520756 0.901975i −0.478953 0.877841i \(-0.658984\pi\)
0.999709 0.0241347i \(-0.00768307\pi\)
\(60\) 0 0
\(61\) 3.24511 + 5.62070i 0.415494 + 0.719657i 0.995480 0.0949692i \(-0.0302753\pi\)
−0.579986 + 0.814627i \(0.696942\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.42334 4.19734i −0.300578 0.520616i
\(66\) 0 0
\(67\) 2.87634 4.98196i 0.351401 0.608644i −0.635094 0.772434i \(-0.719039\pi\)
0.986495 + 0.163791i \(0.0523722\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 5.84667 10.1267i 0.684301 1.18524i −0.289355 0.957222i \(-0.593441\pi\)
0.973656 0.228022i \(-0.0732260\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.57666 + 2.63106i 0.407599 + 0.299837i
\(78\) 0 0
\(79\) −2.84667 4.93058i −0.320276 0.554734i 0.660269 0.751029i \(-0.270442\pi\)
−0.980545 + 0.196295i \(0.937109\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.5842 1.38130 0.690649 0.723190i \(-0.257325\pi\)
0.690649 + 0.723190i \(0.257325\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.92334 5.06337i −0.309873 0.536716i 0.668461 0.743747i \(-0.266953\pi\)
−0.978334 + 0.207031i \(0.933620\pi\)
\(90\) 0 0
\(91\) 1.41577 12.7447i 0.148414 1.33601i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.42334 5.92939i 0.351227 0.608343i
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.50756 + 14.7355i −0.846534 + 1.46624i 0.0377483 + 0.999287i \(0.487981\pi\)
−0.884282 + 0.466953i \(0.845352\pi\)
\(102\) 0 0
\(103\) −3.55456 6.15668i −0.350241 0.606635i 0.636050 0.771648i \(-0.280567\pi\)
−0.986292 + 0.165012i \(0.947234\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.876338 1.51786i −0.0847188 0.146737i 0.820553 0.571571i \(-0.193666\pi\)
−0.905271 + 0.424834i \(0.860333\pi\)
\(108\) 0 0
\(109\) −9.77001 + 16.9222i −0.935797 + 1.62085i −0.162591 + 0.986694i \(0.551985\pi\)
−0.773206 + 0.634154i \(0.781348\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.3369 −0.972414 −0.486207 0.873844i \(-0.661620\pi\)
−0.486207 + 0.873844i \(0.661620\pi\)
\(114\) 0 0
\(115\) 1.13122 1.95934i 0.105487 0.182709i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.26245 + 3.13553i 0.390738 + 0.287434i
\(120\) 0 0
\(121\) 4.09179 + 7.08718i 0.371981 + 0.644289i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −19.1836 −1.70227 −0.851133 0.524949i \(-0.824084\pi\)
−0.851133 + 0.524949i \(0.824084\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.91357 15.4387i −0.778782 1.34889i −0.932644 0.360797i \(-0.882505\pi\)
0.153862 0.988092i \(-0.450829\pi\)
\(132\) 0 0
\(133\) 16.5918 7.26987i 1.43869 0.630378i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000 3.46410i 0.170872 0.295958i −0.767853 0.640626i \(-0.778675\pi\)
0.938725 + 0.344668i \(0.112008\pi\)
\(138\) 0 0
\(139\) −5.16845 −0.438382 −0.219191 0.975682i \(-0.570342\pi\)
−0.219191 + 0.975682i \(0.570342\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.06689 + 7.04407i −0.340091 + 0.589054i
\(144\) 0 0
\(145\) −1.66089 2.87674i −0.137929 0.238901i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.398443 + 0.690123i 0.0326417 + 0.0565371i 0.881885 0.471465i \(-0.156275\pi\)
−0.849243 + 0.528002i \(0.822941\pi\)
\(150\) 0 0
\(151\) 8.26245 14.3110i 0.672388 1.16461i −0.304837 0.952405i \(-0.598602\pi\)
0.977225 0.212206i \(-0.0680648\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.16845 −0.736428
\(156\) 0 0
\(157\) −4.10156 + 7.10411i −0.327340 + 0.566969i −0.981983 0.188969i \(-0.939486\pi\)
0.654643 + 0.755938i \(0.272819\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.48267 2.40229i 0.432095 0.189327i
\(162\) 0 0
\(163\) −1.84667 3.19853i −0.144643 0.250528i 0.784597 0.620006i \(-0.212870\pi\)
−0.929240 + 0.369478i \(0.879537\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.262447 0.0203087 0.0101544 0.999948i \(-0.496768\pi\)
0.0101544 + 0.999948i \(0.496768\pi\)
\(168\) 0 0
\(169\) 10.4902 0.806941
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.42334 16.3217i −0.716443 1.24092i −0.962400 0.271635i \(-0.912436\pi\)
0.245957 0.969281i \(-0.420898\pi\)
\(174\) 0 0
\(175\) −2.13122 1.56777i −0.161105 0.118512i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00756 + 10.4054i −0.449026 + 0.777736i −0.998323 0.0578912i \(-0.981562\pi\)
0.549297 + 0.835627i \(0.314896\pi\)
\(180\) 0 0
\(181\) −6.03466 −0.448553 −0.224276 0.974526i \(-0.572002\pi\)
−0.224276 + 0.974526i \(0.572002\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.42334 + 2.46529i −0.104646 + 0.181252i
\(186\) 0 0
\(187\) −1.67822 2.90676i −0.122724 0.212564i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.41577 + 2.45219i 0.102442 + 0.177434i 0.912690 0.408652i \(-0.134001\pi\)
−0.810248 + 0.586087i \(0.800668\pi\)
\(192\) 0 0
\(193\) −6.49023 + 11.2414i −0.467177 + 0.809174i −0.999297 0.0374948i \(-0.988062\pi\)
0.532120 + 0.846669i \(0.321396\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.84667 0.345311 0.172656 0.984982i \(-0.444765\pi\)
0.172656 + 0.984982i \(0.444765\pi\)
\(198\) 0 0
\(199\) 7.69334 13.3253i 0.545367 0.944603i −0.453217 0.891400i \(-0.649724\pi\)
0.998584 0.0532026i \(-0.0169429\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.970334 8.73487i 0.0681041 0.613068i
\(204\) 0 0
\(205\) −4.76245 8.24880i −0.332624 0.576121i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −11.4902 −0.794796
\(210\) 0 0
\(211\) 9.18357 0.632223 0.316112 0.948722i \(-0.397623\pi\)
0.316112 + 0.948722i \(0.397623\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.29211 + 5.70211i 0.224520 + 0.388880i
\(216\) 0 0
\(217\) −19.5400 14.3740i −1.32646 0.975769i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.84667 + 8.39468i −0.326022 + 0.564687i
\(222\) 0 0
\(223\) −12.9805 −0.869236 −0.434618 0.900615i \(-0.643117\pi\)
−0.434618 + 0.900615i \(0.643117\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.0151 + 19.0788i −0.731099 + 1.26630i 0.225314 + 0.974286i \(0.427659\pi\)
−0.956414 + 0.292015i \(0.905674\pi\)
\(228\) 0 0
\(229\) −2.15333 3.72967i −0.142296 0.246464i 0.786065 0.618144i \(-0.212115\pi\)
−0.928361 + 0.371680i \(0.878782\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.00000 + 15.5885i 0.589610 + 1.02123i 0.994283 + 0.106773i \(0.0340517\pi\)
−0.404674 + 0.914461i \(0.632615\pi\)
\(234\) 0 0
\(235\) 6.10156 10.5682i 0.398022 0.689394i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.8618 −0.702591 −0.351296 0.936265i \(-0.614259\pi\)
−0.351296 + 0.936265i \(0.614259\pi\)
\(240\) 0 0
\(241\) −0.101557 + 0.175902i −0.00654187 + 0.0113309i −0.869278 0.494324i \(-0.835416\pi\)
0.862736 + 0.505655i \(0.168749\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.08423 6.68251i −0.133156 0.426930i
\(246\) 0 0
\(247\) 16.5918 + 28.7378i 1.05571 + 1.82854i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.03466 −0.317785 −0.158893 0.987296i \(-0.550792\pi\)
−0.158893 + 0.987296i \(0.550792\pi\)
\(252\) 0 0
\(253\) −3.79689 −0.238708
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.6933 + 20.2535i 0.729411 + 1.26338i 0.957133 + 0.289650i \(0.0935390\pi\)
−0.227722 + 0.973726i \(0.573128\pi\)
\(258\) 0 0
\(259\) −6.89844 + 3.02263i −0.428648 + 0.187817i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.5546 23.4772i 0.835810 1.44767i −0.0575594 0.998342i \(-0.518332\pi\)
0.893369 0.449323i \(-0.148335\pi\)
\(264\) 0 0
\(265\) 7.49023 0.460121
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.24511 5.62070i 0.197858 0.342700i −0.749976 0.661466i \(-0.769935\pi\)
0.947834 + 0.318765i \(0.103268\pi\)
\(270\) 0 0
\(271\) 11.6933 + 20.2535i 0.710320 + 1.23031i 0.964737 + 0.263216i \(0.0847831\pi\)
−0.254417 + 0.967095i \(0.581884\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.839111 + 1.45338i 0.0506003 + 0.0876422i
\(276\) 0 0
\(277\) −1.83155 + 3.17234i −0.110047 + 0.190607i −0.915789 0.401660i \(-0.868434\pi\)
0.805742 + 0.592267i \(0.201767\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −13.8965 −0.828993 −0.414497 0.910051i \(-0.636042\pi\)
−0.414497 + 0.910051i \(0.636042\pi\)
\(282\) 0 0
\(283\) 10.1685 17.6123i 0.604452 1.04694i −0.387686 0.921791i \(-0.626726\pi\)
0.992138 0.125150i \(-0.0399411\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.78234 25.0464i 0.164236 1.47844i
\(288\) 0 0
\(289\) 6.50000 + 11.2583i 0.382353 + 0.662255i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −18.8467 −1.10103 −0.550517 0.834824i \(-0.685569\pi\)
−0.550517 + 0.834824i \(0.685569\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.48267 + 9.49626i 0.317071 + 0.549183i
\(300\) 0 0
\(301\) −1.92334 + 17.3137i −0.110859 + 0.997946i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.24511 + 5.62070i −0.185815 + 0.321841i
\(306\) 0 0
\(307\) −2.39623 −0.136760 −0.0683802 0.997659i \(-0.521783\pi\)
−0.0683802 + 0.997659i \(0.521783\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.83155 + 4.90439i −0.160562 + 0.278102i −0.935071 0.354462i \(-0.884664\pi\)
0.774508 + 0.632564i \(0.217997\pi\)
\(312\) 0 0
\(313\) −14.8618 25.7414i −0.840038 1.45499i −0.889861 0.456231i \(-0.849199\pi\)
0.0498231 0.998758i \(-0.484134\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.52489 + 16.4976i 0.534971 + 0.926597i 0.999165 + 0.0408636i \(0.0130109\pi\)
−0.464193 + 0.885734i \(0.653656\pi\)
\(318\) 0 0
\(319\) −2.78734 + 4.82781i −0.156061 + 0.270306i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −13.6933 −0.761918
\(324\) 0 0
\(325\) 2.42334 4.19734i 0.134422 0.232827i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 29.5722 12.9574i 1.63037 0.714365i
\(330\) 0 0
\(331\) −1.16089 2.01072i −0.0638083 0.110519i 0.832356 0.554241i \(-0.186991\pi\)
−0.896165 + 0.443722i \(0.853658\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.75268 0.314302
\(336\) 0 0
\(337\) −16.4062 −0.893704 −0.446852 0.894608i \(-0.647455\pi\)
−0.446852 + 0.894608i \(0.647455\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.69334 + 13.3253i 0.416618 + 0.721603i
\(342\) 0 0
\(343\) 6.03466 17.5095i 0.325841 0.945425i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.29211 3.97006i 0.123047 0.213124i −0.797921 0.602762i \(-0.794067\pi\)
0.920968 + 0.389639i \(0.127400\pi\)
\(348\) 0 0
\(349\) 12.3716 0.662235 0.331117 0.943590i \(-0.392574\pi\)
0.331117 + 0.943590i \(0.392574\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.69334 16.7894i 0.515925 0.893608i −0.483904 0.875121i \(-0.660782\pi\)
0.999829 0.0184869i \(-0.00588489\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.90600 8.49745i −0.258929 0.448478i 0.707026 0.707187i \(-0.250036\pi\)
−0.965955 + 0.258709i \(0.916703\pi\)
\(360\) 0 0
\(361\) −13.9385 + 24.1421i −0.733603 + 1.27064i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 11.6933 0.612058
\(366\) 0 0
\(367\) 6.35901 11.0141i 0.331937 0.574933i −0.650954 0.759117i \(-0.725631\pi\)
0.982892 + 0.184184i \(0.0589644\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.9634 + 11.7429i 0.828776 + 0.609662i
\(372\) 0 0
\(373\) 8.20311 + 14.2082i 0.424741 + 0.735673i 0.996396 0.0848208i \(-0.0270318\pi\)
−0.571655 + 0.820494i \(0.693698\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.0996 0.829170
\(378\) 0 0
\(379\) 14.4707 0.743309 0.371655 0.928371i \(-0.378791\pi\)
0.371655 + 0.928371i \(0.378791\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.77478 3.07401i −0.0906871 0.157075i 0.817113 0.576477i \(-0.195573\pi\)
−0.907800 + 0.419402i \(0.862240\pi\)
\(384\) 0 0
\(385\) −0.490230 + 4.41301i −0.0249844 + 0.224908i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.49023 7.77731i 0.227664 0.394325i −0.729452 0.684032i \(-0.760225\pi\)
0.957115 + 0.289707i \(0.0935580\pi\)
\(390\) 0 0
\(391\) −4.52489 −0.228834
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.84667 4.93058i 0.143232 0.248084i
\(396\) 0 0
\(397\) 14.0498 + 24.3349i 0.705139 + 1.22134i 0.966642 + 0.256133i \(0.0824486\pi\)
−0.261503 + 0.965203i \(0.584218\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.3467 23.1171i −0.666501 1.15441i −0.978876 0.204455i \(-0.934458\pi\)
0.312375 0.949959i \(-0.398875\pi\)
\(402\) 0 0
\(403\) 22.2182 38.4831i 1.10677 1.91698i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.77735 0.236804
\(408\) 0 0
\(409\) −14.0325 + 24.3049i −0.693860 + 1.20180i 0.276703 + 0.960955i \(0.410758\pi\)
−0.970563 + 0.240846i \(0.922575\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 17.0498 + 12.5421i 0.838965 + 0.617157i
\(414\) 0 0
\(415\) 6.29211 + 10.8983i 0.308868 + 0.534974i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.8769 0.922198 0.461099 0.887349i \(-0.347455\pi\)
0.461099 + 0.887349i \(0.347455\pi\)
\(420\) 0 0
\(421\) −28.1836 −1.37358 −0.686792 0.726854i \(-0.740982\pi\)
−0.686792 + 0.726854i \(0.740982\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.00000 + 1.73205i 0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) −15.7280 + 6.89140i −0.761132 + 0.333498i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.41577 2.45219i 0.0681955 0.118118i −0.829912 0.557895i \(-0.811609\pi\)
0.898107 + 0.439777i \(0.144943\pi\)
\(432\) 0 0
\(433\) −2.33690 −0.112304 −0.0561522 0.998422i \(-0.517883\pi\)
−0.0561522 + 0.998422i \(0.517883\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.74511 + 13.4149i −0.370499 + 0.641723i
\(438\) 0 0
\(439\) 3.03466 + 5.25619i 0.144837 + 0.250864i 0.929312 0.369296i \(-0.120401\pi\)
−0.784475 + 0.620160i \(0.787068\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.80188 + 10.0492i 0.275656 + 0.477450i 0.970300 0.241903i \(-0.0777717\pi\)
−0.694645 + 0.719353i \(0.744438\pi\)
\(444\) 0 0
\(445\) 2.92334 5.06337i 0.138579 0.240027i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.13821 −0.195294 −0.0976470 0.995221i \(-0.531132\pi\)
−0.0976470 + 0.995221i \(0.531132\pi\)
\(450\) 0 0
\(451\) −7.99244 + 13.8433i −0.376349 + 0.651856i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11.7451 5.14625i 0.550619 0.241260i
\(456\) 0 0
\(457\) 6.32178 + 10.9496i 0.295720 + 0.512203i 0.975152 0.221536i \(-0.0711070\pi\)
−0.679432 + 0.733739i \(0.737774\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.7129 −0.964695 −0.482348 0.875980i \(-0.660216\pi\)
−0.482348 + 0.875980i \(0.660216\pi\)
\(462\) 0 0
\(463\) −16.3811 −0.761295 −0.380647 0.924720i \(-0.624299\pi\)
−0.380647 + 0.924720i \(0.624299\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.861215 1.49167i −0.0398523 0.0690262i 0.845411 0.534116i \(-0.179355\pi\)
−0.885264 + 0.465090i \(0.846022\pi\)
\(468\) 0 0
\(469\) 12.2602 + 9.01884i 0.566125 + 0.416452i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.52489 9.56940i 0.254035 0.440001i
\(474\) 0 0
\(475\) 6.84667 0.314147
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.890881 + 1.54305i −0.0407054 + 0.0705038i −0.885660 0.464334i \(-0.846294\pi\)
0.844955 + 0.534838i \(0.179627\pi\)
\(480\) 0 0
\(481\) −6.89844 11.9485i −0.314542 0.544803i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.00000 1.73205i −0.0454077 0.0786484i
\(486\) 0 0
\(487\) 5.50977 9.54320i 0.249672 0.432444i −0.713763 0.700387i \(-0.753011\pi\)
0.963435 + 0.267943i \(0.0863440\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20.9311 0.944608 0.472304 0.881436i \(-0.343422\pi\)
0.472304 + 0.881436i \(0.343422\pi\)
\(492\) 0 0
\(493\) −3.32178 + 5.75349i −0.149605 + 0.259124i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.75268 + 6.49983i 0.167993 + 0.290972i 0.937714 0.347408i \(-0.112938\pi\)
−0.769721 + 0.638380i \(0.779605\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.5842 −0.917805 −0.458903 0.888487i \(-0.651757\pi\)
−0.458903 + 0.888487i \(0.651757\pi\)
\(504\) 0 0
\(505\) −17.0151 −0.757163
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.82934 + 11.8288i 0.302705 + 0.524301i 0.976748 0.214392i \(-0.0687769\pi\)
−0.674043 + 0.738693i \(0.735444\pi\)
\(510\) 0 0
\(511\) 24.9211 + 18.3324i 1.10245 + 0.810978i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.55456 6.15668i 0.156633 0.271296i
\(516\) 0 0
\(517\) −20.4795 −0.900688
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.0820 + 36.5151i −0.923620 + 1.59976i −0.129854 + 0.991533i \(0.541451\pi\)
−0.793766 + 0.608224i \(0.791882\pi\)
\(522\) 0 0
\(523\) 15.3218 + 26.5381i 0.669975 + 1.16043i 0.977911 + 0.209023i \(0.0670284\pi\)
−0.307936 + 0.951407i \(0.599638\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.16845 + 15.8802i 0.399384 + 0.691753i
\(528\) 0 0
\(529\) 8.94067 15.4857i 0.388725 0.673291i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 46.1640 1.99959
\(534\) 0 0
\(535\) 0.876338 1.51786i 0.0378874 0.0656229i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.96335 + 8.63654i −0.343006 + 0.372002i
\(540\) 0 0
\(541\) 16.8445 + 29.1755i 0.724200 + 1.25435i 0.959302 + 0.282381i \(0.0911241\pi\)
−0.235102 + 0.971971i \(0.575543\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.5400 −0.837002
\(546\) 0 0
\(547\) −3.03979 −0.129972 −0.0649861 0.997886i \(-0.520700\pi\)
−0.0649861 + 0.997886i \(0.520700\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.3716 + 19.6961i 0.484445 + 0.839083i
\(552\) 0 0
\(553\) 13.7969 6.04526i 0.586703 0.257070i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.08202 15.7305i 0.384817 0.666523i −0.606926 0.794758i \(-0.707598\pi\)
0.991744 + 0.128235i \(0.0409311\pi\)
\(558\) 0 0
\(559\) −31.9116 −1.34972
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.4952 + 32.0347i −0.779481 + 1.35010i 0.152760 + 0.988263i \(0.451184\pi\)
−0.932241 + 0.361837i \(0.882150\pi\)
\(564\) 0 0
\(565\) −5.16845 8.95202i −0.217438 0.376614i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.3047 + 28.2405i 0.683527 + 1.18390i 0.973897 + 0.226990i \(0.0728884\pi\)
−0.290370 + 0.956915i \(0.593778\pi\)
\(570\) 0 0
\(571\) −20.2182 + 35.0190i −0.846107 + 1.46550i 0.0385496 + 0.999257i \(0.487726\pi\)
−0.884656 + 0.466243i \(0.845607\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.26245 0.0943505
\(576\) 0 0
\(577\) 19.0151 32.9352i 0.791610 1.37111i −0.133360 0.991068i \(-0.542577\pi\)
0.924970 0.380041i \(-0.124090\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.67601 + 33.0912i −0.152507 + 1.37285i
\(582\) 0 0
\(583\) −6.28513 10.8862i −0.260304 0.450859i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −34.0302 −1.40458 −0.702289 0.711892i \(-0.747839\pi\)
−0.702289 + 0.711892i \(0.747839\pi\)
\(588\) 0 0
\(589\) 62.7734 2.58653
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.8618 29.2055i −0.692431 1.19933i −0.971039 0.238921i \(-0.923206\pi\)
0.278608 0.960405i \(-0.410127\pi\)
\(594\) 0 0
\(595\) −0.584225 + 5.25915i −0.0239509 + 0.215604i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.15333 5.46172i 0.128841 0.223160i −0.794387 0.607413i \(-0.792207\pi\)
0.923228 + 0.384253i \(0.125541\pi\)
\(600\) 0 0
\(601\) −11.2871 −0.460411 −0.230206 0.973142i \(-0.573940\pi\)
−0.230206 + 0.973142i \(0.573940\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.09179 + 7.08718i −0.166355 + 0.288135i
\(606\) 0 0
\(607\) 7.73057 + 13.3897i 0.313774 + 0.543473i 0.979176 0.203012i \(-0.0650732\pi\)
−0.665402 + 0.746485i \(0.731740\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.5722 + 51.2206i 1.19637 + 2.07217i
\(612\) 0 0
\(613\) 11.0820 19.1946i 0.447598 0.775263i −0.550631 0.834749i \(-0.685613\pi\)
0.998229 + 0.0594857i \(0.0189461\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.9805 0.603091 0.301545 0.953452i \(-0.402498\pi\)
0.301545 + 0.953452i \(0.402498\pi\)
\(618\) 0 0
\(619\) −11.8196 + 20.4721i −0.475069 + 0.822843i −0.999592 0.0285529i \(-0.990910\pi\)
0.524524 + 0.851396i \(0.324243\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 14.1685 6.20806i 0.567647 0.248721i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.69334 0.227008
\(630\) 0 0
\(631\) −13.7818 −0.548643 −0.274322 0.961638i \(-0.588453\pi\)
−0.274322 + 0.961638i \(0.588453\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.59179 16.6135i −0.380638 0.659285i
\(636\) 0 0
\(637\) 33.0996 + 7.44577i 1.31145 + 0.295012i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21.9309 37.9854i 0.866218 1.50033i 0.000386062 1.00000i \(-0.499877\pi\)
0.865832 0.500334i \(-0.166790\pi\)
\(642\) 0 0
\(643\) 7.04979 0.278016 0.139008 0.990291i \(-0.455609\pi\)
0.139008 + 0.990291i \(0.455609\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.2403 + 21.2009i −0.481217 + 0.833493i −0.999768 0.0215540i \(-0.993139\pi\)
0.518550 + 0.855047i \(0.326472\pi\)
\(648\) 0 0
\(649\) −6.71288 11.6271i −0.263504 0.456402i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.408213 + 0.707046i 0.0159746 + 0.0276688i 0.873902 0.486102i \(-0.161582\pi\)
−0.857928 + 0.513771i \(0.828248\pi\)
\(654\) 0 0
\(655\) 8.91357 15.4387i 0.348282 0.603242i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −21.2871 −0.829228 −0.414614 0.909997i \(-0.636083\pi\)
−0.414614 + 0.909997i \(0.636083\pi\)
\(660\) 0 0
\(661\) −12.9731 + 22.4701i −0.504596 + 0.873986i 0.495390 + 0.868671i \(0.335025\pi\)
−0.999986 + 0.00531513i \(0.998308\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 14.5918 + 10.7340i 0.565845 + 0.416246i
\(666\) 0 0
\(667\) 3.75767 + 6.50848i 0.145498 + 0.252009i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.8920 0.420483
\(672\) 0 0
\(673\) 22.0693 0.850710 0.425355 0.905027i \(-0.360149\pi\)
0.425355 + 0.905027i \(0.360149\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.74511 + 4.75468i 0.105503 + 0.182737i 0.913944 0.405841i \(-0.133021\pi\)
−0.808440 + 0.588578i \(0.799688\pi\)
\(678\) 0 0
\(679\) 0.584225 5.25915i 0.0224205 0.201828i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.61389 16.6517i 0.367865 0.637161i −0.621366 0.783520i \(-0.713422\pi\)
0.989232 + 0.146359i \(0.0467554\pi\)
\(684\) 0 0
\(685\) 4.00000 0.152832
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.1513 + 31.4390i −0.691511 + 1.19773i
\(690\) 0 0
\(691\) −7.10912 12.3134i −0.270444 0.468422i 0.698532 0.715579i \(-0.253837\pi\)
−0.968975 + 0.247157i \(0.920504\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.58423 4.47601i −0.0980253 0.169785i
\(696\) 0 0
\(697\) −9.52489 + 16.4976i −0.360781 + 0.624891i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −14.1533 −0.534564 −0.267282 0.963618i \(-0.586125\pi\)
−0.267282 + 0.963618i \(0.586125\pi\)
\(702\) 0 0
\(703\) 9.74511 16.8790i 0.367544 0.636605i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −36.2630 26.6757i −1.36381 1.00324i
\(708\) 0 0
\(709\) −8.52268 14.7617i −0.320076 0.554388i 0.660427 0.750890i \(-0.270375\pi\)
−0.980503 + 0.196502i \(0.937042\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 20.7431 0.776836
\(714\) 0 0
\(715\) −8.13379 −0.304186
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5.75268 9.96393i −0.214539 0.371592i 0.738591 0.674154i \(-0.235491\pi\)
−0.953130 + 0.302562i \(0.902158\pi\)
\(720\) 0 0
\(721\) 17.2278 7.54854i 0.641596 0.281122i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.66089 2.87674i 0.0616839 0.106840i
\(726\) 0 0
\(727\) 16.4114 0.608664 0.304332 0.952566i \(-0.401567\pi\)
0.304332 + 0.952566i \(0.401567\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.58423 11.4042i 0.243526 0.421800i
\(732\) 0 0
\(733\) 4.55712 + 7.89317i 0.168321 + 0.291541i 0.937830 0.347096i \(-0.112832\pi\)
−0.769509 + 0.638637i \(0.779499\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.82713 8.36084i −0.177810 0.307975i
\(738\) 0 0
\(739\) 17.4978 30.3071i 0.643667 1.11486i −0.340941 0.940085i \(-0.610746\pi\)
0.984608 0.174779i \(-0.0559210\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 43.5305 1.59698 0.798489 0.602009i \(-0.205633\pi\)
0.798489 + 0.602009i \(0.205633\pi\)
\(744\) 0 0
\(745\) −0.398443 + 0.690123i −0.0145978 + 0.0252842i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.24732 1.86101i 0.155194 0.0679999i
\(750\) 0 0
\(751\) −3.15333 5.46172i −0.115067 0.199301i 0.802740 0.596329i \(-0.203375\pi\)
−0.917806 + 0.397028i \(0.870041\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.5249 0.601402
\(756\) 0 0
\(757\) 24.3369 0.884540 0.442270 0.896882i \(-0.354173\pi\)
0.442270 + 0.896882i \(0.354173\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.1016 24.4246i −0.511181 0.885392i −0.999916 0.0129592i \(-0.995875\pi\)
0.488735 0.872432i \(-0.337459\pi\)
\(762\) 0 0
\(763\) −41.6441 30.6342i −1.50762 1.10903i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −19.3867 + 33.5787i −0.700013 + 1.21246i
\(768\) 0 0
\(769\) −41.8965 −1.51082 −0.755412 0.655250i \(-0.772563\pi\)
−0.755412 + 0.655250i \(0.772563\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.9287 34.5175i 0.716785 1.24151i −0.245482 0.969401i \(-0.578946\pi\)
0.962267 0.272107i \(-0.0877205\pi\)
\(774\) 0 0
\(775\) −4.58423 7.94011i −0.164670 0.285217i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 32.6069 + 56.4768i 1.16826 + 2.02349i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8.20311 −0.292782
\(786\) 0 0
\(787\) −17.6637 + 30.5944i −0.629642 + 1.09057i 0.357981 + 0.933729i \(0.383465\pi\)
−0.987623 + 0.156843i \(0.949868\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.01954 27.1817i 0.107363 0.966469i
\(792\) 0 0
\(793\) −15.7280 27.2417i −0.558518 0.967381i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −29.6933 −1.05179 −0.525896 0.850549i \(-0.676270\pi\)
−0.525896 + 0.850549i \(0.676270\pi\)
\(798\) 0 0
\(799\) −24.4062 −0.863430
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.81201 16.9949i −0.346258 0.599737i
\(804\) 0