Properties

Label 2520.2.bi.q
Level $2520$
Weight $2$
Character orbit 2520.bi
Analytic conductor $20.122$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2520.bi (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(20.1223013094\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.11337408.1
Defining polynomial: \(x^{6} + 18 x^{4} + 81 x^{2} + 12\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{5} + ( 1 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} ) q^{7} +O(q^{10})\) \( q + \beta_{2} q^{5} + ( 1 + \beta_{1} - \beta_{3} - \beta_{4} + \beta_{5} ) q^{7} + ( 1 - 2 \beta_{1} - \beta_{2} - \beta_{4} ) q^{11} + ( 1 + \beta_{1} - 2 \beta_{3} ) q^{13} + ( 2 - 2 \beta_{2} ) q^{17} + ( -\beta_{1} - \beta_{2} + \beta_{4} - 2 \beta_{5} ) q^{19} + ( -\beta_{1} + \beta_{2} + \beta_{4} - \beta_{5} ) q^{23} + ( -1 + \beta_{2} ) q^{25} + ( -4 - \beta_{1} - 2 \beta_{4} ) q^{29} + ( -4 + 4 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} ) q^{31} + ( \beta_{1} + \beta_{2} - \beta_{3} ) q^{35} + ( \beta_{1} - 3 \beta_{2} - \beta_{4} + 2 \beta_{5} ) q^{37} + ( -3 + 2 \beta_{1} - 2 \beta_{3} + 2 \beta_{4} ) q^{41} + ( 4 + \beta_{3} + \beta_{4} ) q^{43} + ( -3 \beta_{1} - 5 \beta_{2} + 3 \beta_{4} - 2 \beta_{5} ) q^{47} + ( -1 - 2 \beta_{2} - 2 \beta_{3} - 3 \beta_{4} ) q^{49} + ( 3 + 2 \beta_{1} - 3 \beta_{2} + 2 \beta_{3} + 3 \beta_{4} - 2 \beta_{5} ) q^{53} + ( 1 - \beta_{1} - 2 \beta_{4} ) q^{55} + ( 8 - 8 \beta_{2} ) q^{59} + ( -\beta_{1} + 2 \beta_{2} + \beta_{4} + 2 \beta_{5} ) q^{61} + ( -\beta_{1} + \beta_{2} + \beta_{4} - 2 \beta_{5} ) q^{65} + ( -2 + 2 \beta_{2} + 3 \beta_{3} + 3 \beta_{4} - 3 \beta_{5} ) q^{67} + ( -4 \beta_{1} + 4 \beta_{3} + 2 \beta_{4} - 4 \beta_{5} ) q^{73} + ( 7 - 2 \beta_{1} - \beta_{2} - 2 \beta_{3} - \beta_{4} + 2 \beta_{5} ) q^{77} + ( -2 \beta_{1} + 6 \beta_{2} + 2 \beta_{4} - 4 \beta_{5} ) q^{79} + ( 10 + \beta_{3} + \beta_{4} ) q^{83} + 2 q^{85} + ( -\beta_{1} + \beta_{4} - 2 \beta_{5} ) q^{89} + ( 9 + \beta_{1} - 10 \beta_{2} - 2 \beta_{5} ) q^{91} + ( 1 - 2 \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{4} - 2 \beta_{5} ) q^{95} -2 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 3q^{5} + 6q^{7} + O(q^{10}) \) \( 6q + 3q^{5} + 6q^{7} + 3q^{11} + 6q^{13} + 6q^{17} - 3q^{19} + 3q^{23} - 3q^{25} - 24q^{29} - 12q^{31} + 3q^{35} - 9q^{37} - 18q^{41} + 24q^{43} - 15q^{47} - 12q^{49} + 9q^{53} + 6q^{55} + 24q^{59} + 6q^{61} + 3q^{65} - 6q^{67} + 39q^{77} + 18q^{79} + 60q^{83} + 12q^{85} + 24q^{91} + 3q^{95} - 12q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} + 18 x^{4} + 81 x^{2} + 12\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 9 \nu + 2 \)\()/4\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{2} + \nu + 6 \)\()/2\)
\(\beta_{4}\)\(=\)\((\)\( \nu^{4} + 9 \nu^{2} - 2 \nu \)\()/4\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{5} + \nu^{4} + 15 \nu^{3} + 11 \nu^{2} + 48 \nu + 12 \)\()/8\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(2 \beta_{3} - \beta_{1} - 6\)
\(\nu^{3}\)\(=\)\(4 \beta_{2} - 9 \beta_{1} - 2\)
\(\nu^{4}\)\(=\)\(4 \beta_{4} - 18 \beta_{3} + 11 \beta_{1} + 54\)
\(\nu^{5}\)\(=\)\(8 \beta_{5} - 4 \beta_{4} - 4 \beta_{3} - 60 \beta_{2} + 87 \beta_{1} + 30\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(1081\) \(1261\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.391571i
3.17656i
2.78499i
0.391571i
3.17656i
2.78499i
0 0 0 0.500000 + 0.866025i 0 −0.292113 + 2.62958i 0 0 0
361.2 0 0 0 0.500000 + 0.866025i 0 0.647140 2.56539i 0 0 0
361.3 0 0 0 0.500000 + 0.866025i 0 2.64497 0.0641892i 0 0 0
1801.1 0 0 0 0.500000 0.866025i 0 −0.292113 2.62958i 0 0 0
1801.2 0 0 0 0.500000 0.866025i 0 0.647140 + 2.56539i 0 0 0
1801.3 0 0 0 0.500000 0.866025i 0 2.64497 + 0.0641892i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1801.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2520.2.bi.q 6
3.b odd 2 1 280.2.q.e 6
7.c even 3 1 inner 2520.2.bi.q 6
12.b even 2 1 560.2.q.l 6
15.d odd 2 1 1400.2.q.j 6
15.e even 4 2 1400.2.bh.i 12
21.c even 2 1 1960.2.q.w 6
21.g even 6 1 1960.2.a.v 3
21.g even 6 1 1960.2.q.w 6
21.h odd 6 1 280.2.q.e 6
21.h odd 6 1 1960.2.a.w 3
84.j odd 6 1 3920.2.a.cb 3
84.n even 6 1 560.2.q.l 6
84.n even 6 1 3920.2.a.cc 3
105.o odd 6 1 1400.2.q.j 6
105.o odd 6 1 9800.2.a.ce 3
105.p even 6 1 9800.2.a.cf 3
105.x even 12 2 1400.2.bh.i 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.e 6 3.b odd 2 1
280.2.q.e 6 21.h odd 6 1
560.2.q.l 6 12.b even 2 1
560.2.q.l 6 84.n even 6 1
1400.2.q.j 6 15.d odd 2 1
1400.2.q.j 6 105.o odd 6 1
1400.2.bh.i 12 15.e even 4 2
1400.2.bh.i 12 105.x even 12 2
1960.2.a.v 3 21.g even 6 1
1960.2.a.w 3 21.h odd 6 1
1960.2.q.w 6 21.c even 2 1
1960.2.q.w 6 21.g even 6 1
2520.2.bi.q 6 1.a even 1 1 trivial
2520.2.bi.q 6 7.c even 3 1 inner
3920.2.a.cb 3 84.j odd 6 1
3920.2.a.cc 3 84.n even 6 1
9800.2.a.ce 3 105.o odd 6 1
9800.2.a.cf 3 105.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2520, [\chi])\):

\( T_{11}^{6} - 3 T_{11}^{5} + 33 T_{11}^{4} - 16 T_{11}^{3} + 708 T_{11}^{2} - 1056 T_{11} + 1936 \)
\( T_{13}^{3} - 3 T_{13}^{2} - 24 T_{13} + 68 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \)
$3$ \( T^{6} \)
$5$ \( ( 1 - T + T^{2} )^{3} \)
$7$ \( 343 - 294 T + 168 T^{2} - 80 T^{3} + 24 T^{4} - 6 T^{5} + T^{6} \)
$11$ \( 1936 - 1056 T + 708 T^{2} - 16 T^{3} + 33 T^{4} - 3 T^{5} + T^{6} \)
$13$ \( ( 68 - 24 T - 3 T^{2} + T^{3} )^{2} \)
$17$ \( ( 4 - 2 T + T^{2} )^{3} \)
$19$ \( 256 - 384 T + 528 T^{2} - 104 T^{3} + 33 T^{4} + 3 T^{5} + T^{6} \)
$23$ \( 49 + 105 T + 204 T^{2} + 59 T^{3} + 24 T^{4} - 3 T^{5} + T^{6} \)
$29$ \( ( -26 + 21 T + 12 T^{2} + T^{3} )^{2} \)
$31$ \( 16384 - 1536 T + 1680 T^{2} + 400 T^{3} + 132 T^{4} + 12 T^{5} + T^{6} \)
$37$ \( 9216 + 864 T^{2} + 192 T^{3} + 81 T^{4} + 9 T^{5} + T^{6} \)
$41$ \( ( -381 - 45 T + 9 T^{2} + T^{3} )^{2} \)
$43$ \( ( -22 + 39 T - 12 T^{2} + T^{3} )^{2} \)
$47$ \( 2521744 + 152448 T + 33036 T^{2} + 1736 T^{3} + 321 T^{4} + 15 T^{5} + T^{6} \)
$53$ \( 389376 - 44928 T + 10800 T^{2} - 600 T^{3} + 153 T^{4} - 9 T^{5} + T^{6} \)
$59$ \( ( 64 - 8 T + T^{2} )^{3} \)
$61$ \( 295936 - 47328 T + 10833 T^{2} - 566 T^{3} + 123 T^{4} - 6 T^{5} + T^{6} \)
$67$ \( 64 - 552 T + 4713 T^{2} - 430 T^{3} + 105 T^{4} + 6 T^{5} + T^{6} \)
$71$ \( T^{6} \)
$73$ \( 112896 + 36288 T + 11664 T^{2} + 672 T^{3} + 108 T^{4} + T^{6} \)
$79$ \( 589824 + 13824 T^{2} - 1536 T^{3} + 324 T^{4} - 18 T^{5} + T^{6} \)
$83$ \( ( -904 + 291 T - 30 T^{2} + T^{3} )^{2} \)
$89$ \( 1764 - 1134 T + 729 T^{2} - 84 T^{3} + 27 T^{4} + T^{6} \)
$97$ \( ( 2 + T )^{6} \)
show more
show less