Properties

Label 2520.2.bi.b.1801.1
Level $2520$
Weight $2$
Character 2520.1801
Analytic conductor $20.122$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2520.bi (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(20.1223013094\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 840)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1801.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2520.1801
Dual form 2520.2.bi.b.361.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(-2.00000 - 1.73205i) q^{7} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{5} +(-2.00000 - 1.73205i) q^{7} +(1.50000 + 2.59808i) q^{11} +1.00000 q^{13} +(3.50000 - 6.06218i) q^{19} +(-2.50000 + 4.33013i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-3.00000 - 5.19615i) q^{31} +(2.50000 - 0.866025i) q^{35} +(-1.50000 + 2.59808i) q^{37} +3.00000 q^{41} +8.00000 q^{43} +(-0.500000 + 0.866025i) q^{47} +(1.00000 + 6.92820i) q^{49} +(2.50000 + 4.33013i) q^{53} -3.00000 q^{55} +(-2.00000 - 3.46410i) q^{59} +(4.00000 - 6.92820i) q^{61} +(-0.500000 + 0.866025i) q^{65} +6.00000 q^{71} +(7.00000 + 12.1244i) q^{73} +(1.50000 - 7.79423i) q^{77} +(8.00000 - 13.8564i) q^{79} +16.0000 q^{83} +(3.00000 - 5.19615i) q^{89} +(-2.00000 - 1.73205i) q^{91} +(3.50000 + 6.06218i) q^{95} +16.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{5} - 4q^{7} + O(q^{10}) \) \( 2q - q^{5} - 4q^{7} + 3q^{11} + 2q^{13} + 7q^{19} - 5q^{23} - q^{25} - 6q^{31} + 5q^{35} - 3q^{37} + 6q^{41} + 16q^{43} - q^{47} + 2q^{49} + 5q^{53} - 6q^{55} - 4q^{59} + 8q^{61} - q^{65} + 12q^{71} + 14q^{73} + 3q^{77} + 16q^{79} + 32q^{83} + 6q^{89} - 4q^{91} + 7q^{95} + 32q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(1081\) \(1261\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −2.00000 1.73205i −0.755929 0.654654i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 3.50000 6.06218i 0.802955 1.39076i −0.114708 0.993399i \(-0.536593\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.50000 + 4.33013i −0.521286 + 0.902894i 0.478407 + 0.878138i \(0.341214\pi\)
−0.999694 + 0.0247559i \(0.992119\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −3.00000 5.19615i −0.538816 0.933257i −0.998968 0.0454165i \(-0.985539\pi\)
0.460152 0.887840i \(-0.347795\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.50000 0.866025i 0.422577 0.146385i
\(36\) 0 0
\(37\) −1.50000 + 2.59808i −0.246598 + 0.427121i −0.962580 0.270998i \(-0.912646\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.500000 + 0.866025i −0.0729325 + 0.126323i −0.900185 0.435507i \(-0.856569\pi\)
0.827253 + 0.561830i \(0.189902\pi\)
\(48\) 0 0
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.50000 + 4.33013i 0.343401 + 0.594789i 0.985062 0.172200i \(-0.0550875\pi\)
−0.641661 + 0.766989i \(0.721754\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.00000 3.46410i −0.260378 0.450988i 0.705965 0.708247i \(-0.250514\pi\)
−0.966342 + 0.257260i \(0.917180\pi\)
\(60\) 0 0
\(61\) 4.00000 6.92820i 0.512148 0.887066i −0.487753 0.872982i \(-0.662183\pi\)
0.999901 0.0140840i \(-0.00448323\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.500000 + 0.866025i −0.0620174 + 0.107417i
\(66\) 0 0
\(67\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 7.00000 + 12.1244i 0.819288 + 1.41905i 0.906208 + 0.422833i \(0.138964\pi\)
−0.0869195 + 0.996215i \(0.527702\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.50000 7.79423i 0.170941 0.888235i
\(78\) 0 0
\(79\) 8.00000 13.8564i 0.900070 1.55897i 0.0726692 0.997356i \(-0.476848\pi\)
0.827401 0.561611i \(-0.189818\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 5.19615i 0.317999 0.550791i −0.662071 0.749441i \(-0.730322\pi\)
0.980071 + 0.198650i \(0.0636557\pi\)
\(90\) 0 0
\(91\) −2.00000 1.73205i −0.209657 0.181568i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.50000 + 6.06218i 0.359092 + 0.621966i
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.00000 + 6.92820i 0.398015 + 0.689382i 0.993481 0.113998i \(-0.0363659\pi\)
−0.595466 + 0.803380i \(0.703033\pi\)
\(102\) 0 0
\(103\) −4.00000 + 6.92820i −0.394132 + 0.682656i −0.992990 0.118199i \(-0.962288\pi\)
0.598858 + 0.800855i \(0.295621\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.00000 12.1244i 0.676716 1.17211i −0.299249 0.954175i \(-0.596736\pi\)
0.975964 0.217931i \(-0.0699306\pi\)
\(108\) 0 0
\(109\) 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i \(-0.136131\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −2.50000 4.33013i −0.233126 0.403786i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.50000 6.06218i 0.305796 0.529655i −0.671642 0.740876i \(-0.734411\pi\)
0.977438 + 0.211221i \(0.0677440\pi\)
\(132\) 0 0
\(133\) −17.5000 + 6.06218i −1.51744 + 0.525657i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 1.73205i −0.0854358 0.147979i 0.820141 0.572161i \(-0.193895\pi\)
−0.905577 + 0.424182i \(0.860562\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.50000 + 2.59808i 0.125436 + 0.217262i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 0 0
\(151\) −7.00000 12.1244i −0.569652 0.986666i −0.996600 0.0823900i \(-0.973745\pi\)
0.426948 0.904276i \(-0.359589\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) 7.50000 + 12.9904i 0.598565 + 1.03675i 0.993033 + 0.117836i \(0.0375956\pi\)
−0.394468 + 0.918910i \(0.629071\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.5000 4.33013i 0.985138 0.341262i
\(162\) 0 0
\(163\) −4.00000 + 6.92820i −0.313304 + 0.542659i −0.979076 0.203497i \(-0.934769\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 23.0000 1.77979 0.889897 0.456162i \(-0.150776\pi\)
0.889897 + 0.456162i \(0.150776\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.50000 7.79423i 0.342129 0.592584i −0.642699 0.766119i \(-0.722185\pi\)
0.984828 + 0.173534i \(0.0555188\pi\)
\(174\) 0 0
\(175\) −0.500000 + 2.59808i −0.0377964 + 0.196396i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −7.50000 12.9904i −0.560576 0.970947i −0.997446 0.0714220i \(-0.977246\pi\)
0.436870 0.899525i \(-0.356087\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.50000 2.59808i −0.110282 0.191014i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.0000 + 19.0526i −0.795932 + 1.37859i 0.126314 + 0.991990i \(0.459685\pi\)
−0.922246 + 0.386604i \(0.873648\pi\)
\(192\) 0 0
\(193\) 1.00000 + 1.73205i 0.0719816 + 0.124676i 0.899770 0.436365i \(-0.143734\pi\)
−0.827788 + 0.561041i \(0.810401\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.0000 −1.06871 −0.534353 0.845262i \(-0.679445\pi\)
−0.534353 + 0.845262i \(0.679445\pi\)
\(198\) 0 0
\(199\) 12.0000 + 20.7846i 0.850657 + 1.47338i 0.880616 + 0.473831i \(0.157129\pi\)
−0.0299585 + 0.999551i \(0.509538\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.50000 + 2.59808i −0.104765 + 0.181458i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 21.0000 1.45260
\(210\) 0 0
\(211\) 9.00000 0.619586 0.309793 0.950804i \(-0.399740\pi\)
0.309793 + 0.950804i \(0.399740\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00000 + 6.92820i −0.272798 + 0.472500i
\(216\) 0 0
\(217\) −3.00000 + 15.5885i −0.203653 + 1.05821i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.0000 20.7846i −0.796468 1.37952i −0.921903 0.387421i \(-0.873366\pi\)
0.125435 0.992102i \(-0.459967\pi\)
\(228\) 0 0
\(229\) −11.0000 + 19.0526i −0.726900 + 1.25903i 0.231287 + 0.972886i \(0.425707\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.0000 + 19.0526i −0.720634 + 1.24817i 0.240112 + 0.970745i \(0.422816\pi\)
−0.960746 + 0.277429i \(0.910518\pi\)
\(234\) 0 0
\(235\) −0.500000 0.866025i −0.0326164 0.0564933i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) −3.50000 6.06218i −0.225455 0.390499i 0.731001 0.682376i \(-0.239053\pi\)
−0.956456 + 0.291877i \(0.905720\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.50000 2.59808i −0.415270 0.165985i
\(246\) 0 0
\(247\) 3.50000 6.06218i 0.222700 0.385727i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 31.0000 1.95670 0.978351 0.206951i \(-0.0663540\pi\)
0.978351 + 0.206951i \(0.0663540\pi\)
\(252\) 0 0
\(253\) −15.0000 −0.943042
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) 0 0
\(259\) 7.50000 2.59808i 0.466027 0.161437i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.0000 27.7128i −0.986602 1.70885i −0.634588 0.772851i \(-0.718830\pi\)
−0.352014 0.935995i \(-0.614503\pi\)
\(264\) 0 0
\(265\) −5.00000 −0.307148
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.00000 10.3923i −0.365826 0.633630i 0.623082 0.782157i \(-0.285880\pi\)
−0.988908 + 0.148527i \(0.952547\pi\)
\(270\) 0 0
\(271\) 12.0000 20.7846i 0.728948 1.26258i −0.228380 0.973572i \(-0.573343\pi\)
0.957328 0.289003i \(-0.0933238\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.50000 2.59808i 0.0904534 0.156670i
\(276\) 0 0
\(277\) −5.00000 8.66025i −0.300421 0.520344i 0.675810 0.737075i \(-0.263794\pi\)
−0.976231 + 0.216731i \(0.930460\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 17.0000 1.01413 0.507067 0.861906i \(-0.330729\pi\)
0.507067 + 0.861906i \(0.330729\pi\)
\(282\) 0 0
\(283\) 7.00000 + 12.1244i 0.416107 + 0.720718i 0.995544 0.0942988i \(-0.0300609\pi\)
−0.579437 + 0.815017i \(0.696728\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 5.19615i −0.354169 0.306719i
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.00000 −0.175262 −0.0876309 0.996153i \(-0.527930\pi\)
−0.0876309 + 0.996153i \(0.527930\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.50000 + 4.33013i −0.144579 + 0.250418i
\(300\) 0 0
\(301\) −16.0000 13.8564i −0.922225 0.798670i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 + 6.92820i 0.229039 + 0.396708i
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.00000 3.46410i −0.113410 0.196431i 0.803733 0.594990i \(-0.202844\pi\)
−0.917143 + 0.398559i \(0.869511\pi\)
\(312\) 0 0
\(313\) −6.00000 + 10.3923i −0.339140 + 0.587408i −0.984271 0.176664i \(-0.943469\pi\)
0.645131 + 0.764072i \(0.276803\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −0.500000 0.866025i −0.0277350 0.0480384i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.50000 0.866025i 0.137829 0.0477455i
\(330\) 0 0
\(331\) 8.50000 14.7224i 0.467202 0.809218i −0.532096 0.846684i \(-0.678595\pi\)
0.999298 + 0.0374662i \(0.0119287\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 36.0000 1.96104 0.980522 0.196407i \(-0.0629273\pi\)
0.980522 + 0.196407i \(0.0629273\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.00000 15.5885i 0.487377 0.844162i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.0000 29.4449i −0.912608 1.58068i −0.810366 0.585923i \(-0.800732\pi\)
−0.102241 0.994760i \(-0.532601\pi\)
\(348\) 0 0
\(349\) −4.00000 −0.214115 −0.107058 0.994253i \(-0.534143\pi\)
−0.107058 + 0.994253i \(0.534143\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 + 17.3205i −0.527780 + 0.914141i 0.471696 + 0.881761i \(0.343642\pi\)
−0.999476 + 0.0323801i \(0.989691\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.0000 −0.732793
\(366\) 0 0
\(367\) −2.50000 4.33013i −0.130499 0.226031i 0.793370 0.608740i \(-0.208325\pi\)
−0.923869 + 0.382709i \(0.874991\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.50000 12.9904i 0.129794 0.674427i
\(372\) 0 0
\(373\) −11.0000 + 19.0526i −0.569558 + 0.986504i 0.427051 + 0.904227i \(0.359552\pi\)
−0.996610 + 0.0822766i \(0.973781\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.00000 0.0513665 0.0256833 0.999670i \(-0.491824\pi\)
0.0256833 + 0.999670i \(0.491824\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.500000 + 0.866025i −0.0255488 + 0.0442518i −0.878517 0.477711i \(-0.841467\pi\)
0.852968 + 0.521963i \(0.174800\pi\)
\(384\) 0 0
\(385\) 6.00000 + 5.19615i 0.305788 + 0.264820i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.0000 + 22.5167i 0.659126 + 1.14164i 0.980842 + 0.194804i \(0.0624070\pi\)
−0.321716 + 0.946836i \(0.604260\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.00000 + 13.8564i 0.402524 + 0.697191i
\(396\) 0 0
\(397\) 9.00000 15.5885i 0.451697 0.782362i −0.546795 0.837267i \(-0.684152\pi\)
0.998492 + 0.0549046i \(0.0174855\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.5000 + 25.1147i −0.724095 + 1.25417i 0.235250 + 0.971935i \(0.424409\pi\)
−0.959345 + 0.282235i \(0.908924\pi\)
\(402\) 0 0
\(403\) −3.00000 5.19615i −0.149441 0.258839i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.00000 −0.446113
\(408\) 0 0
\(409\) 7.00000 + 12.1244i 0.346128 + 0.599511i 0.985558 0.169338i \(-0.0541630\pi\)
−0.639430 + 0.768849i \(0.720830\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.00000 + 10.3923i −0.0984136 + 0.511372i
\(414\) 0 0
\(415\) −8.00000 + 13.8564i −0.392705 + 0.680184i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.0000 −0.732798 −0.366399 0.930458i \(-0.619409\pi\)
−0.366399 + 0.930458i \(0.619409\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −20.0000 + 6.92820i −0.967868 + 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.00000 + 13.8564i 0.385346 + 0.667440i 0.991817 0.127666i \(-0.0407486\pi\)
−0.606471 + 0.795106i \(0.707415\pi\)
\(432\) 0 0
\(433\) 8.00000 0.384455 0.192228 0.981350i \(-0.438429\pi\)
0.192228 + 0.981350i \(0.438429\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.5000 + 30.3109i 0.837139 + 1.44997i
\(438\) 0 0
\(439\) 16.0000 27.7128i 0.763638 1.32266i −0.177325 0.984152i \(-0.556744\pi\)
0.940963 0.338508i \(-0.109922\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.0000 + 34.6410i −0.950229 + 1.64584i −0.205301 + 0.978699i \(0.565817\pi\)
−0.744927 + 0.667146i \(0.767516\pi\)
\(444\) 0 0
\(445\) 3.00000 + 5.19615i 0.142214 + 0.246321i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.0000 0.991051 0.495526 0.868593i \(-0.334975\pi\)
0.495526 + 0.868593i \(0.334975\pi\)
\(450\) 0 0
\(451\) 4.50000 + 7.79423i 0.211897 + 0.367016i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.50000 0.866025i 0.117202 0.0405999i
\(456\) 0 0
\(457\) 9.00000 15.5885i 0.421002 0.729197i −0.575036 0.818128i \(-0.695012\pi\)
0.996038 + 0.0889312i \(0.0283451\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −36.0000 −1.67669 −0.838344 0.545142i \(-0.816476\pi\)
−0.838344 + 0.545142i \(0.816476\pi\)
\(462\) 0 0
\(463\) −9.00000 −0.418265 −0.209133 0.977887i \(-0.567064\pi\)
−0.209133 + 0.977887i \(0.567064\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.00000 + 6.92820i −0.185098 + 0.320599i −0.943610 0.331061i \(-0.892594\pi\)
0.758512 + 0.651660i \(0.225927\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.0000 + 20.7846i 0.551761 + 0.955677i
\(474\) 0 0
\(475\) −7.00000 −0.321182
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17.0000 29.4449i −0.776750 1.34537i −0.933806 0.357780i \(-0.883534\pi\)
0.157056 0.987590i \(-0.449800\pi\)
\(480\) 0 0
\(481\) −1.50000 + 2.59808i −0.0683941 + 0.118462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.00000 + 13.8564i −0.363261 + 0.629187i
\(486\) 0 0
\(487\) −20.0000 34.6410i −0.906287 1.56973i −0.819181 0.573535i \(-0.805572\pi\)
−0.0871056 0.996199i \(-0.527762\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.0000 10.3923i −0.538274 0.466159i
\(498\) 0 0
\(499\) −12.0000 + 20.7846i −0.537194 + 0.930447i 0.461860 + 0.886953i \(0.347182\pi\)
−0.999054 + 0.0434940i \(0.986151\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −28.0000 −1.24846 −0.624229 0.781241i \(-0.714587\pi\)
−0.624229 + 0.781241i \(0.714587\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.00000 + 8.66025i −0.221621 + 0.383859i −0.955300 0.295637i \(-0.904468\pi\)
0.733679 + 0.679496i \(0.237801\pi\)
\(510\) 0 0
\(511\) 7.00000 36.3731i 0.309662 1.60905i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) 0 0
\(517\) −3.00000 −0.131940
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.5000 28.5788i −0.722878 1.25206i −0.959841 0.280543i \(-0.909485\pi\)
0.236963 0.971519i \(-0.423848\pi\)
\(522\) 0 0
\(523\) −13.0000 + 22.5167i −0.568450 + 0.984585i 0.428269 + 0.903651i \(0.359124\pi\)
−0.996719 + 0.0809336i \(0.974210\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −1.00000 1.73205i −0.0434783 0.0753066i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.00000 0.129944
\(534\) 0 0
\(535\) 7.00000 + 12.1244i 0.302636 + 0.524182i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16.5000 + 12.9904i −0.710705 + 0.559535i
\(540\) 0 0
\(541\) 1.00000 1.73205i 0.0429934 0.0744667i −0.843728 0.536771i \(-0.819644\pi\)
0.886721 + 0.462304i \(0.152977\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 24.0000 1.02617 0.513083 0.858339i \(-0.328503\pi\)
0.513083 + 0.858339i \(0.328503\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −40.0000 + 13.8564i −1.70097 + 0.589234i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.50000 7.79423i −0.190671 0.330252i 0.754802 0.655953i \(-0.227733\pi\)
−0.945473 + 0.325701i \(0.894400\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.00000 + 15.5885i 0.379305 + 0.656975i 0.990961 0.134148i \(-0.0428299\pi\)
−0.611656 + 0.791123i \(0.709497\pi\)
\(564\) 0 0
\(565\) 3.00000 5.19615i 0.126211 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.5000 + 28.5788i −0.691716 + 1.19809i 0.279559 + 0.960128i \(0.409812\pi\)
−0.971275 + 0.237959i \(0.923522\pi\)
\(570\) 0 0
\(571\) 20.0000 + 34.6410i 0.836974 + 1.44968i 0.892413 + 0.451219i \(0.149011\pi\)
−0.0554391 + 0.998462i \(0.517656\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.00000 0.208514
\(576\) 0 0
\(577\) −1.00000 1.73205i −0.0416305 0.0721062i 0.844459 0.535620i \(-0.179922\pi\)
−0.886090 + 0.463513i \(0.846589\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −32.0000 27.7128i −1.32758 1.14972i
\(582\) 0 0
\(583\) −7.50000 + 12.9904i −0.310618 + 0.538007i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 0 0
\(589\) −42.0000 −1.73058
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.00000 6.92820i 0.164260 0.284507i −0.772132 0.635462i \(-0.780810\pi\)
0.936392 + 0.350955i \(0.114143\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.0000 19.0526i −0.449448 0.778466i 0.548902 0.835887i \(-0.315046\pi\)
−0.998350 + 0.0574201i \(0.981713\pi\)
\(600\) 0 0
\(601\) 38.0000 1.55005 0.775026 0.631929i \(-0.217737\pi\)
0.775026 + 0.631929i \(0.217737\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.00000 + 1.73205i 0.0406558 + 0.0704179i
\(606\) 0 0
\(607\) −3.50000 + 6.06218i −0.142061 + 0.246056i −0.928272 0.371901i \(-0.878706\pi\)
0.786212 + 0.617957i \(0.212039\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.500000 + 0.866025i −0.0202278 + 0.0350356i
\(612\) 0 0
\(613\) 4.50000 + 7.79423i 0.181753 + 0.314806i 0.942478 0.334269i \(-0.108489\pi\)
−0.760724 + 0.649075i \(0.775156\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.00000 −0.161034 −0.0805170 0.996753i \(-0.525657\pi\)
−0.0805170 + 0.996753i \(0.525657\pi\)
\(618\) 0 0
\(619\) 15.5000 + 26.8468i 0.622998 + 1.07906i 0.988924 + 0.148420i \(0.0474187\pi\)
−0.365927 + 0.930644i \(0.619248\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −15.0000 + 5.19615i −0.600962 + 0.208179i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 14.0000 0.557331 0.278666 0.960388i \(-0.410108\pi\)
0.278666 + 0.960388i \(0.410108\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.50000 + 9.52628i −0.218261 + 0.378039i
\(636\) 0 0
\(637\) 1.00000 + 6.92820i 0.0396214 + 0.274505i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −17.5000 30.3109i −0.691208 1.19721i −0.971442 0.237276i \(-0.923745\pi\)
0.280234 0.959932i \(-0.409588\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.5000 + 37.2391i 0.845252 + 1.46402i 0.885402 + 0.464826i \(0.153883\pi\)
−0.0401498 + 0.999194i \(0.512784\pi\)
\(648\) 0 0
\(649\) 6.00000 10.3923i 0.235521 0.407934i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.50000 + 7.79423i −0.176099 + 0.305012i −0.940541 0.339680i \(-0.889681\pi\)
0.764442 + 0.644692i \(0.223014\pi\)
\(654\) 0 0
\(655\) 3.50000 + 6.06218i 0.136756 + 0.236869i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) −20.0000 34.6410i −0.777910 1.34738i −0.933144 0.359502i \(-0.882947\pi\)
0.155235 0.987878i \(-0.450387\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.50000 18.1865i 0.135724 0.705244i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) 12.0000 0.462566 0.231283 0.972887i \(-0.425708\pi\)
0.231283 + 0.972887i \(0.425708\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.5000 30.3109i 0.672580 1.16494i −0.304590 0.952483i \(-0.598520\pi\)
0.977170 0.212459i \(-0.0681471\pi\)
\(678\) 0 0
\(679\) −32.0000 27.7128i −1.22805 1.06352i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.00000 3.46410i −0.0765279 0.132550i 0.825222 0.564809i \(-0.191050\pi\)
−0.901750 + 0.432259i \(0.857717\pi\)
\(684\) 0 0
\(685\) 2.00000 0.0764161
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.50000 + 4.33013i 0.0952424 + 0.164965i
\(690\) 0 0
\(691\) −6.00000 + 10.3923i −0.228251 + 0.395342i −0.957290 0.289130i \(-0.906634\pi\)
0.729039 + 0.684472i \(0.239967\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.00000 3.46410i 0.0758643 0.131401i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 0 0
\(703\) 10.5000 + 18.1865i 0.396015 + 0.685918i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.00000 20.7846i 0.150435 0.781686i
\(708\) 0 0
\(709\) −2.00000 + 3.46410i −0.0751116 + 0.130097i −0.901135 0.433539i \(-0.857265\pi\)
0.826023 + 0.563636i \(0.190598\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 30.0000 1.12351
\(714\) 0 0
\(715\) −3.00000 −0.112194
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.00000 1.73205i 0.0372937 0.0645946i −0.846776 0.531949i \(-0.821460\pi\)
0.884070 + 0.467355i \(0.154793\pi\)
\(720\) 0 0
\(721\) 20.0000 6.92820i 0.744839 0.258020i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −33.0000 −1.22390 −0.611951 0.790896i \(-0.709615\pi\)
−0.611951 + 0.790896i \(0.709615\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −9.50000 + 16.4545i −0.350891 + 0.607760i −0.986406 0.164328i \(-0.947454\pi\)
0.635515 + 0.772088i \(0.280788\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −20.5000 35.5070i −0.754105 1.30615i −0.945818 0.324697i \(-0.894738\pi\)
0.191714 0.981451i \(-0.438596\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.00000 −0.183432 −0.0917161 0.995785i \(-0.529235\pi\)
−0.0917161 + 0.995785i \(0.529235\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −35.0000 + 12.1244i −1.27887 + 0.443014i
\(750\) 0 0
\(751\) −17.0000 + 29.4449i −0.620339 + 1.07446i 0.369084 + 0.929396i \(0.379672\pi\)
−0.989423 + 0.145062i \(0.953662\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.0000 0.509512
\(756\) 0 0
\(757\) −14.0000 −0.508839 −0.254419 0.967094i \(-0.581884\pi\)
−0.254419 + 0.967094i \(0.581884\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.5000 37.2391i 0.779374 1.34992i −0.152928 0.988237i \(-0.548870\pi\)
0.932303 0.361679i \(-0.117796\pi\)
\(762\) 0 0
\(763\) 1.00000 5.19615i 0.0362024 0.188113i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.00000 3.46410i −0.0722158 0.125081i
\(768\) 0 0
\(769\) 35.0000 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −15.5000 26.8468i −0.557496 0.965612i −0.997705 0.0677162i \(-0.978429\pi\)
0.440208 0.897896i \(-0.354905\pi\)
\(774\) 0 0
\(775\) −3.00000 + 5.19615i −0.107763 + 0.186651i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.5000 18.1865i 0.376202 0.651600i
\(780\) 0 0
\(781\) 9.00000 + 15.5885i 0.322045 + 0.557799i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.0000 −0.535373
\(786\) 0 0
\(787\) −19.0000 32.9090i −0.677277 1.17308i −0.975798 0.218675i \(-0.929827\pi\)
0.298521 0.954403i \(-0.403507\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0000 + 10.3923i 0.426671 + 0.369508i
\(792\) 0 0
\(793\) 4.00000 6.92820i 0.142044 0.246028i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −21.0000 + 36.3731i −0.741074 + 1.28358i
\(804\) 0