Properties

 Label 2520.2.bi.b Level $2520$ Weight $2$ Character orbit 2520.bi Analytic conductor $20.122$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2520.bi (of order $$3$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$20.1223013094$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 840) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{6} q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} +O(q^{10})$$ $$q -\zeta_{6} q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} + ( 3 - 3 \zeta_{6} ) q^{11} + q^{13} + 7 \zeta_{6} q^{19} -5 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} + ( -6 + 6 \zeta_{6} ) q^{31} + ( 2 + \zeta_{6} ) q^{35} -3 \zeta_{6} q^{37} + 3 q^{41} + 8 q^{43} -\zeta_{6} q^{47} + ( 5 - 8 \zeta_{6} ) q^{49} + ( 5 - 5 \zeta_{6} ) q^{53} -3 q^{55} + ( -4 + 4 \zeta_{6} ) q^{59} + 8 \zeta_{6} q^{61} -\zeta_{6} q^{65} + 6 q^{71} + ( 14 - 14 \zeta_{6} ) q^{73} + ( -3 + 9 \zeta_{6} ) q^{77} + 16 \zeta_{6} q^{79} + 16 q^{83} + 6 \zeta_{6} q^{89} + ( -3 + 2 \zeta_{6} ) q^{91} + ( 7 - 7 \zeta_{6} ) q^{95} + 16 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{5} - 4q^{7} + O(q^{10})$$ $$2q - q^{5} - 4q^{7} + 3q^{11} + 2q^{13} + 7q^{19} - 5q^{23} - q^{25} - 6q^{31} + 5q^{35} - 3q^{37} + 6q^{41} + 16q^{43} - q^{47} + 2q^{49} + 5q^{53} - 6q^{55} - 4q^{59} + 8q^{61} - q^{65} + 12q^{71} + 14q^{73} + 3q^{77} + 16q^{79} + 32q^{83} + 6q^{89} - 4q^{91} + 7q^{95} + 32q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times$$.

 $$n$$ $$281$$ $$631$$ $$1081$$ $$1261$$ $$2017$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{6}$$ $$1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 −0.500000 0.866025i 0 −2.00000 + 1.73205i 0 0 0
1801.1 0 0 0 −0.500000 + 0.866025i 0 −2.00000 1.73205i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2520.2.bi.b 2
3.b odd 2 1 840.2.bg.d 2
7.c even 3 1 inner 2520.2.bi.b 2
12.b even 2 1 1680.2.bg.i 2
21.g even 6 1 5880.2.a.bh 1
21.h odd 6 1 840.2.bg.d 2
21.h odd 6 1 5880.2.a.f 1
84.n even 6 1 1680.2.bg.i 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
840.2.bg.d 2 3.b odd 2 1
840.2.bg.d 2 21.h odd 6 1
1680.2.bg.i 2 12.b even 2 1
1680.2.bg.i 2 84.n even 6 1
2520.2.bi.b 2 1.a even 1 1 trivial
2520.2.bi.b 2 7.c even 3 1 inner
5880.2.a.f 1 21.h odd 6 1
5880.2.a.bh 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2520, [\chi])$$:

 $$T_{11}^{2} - 3 T_{11} + 9$$ $$T_{13} - 1$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$1 + T + T^{2}$$
$7$ $$7 + 4 T + T^{2}$$
$11$ $$9 - 3 T + T^{2}$$
$13$ $$( -1 + T )^{2}$$
$17$ $$T^{2}$$
$19$ $$49 - 7 T + T^{2}$$
$23$ $$25 + 5 T + T^{2}$$
$29$ $$T^{2}$$
$31$ $$36 + 6 T + T^{2}$$
$37$ $$9 + 3 T + T^{2}$$
$41$ $$( -3 + T )^{2}$$
$43$ $$( -8 + T )^{2}$$
$47$ $$1 + T + T^{2}$$
$53$ $$25 - 5 T + T^{2}$$
$59$ $$16 + 4 T + T^{2}$$
$61$ $$64 - 8 T + T^{2}$$
$67$ $$T^{2}$$
$71$ $$( -6 + T )^{2}$$
$73$ $$196 - 14 T + T^{2}$$
$79$ $$256 - 16 T + T^{2}$$
$83$ $$( -16 + T )^{2}$$
$89$ $$36 - 6 T + T^{2}$$
$97$ $$( -16 + T )^{2}$$