Properties

Label 2520.1.ik.b
Level $2520$
Weight $1$
Character orbit 2520.ik
Analytic conductor $1.258$
Analytic rank $0$
Dimension $8$
Projective image $D_{12}$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2520.ik (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.25764383184\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{24} q^{2} + \zeta_{24}^{2} q^{4} -\zeta_{24}^{11} q^{5} -\zeta_{24}^{8} q^{7} + \zeta_{24}^{3} q^{8} +O(q^{10})\) \( q + \zeta_{24} q^{2} + \zeta_{24}^{2} q^{4} -\zeta_{24}^{11} q^{5} -\zeta_{24}^{8} q^{7} + \zeta_{24}^{3} q^{8} + q^{10} + ( -\zeta_{24} - \zeta_{24}^{3} ) q^{11} -\zeta_{24}^{9} q^{14} + \zeta_{24}^{4} q^{16} + \zeta_{24} q^{20} + ( -\zeta_{24}^{2} - \zeta_{24}^{4} ) q^{22} -\zeta_{24}^{10} q^{25} -\zeta_{24}^{10} q^{28} + ( \zeta_{24}^{5} - \zeta_{24}^{7} ) q^{29} + ( \zeta_{24}^{6} + \zeta_{24}^{10} ) q^{31} + \zeta_{24}^{5} q^{32} -\zeta_{24}^{7} q^{35} + \zeta_{24}^{2} q^{40} + ( -\zeta_{24}^{3} - \zeta_{24}^{5} ) q^{44} -\zeta_{24}^{4} q^{49} -\zeta_{24}^{11} q^{50} + ( -\zeta_{24} + \zeta_{24}^{9} ) q^{53} + ( -1 - \zeta_{24}^{2} ) q^{55} -\zeta_{24}^{11} q^{56} + ( \zeta_{24}^{6} - \zeta_{24}^{8} ) q^{58} + ( \zeta_{24}^{7} + \zeta_{24}^{9} ) q^{59} + ( \zeta_{24}^{7} + \zeta_{24}^{11} ) q^{62} + \zeta_{24}^{6} q^{64} -\zeta_{24}^{8} q^{70} + ( \zeta_{24}^{2} + \zeta_{24}^{8} ) q^{73} + ( \zeta_{24}^{9} + \zeta_{24}^{11} ) q^{77} + ( 1 - \zeta_{24}^{8} ) q^{79} + \zeta_{24}^{3} q^{80} -\zeta_{24}^{3} q^{83} + ( -\zeta_{24}^{4} - \zeta_{24}^{6} ) q^{88} + ( \zeta_{24}^{2} + \zeta_{24}^{4} ) q^{97} -\zeta_{24}^{5} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{7} + O(q^{10}) \) \( 8q + 4q^{7} + 8q^{10} + 4q^{16} - 4q^{22} - 4q^{49} - 8q^{55} + 4q^{58} + 4q^{70} - 4q^{73} + 12q^{79} - 4q^{88} + 4q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(1081\) \(1261\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{24}^{4}\) \(-1\) \(\zeta_{24}^{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−0.258819 0.965926i
0.258819 + 0.965926i
−0.258819 + 0.965926i
0.258819 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
−0.965926 + 0.258819i
0.965926 0.258819i
−0.258819 0.965926i 0 −0.866025 + 0.500000i −0.258819 + 0.965926i 0 0.500000 + 0.866025i 0.707107 + 0.707107i 0 1.00000
37.2 0.258819 + 0.965926i 0 −0.866025 + 0.500000i 0.258819 0.965926i 0 0.500000 + 0.866025i −0.707107 0.707107i 0 1.00000
613.1 −0.258819 + 0.965926i 0 −0.866025 0.500000i −0.258819 0.965926i 0 0.500000 0.866025i 0.707107 0.707107i 0 1.00000
613.2 0.258819 0.965926i 0 −0.866025 0.500000i 0.258819 + 0.965926i 0 0.500000 0.866025i −0.707107 + 0.707107i 0 1.00000
1117.1 −0.965926 0.258819i 0 0.866025 + 0.500000i −0.965926 + 0.258819i 0 0.500000 0.866025i −0.707107 0.707107i 0 1.00000
1117.2 0.965926 + 0.258819i 0 0.866025 + 0.500000i 0.965926 0.258819i 0 0.500000 0.866025i 0.707107 + 0.707107i 0 1.00000
2053.1 −0.965926 + 0.258819i 0 0.866025 0.500000i −0.965926 0.258819i 0 0.500000 + 0.866025i −0.707107 + 0.707107i 0 1.00000
2053.2 0.965926 0.258819i 0 0.866025 0.500000i 0.965926 + 0.258819i 0 0.500000 + 0.866025i 0.707107 0.707107i 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2053.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
3.b odd 2 1 inner
8.b even 2 1 inner
35.l odd 12 1 inner
105.x even 12 1 inner
280.bt odd 12 1 inner
840.dc even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2520.1.ik.b yes 8
3.b odd 2 1 inner 2520.1.ik.b yes 8
5.c odd 4 1 2520.1.ik.a 8
7.c even 3 1 2520.1.ik.a 8
8.b even 2 1 inner 2520.1.ik.b yes 8
15.e even 4 1 2520.1.ik.a 8
21.h odd 6 1 2520.1.ik.a 8
24.h odd 2 1 CM 2520.1.ik.b yes 8
35.l odd 12 1 inner 2520.1.ik.b yes 8
40.i odd 4 1 2520.1.ik.a 8
56.p even 6 1 2520.1.ik.a 8
105.x even 12 1 inner 2520.1.ik.b yes 8
120.w even 4 1 2520.1.ik.a 8
168.s odd 6 1 2520.1.ik.a 8
280.bt odd 12 1 inner 2520.1.ik.b yes 8
840.dc even 12 1 inner 2520.1.ik.b yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2520.1.ik.a 8 5.c odd 4 1
2520.1.ik.a 8 7.c even 3 1
2520.1.ik.a 8 15.e even 4 1
2520.1.ik.a 8 21.h odd 6 1
2520.1.ik.a 8 40.i odd 4 1
2520.1.ik.a 8 56.p even 6 1
2520.1.ik.a 8 120.w even 4 1
2520.1.ik.a 8 168.s odd 6 1
2520.1.ik.b yes 8 1.a even 1 1 trivial
2520.1.ik.b yes 8 3.b odd 2 1 inner
2520.1.ik.b yes 8 8.b even 2 1 inner
2520.1.ik.b yes 8 24.h odd 2 1 CM
2520.1.ik.b yes 8 35.l odd 12 1 inner
2520.1.ik.b yes 8 105.x even 12 1 inner
2520.1.ik.b yes 8 280.bt odd 12 1 inner
2520.1.ik.b yes 8 840.dc even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{79}^{2} - 3 T_{79} + 3 \) acting on \(S_{1}^{\mathrm{new}}(2520, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{4} + T^{8} \)
$3$ \( T^{8} \)
$5$ \( 1 - T^{4} + T^{8} \)
$7$ \( ( 1 - T + T^{2} )^{4} \)
$11$ \( 1 - 4 T^{2} + 15 T^{4} - 4 T^{6} + T^{8} \)
$13$ \( T^{8} \)
$17$ \( T^{8} \)
$19$ \( T^{8} \)
$23$ \( T^{8} \)
$29$ \( ( 1 - 4 T^{2} + T^{4} )^{2} \)
$31$ \( ( 9 + 3 T^{2} + T^{4} )^{2} \)
$37$ \( T^{8} \)
$41$ \( T^{8} \)
$43$ \( T^{8} \)
$47$ \( T^{8} \)
$53$ \( 81 - 9 T^{4} + T^{8} \)
$59$ \( 1 + 4 T^{2} + 15 T^{4} + 4 T^{6} + T^{8} \)
$61$ \( T^{8} \)
$67$ \( T^{8} \)
$71$ \( T^{8} \)
$73$ \( ( 4 + 4 T + 2 T^{2} + 2 T^{3} + T^{4} )^{2} \)
$79$ \( ( 3 - 3 T + T^{2} )^{4} \)
$83$ \( ( 1 + T^{4} )^{2} \)
$89$ \( T^{8} \)
$97$ \( ( 1 + 2 T + 2 T^{2} - 2 T^{3} + T^{4} )^{2} \)
show more
show less