Defining parameters
Level: | \( N \) | \(=\) | \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2520.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 280 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2520, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 12 | 24 |
Cusp forms | 20 | 8 | 12 |
Eisenstein series | 16 | 4 | 12 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2520, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||||
2520.1.h.a | \(1\) | \(1.258\) | \(\Q\) | \(D_{2}\) | \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-70}) \) | \(\Q(\sqrt{105}) \) | \(-1\) | \(0\) | \(-1\) | \(-1\) | \(q-q^{2}+q^{4}-q^{5}-q^{7}-q^{8}+q^{10}+\cdots\) |
2520.1.h.b | \(1\) | \(1.258\) | \(\Q\) | \(D_{2}\) | \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-70}) \) | \(\Q(\sqrt{105}) \) | \(-1\) | \(0\) | \(1\) | \(1\) | \(q-q^{2}+q^{4}+q^{5}+q^{7}-q^{8}-q^{10}+\cdots\) |
2520.1.h.c | \(1\) | \(1.258\) | \(\Q\) | \(D_{2}\) | \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-70}) \) | \(\Q(\sqrt{105}) \) | \(1\) | \(0\) | \(-1\) | \(1\) | \(q+q^{2}+q^{4}-q^{5}+q^{7}+q^{8}-q^{10}+\cdots\) |
2520.1.h.d | \(1\) | \(1.258\) | \(\Q\) | \(D_{2}\) | \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-70}) \) | \(\Q(\sqrt{105}) \) | \(1\) | \(0\) | \(1\) | \(-1\) | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) |
2520.1.h.e | \(4\) | \(1.258\) | \(\Q(\zeta_{8})\) | \(D_{4}\) | \(\Q(\sqrt{-14}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}^{2}q^{2}-q^{4}+\zeta_{8}^{3}q^{5}+\zeta_{8}^{2}q^{7}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(2520, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2520, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 3}\)