Properties

Label 252.9.z.d
Level $252$
Weight $9$
Character orbit 252.z
Analytic conductor $102.659$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 252.z (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(102.659409735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 3 x^{11} + 148097 x^{10} + 46071824 x^{9} + 21578502553 x^{8} + 3561445462121 x^{7} + 576413321817541 x^{6} + 47217566733462528 x^{5} + 5214056955297543333 x^{4} + 358752845334081085965 x^{3} + 30962072851910211245661 x^{2} + 1221542968331193193318500 x + 45396580558961892385326096\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{10}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -16 - 16 \beta_{1} + \beta_{3} ) q^{5} + ( 114 - 196 \beta_{1} + \beta_{3} + \beta_{5} ) q^{7} +O(q^{10})\) \( q + ( -16 - 16 \beta_{1} + \beta_{3} ) q^{5} + ( 114 - 196 \beta_{1} + \beta_{3} + \beta_{5} ) q^{7} + ( 2987 \beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{5} + \beta_{6} - \beta_{7} ) q^{11} + ( 1915 - 3832 \beta_{1} - 2 \beta_{2} + \beta_{3} - 3 \beta_{4} + \beta_{5} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{13} + ( 22860 - 11427 \beta_{1} + 3 \beta_{2} + \beta_{3} + 15 \beta_{4} + 15 \beta_{5} - \beta_{8} - \beta_{9} - 3 \beta_{10} ) q^{17} + ( 4118 + 4120 \beta_{1} + 3 \beta_{2} + 71 \beta_{3} + 23 \beta_{4} - 4 \beta_{5} + \beta_{6} - 2 \beta_{7} + 5 \beta_{9} + 3 \beta_{11} ) q^{19} + ( 10427 - 10411 \beta_{1} + 207 \beta_{2} - 96 \beta_{3} + 43 \beta_{4} + 10 \beta_{5} - 2 \beta_{6} - \beta_{8} - 9 \beta_{9} + 8 \beta_{10} + 4 \beta_{11} ) q^{23} + ( -36 + 146524 \beta_{1} + 99 \beta_{2} - 206 \beta_{3} + 31 \beta_{4} + 79 \beta_{5} + 27 \beta_{6} - 27 \beta_{7} + 15 \beta_{8} - 8 \beta_{9} + 7 \beta_{10} + 14 \beta_{11} ) q^{25} + ( 47985 - 6 \beta_{1} - 77 \beta_{2} - 92 \beta_{3} - 71 \beta_{4} - 45 \beta_{5} - 32 \beta_{7} + \beta_{8} - 8 \beta_{10} + 8 \beta_{11} ) q^{29} + ( 160501 - 80227 \beta_{1} - 454 \beta_{2} + 9 \beta_{3} + 25 \beta_{4} - 61 \beta_{5} - 32 \beta_{6} - 32 \beta_{7} + 16 \beta_{8} - 9 \beta_{9} + 5 \beta_{10} ) q^{31} + ( 74398 + 516226 \beta_{1} - 382 \beta_{2} + 160 \beta_{3} + 110 \beta_{4} + 50 \beta_{5} + 98 \beta_{6} - 63 \beta_{7} - 19 \beta_{8} - 17 \beta_{9} + 28 \beta_{10} + 35 \beta_{11} ) q^{35} + ( -342911 + 342810 \beta_{1} - 919 \beta_{2} + 416 \beta_{3} - 281 \beta_{4} - 88 \beta_{5} + 42 \beta_{6} + 23 \beta_{8} + 38 \beta_{9} - 24 \beta_{10} - 12 \beta_{11} ) q^{37} + ( -118027 + 236351 \beta_{1} + 2240 \beta_{2} - 2210 \beta_{3} + 40 \beta_{4} - 490 \beta_{5} - 64 \beta_{6} + 32 \beta_{7} - 42 \beta_{8} + 12 \beta_{9} - 63 \beta_{10} - 63 \beta_{11} ) q^{41} + ( 642727 + 158 \beta_{1} + 1505 \beta_{2} + 1528 \beta_{3} + 818 \beta_{4} + 88 \beta_{5} + 3 \beta_{7} + 111 \beta_{8} + 40 \beta_{9} - 24 \beta_{10} + 24 \beta_{11} ) q^{43} + ( -671980 - 672922 \beta_{1} + 147 \beta_{2} + 4858 \beta_{3} - 1296 \beta_{4} - 1554 \beta_{5} - 96 \beta_{6} + 192 \beta_{7} - 216 \beta_{8} + 69 \beta_{9} - 69 \beta_{11} ) q^{47} + ( -1805158 + 782782 \beta_{1} + 1599 \beta_{2} - 2177 \beta_{3} - 70 \beta_{4} + 267 \beta_{5} + 182 \beta_{6} - 133 \beta_{7} + 165 \beta_{8} + 106 \beta_{9} + 112 \beta_{10} + 91 \beta_{11} ) q^{49} + ( 586 + 917970 \beta_{1} + 1915 \beta_{2} - 3500 \beta_{3} - 1953 \beta_{4} - 2666 \beta_{5} - 126 \beta_{6} + 126 \beta_{7} + 41 \beta_{8} - 366 \beta_{9} + 23 \beta_{10} + 46 \beta_{11} ) q^{53} + ( 553847 - 1109548 \beta_{1} - 15285 \beta_{2} + 14770 \beta_{3} - 2097 \beta_{4} + 1807 \beta_{5} - 196 \beta_{6} + 98 \beta_{7} + 301 \beta_{8} + 214 \beta_{9} - 140 \beta_{10} - 140 \beta_{11} ) q^{55} + ( -836666 + 419074 \beta_{1} + 4454 \beta_{2} + 523 \beta_{3} + 2411 \beta_{4} + 3508 \beta_{5} - 161 \beta_{6} - 161 \beta_{7} - 379 \beta_{8} - 523 \beta_{9} + 231 \beta_{10} ) q^{59} + ( -2065735 - 2065505 \beta_{1} - 270 \beta_{2} - 8614 \beta_{3} + 3595 \beta_{4} + 1926 \beta_{5} - 286 \beta_{6} + 572 \beta_{7} - 177 \beta_{8} + 668 \beta_{9} - 447 \beta_{11} ) q^{61} + ( -844385 + 845297 \beta_{1} + 14559 \beta_{2} - 6954 \beta_{3} + 3505 \beta_{4} + 234 \beta_{5} + 604 \beta_{6} - 201 \beta_{8} - 213 \beta_{9} - 48 \beta_{10} - 24 \beta_{11} ) q^{65} + ( -1832 - 6133611 \beta_{1} + 5374 \beta_{2} - 11685 \beta_{3} - 533 \beta_{4} + 5592 \beta_{5} - 825 \beta_{6} + 825 \beta_{7} + 967 \beta_{8} - 627 \beta_{9} + 185 \beta_{10} + 370 \beta_{11} ) q^{67} + ( 2506548 - 291 \beta_{1} - 11532 \beta_{2} - 12477 \beta_{3} - 1177 \beta_{4} - 1179 \beta_{5} + 164 \beta_{7} + 185 \beta_{8} + 192 \beta_{9} - 469 \beta_{10} + 469 \beta_{11} ) q^{71} + ( 10573482 - 5286290 \beta_{1} - 26527 \beta_{2} + 276 \beta_{3} + 1482 \beta_{4} + 553 \beta_{5} - 27 \beta_{6} - 27 \beta_{7} + 66 \beta_{8} - 276 \beta_{9} + 268 \beta_{10} ) q^{73} + ( 5708008 - 5018006 \beta_{1} - 50349 \beta_{2} + 34779 \beta_{3} + 2233 \beta_{4} + 2134 \beta_{5} - 476 \beta_{6} - 126 \beta_{7} - 135 \beta_{8} + 73 \beta_{9} + 455 \beta_{10} - 497 \beta_{11} ) q^{77} + ( 1421832 - 1421127 \beta_{1} - 9759 \beta_{2} + 5049 \beta_{3} + 4220 \beta_{4} + 266 \beta_{5} + 1458 \beta_{6} - 378 \beta_{8} + 148 \beta_{9} - 514 \beta_{10} - 257 \beta_{11} ) q^{79} + ( 11714524 - 23433674 \beta_{1} + 46625 \beta_{2} - 48254 \beta_{3} - 7848 \beta_{4} + 1410 \beta_{5} - 6 \beta_{6} + 3 \beta_{7} + 1161 \beta_{8} + 468 \beta_{9} - 786 \beta_{10} - 786 \beta_{11} ) q^{83} + ( 1657571 + 289 \beta_{1} + 37010 \beta_{2} + 36120 \beta_{3} - 1124 \beta_{4} - 1184 \beta_{5} - 1326 \beta_{7} + 484 \beta_{8} - 16 \beta_{9} - 695 \beta_{10} + 695 \beta_{11} ) q^{85} + ( -4623970 - 4614982 \beta_{1} - 1382 \beta_{2} + 45802 \beta_{3} + 18250 \beta_{4} + 16952 \beta_{5} + 128 \beta_{6} - 256 \beta_{7} + 1766 \beta_{8} + 542 \beta_{9} + 384 \beta_{11} ) q^{89} + ( -22957097 + 12810079 \beta_{1} + 43725 \beta_{2} - 10051 \beta_{3} - 372 \beta_{4} - 2304 \beta_{5} + 1043 \beta_{6} - 2170 \beta_{7} - 165 \beta_{8} - 155 \beta_{9} + 476 \beta_{10} - 1414 \beta_{11} ) q^{91} + ( -9314 + 36923483 \beta_{1} - 36923 \beta_{2} + 68893 \beta_{3} + 7461 \beta_{4} + 30201 \beta_{5} + 154 \beta_{6} - 154 \beta_{7} + 3227 \beta_{8} - 447 \beta_{9} + 527 \beta_{10} + 1054 \beta_{11} ) q^{95} + ( -23088145 + 46181460 \beta_{1} - 18981 \beta_{2} + 20345 \beta_{3} + 1131 \beta_{4} - 8463 \beta_{5} - 746 \beta_{6} + 373 \beta_{7} + 288 \beta_{8} - 1652 \beta_{9} + 646 \beta_{10} + 646 \beta_{11} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 285 q^{5} + 198 q^{7} + O(q^{10}) \) \( 12 q - 285 q^{5} + 198 q^{7} + 17919 q^{11} + 205782 q^{17} + 74313 q^{19} + 62832 q^{23} + 878679 q^{25} + 575454 q^{29} + 1442952 q^{31} + 3989514 q^{35} - 2058621 q^{37} + 7721322 q^{43} - 12088194 q^{47} - 16964694 q^{49} + 5506743 q^{53} - 7511901 q^{59} - 37215576 q^{61} - 5047122 q^{65} - 36824553 q^{67} + 30011556 q^{71} + 95080185 q^{73} + 38333727 q^{77} + 8514456 q^{79} + 20121540 q^{85} - 83038554 q^{89} - 198538635 q^{91} + 221605224 q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 3 x^{11} + 148097 x^{10} + 46071824 x^{9} + 21578502553 x^{8} + 3561445462121 x^{7} + 576413321817541 x^{6} + 47217566733462528 x^{5} + 5214056955297543333 x^{4} + 358752845334081085965 x^{3} + 30962072851910211245661 x^{2} + 1221542968331193193318500 x + 45396580558961892385326096\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\(-\)\(15\!\cdots\!43\)\( \nu^{11} + \)\(92\!\cdots\!05\)\( \nu^{10} - \)\(23\!\cdots\!79\)\( \nu^{9} - \)\(71\!\cdots\!84\)\( \nu^{8} - \)\(33\!\cdots\!87\)\( \nu^{7} - \)\(56\!\cdots\!07\)\( \nu^{6} - \)\(91\!\cdots\!59\)\( \nu^{5} - \)\(69\!\cdots\!16\)\( \nu^{4} - \)\(71\!\cdots\!87\)\( \nu^{3} - \)\(34\!\cdots\!19\)\( \nu^{2} - \)\(40\!\cdots\!11\)\( \nu - \)\(14\!\cdots\!20\)\(\)\()/ \)\(14\!\cdots\!72\)\( \)
\(\beta_{2}\)\(=\)\((\)\(\)\(34\!\cdots\!83\)\( \nu^{11} + \)\(29\!\cdots\!80\)\( \nu^{10} + \)\(46\!\cdots\!52\)\( \nu^{9} + \)\(20\!\cdots\!52\)\( \nu^{8} + \)\(81\!\cdots\!19\)\( \nu^{7} + \)\(16\!\cdots\!64\)\( \nu^{6} + \)\(21\!\cdots\!88\)\( \nu^{5} + \)\(20\!\cdots\!24\)\( \nu^{4} + \)\(12\!\cdots\!07\)\( \nu^{3} + \)\(15\!\cdots\!80\)\( \nu^{2} + \)\(76\!\cdots\!20\)\( \nu + \)\(41\!\cdots\!04\)\(\)\()/ \)\(20\!\cdots\!24\)\( \)
\(\beta_{3}\)\(=\)\((\)\(-\)\(42\!\cdots\!13\)\( \nu^{11} + \)\(53\!\cdots\!03\)\( \nu^{10} - \)\(65\!\cdots\!28\)\( \nu^{9} - \)\(11\!\cdots\!48\)\( \nu^{8} - \)\(70\!\cdots\!05\)\( \nu^{7} - \)\(50\!\cdots\!73\)\( \nu^{6} - \)\(10\!\cdots\!56\)\( \nu^{5} - \)\(52\!\cdots\!20\)\( \nu^{4} - \)\(10\!\cdots\!09\)\( \nu^{3} - \)\(23\!\cdots\!13\)\( \nu^{2} - \)\(15\!\cdots\!76\)\( \nu + \)\(17\!\cdots\!08\)\(\)\()/ \)\(20\!\cdots\!24\)\( \)
\(\beta_{4}\)\(=\)\((\)\(\)\(49\!\cdots\!23\)\( \nu^{11} - \)\(91\!\cdots\!62\)\( \nu^{10} + \)\(76\!\cdots\!76\)\( \nu^{9} + \)\(96\!\cdots\!68\)\( \nu^{8} + \)\(68\!\cdots\!87\)\( \nu^{7} - \)\(16\!\cdots\!22\)\( \nu^{6} + \)\(26\!\cdots\!28\)\( \nu^{5} - \)\(16\!\cdots\!76\)\( \nu^{4} - \)\(16\!\cdots\!53\)\( \nu^{3} - \)\(12\!\cdots\!74\)\( \nu^{2} - \)\(53\!\cdots\!68\)\( \nu - \)\(86\!\cdots\!88\)\(\)\()/ \)\(20\!\cdots\!24\)\( \)
\(\beta_{5}\)\(=\)\((\)\(\)\(92\!\cdots\!02\)\( \nu^{11} + \)\(28\!\cdots\!05\)\( \nu^{10} + \)\(13\!\cdots\!72\)\( \nu^{9} + \)\(47\!\cdots\!16\)\( \nu^{8} + \)\(20\!\cdots\!54\)\( \nu^{7} + \)\(37\!\cdots\!49\)\( \nu^{6} + \)\(52\!\cdots\!36\)\( \nu^{5} + \)\(46\!\cdots\!04\)\( \nu^{4} + \)\(40\!\cdots\!42\)\( \nu^{3} + \)\(36\!\cdots\!69\)\( \nu^{2} + \)\(25\!\cdots\!92\)\( \nu + \)\(10\!\cdots\!68\)\(\)\()/ \)\(20\!\cdots\!24\)\( \)
\(\beta_{6}\)\(=\)\((\)\(\)\(15\!\cdots\!68\)\( \nu^{11} + \)\(16\!\cdots\!81\)\( \nu^{10} + \)\(16\!\cdots\!88\)\( \nu^{9} + \)\(10\!\cdots\!68\)\( \nu^{8} + \)\(31\!\cdots\!12\)\( \nu^{7} + \)\(69\!\cdots\!69\)\( \nu^{6} + \)\(30\!\cdots\!64\)\( \nu^{5} + \)\(71\!\cdots\!92\)\( \nu^{4} + \)\(14\!\cdots\!32\)\( \nu^{3} + \)\(12\!\cdots\!93\)\( \nu^{2} - \)\(23\!\cdots\!32\)\( \nu + \)\(78\!\cdots\!92\)\(\)\()/ \)\(28\!\cdots\!32\)\( \)
\(\beta_{7}\)\(=\)\((\)\(-\)\(18\!\cdots\!39\)\( \nu^{11} + \)\(54\!\cdots\!96\)\( \nu^{10} - \)\(31\!\cdots\!12\)\( \nu^{9} - \)\(67\!\cdots\!76\)\( \nu^{8} - \)\(20\!\cdots\!19\)\( \nu^{7} + \)\(29\!\cdots\!64\)\( \nu^{6} + \)\(30\!\cdots\!12\)\( \nu^{5} + \)\(80\!\cdots\!20\)\( \nu^{4} - \)\(16\!\cdots\!43\)\( \nu^{3} + \)\(62\!\cdots\!40\)\( \nu^{2} + \)\(14\!\cdots\!40\)\( \nu - \)\(44\!\cdots\!40\)\(\)\()/ \)\(20\!\cdots\!24\)\( \)
\(\beta_{8}\)\(=\)\((\)\(-\)\(13\!\cdots\!45\)\( \nu^{11} - \)\(88\!\cdots\!70\)\( \nu^{10} - \)\(18\!\cdots\!26\)\( \nu^{9} - \)\(76\!\cdots\!12\)\( \nu^{8} - \)\(31\!\cdots\!13\)\( \nu^{7} - \)\(62\!\cdots\!98\)\( \nu^{6} - \)\(86\!\cdots\!22\)\( \nu^{5} - \)\(84\!\cdots\!84\)\( \nu^{4} - \)\(65\!\cdots\!53\)\( \nu^{3} - \)\(65\!\cdots\!10\)\( \nu^{2} - \)\(33\!\cdots\!42\)\( \nu - \)\(20\!\cdots\!48\)\(\)\()/ \)\(50\!\cdots\!56\)\( \)
\(\beta_{9}\)\(=\)\((\)\(\)\(14\!\cdots\!29\)\( \nu^{11} - \)\(18\!\cdots\!95\)\( \nu^{10} + \)\(21\!\cdots\!76\)\( \nu^{9} + \)\(38\!\cdots\!84\)\( \nu^{8} + \)\(23\!\cdots\!05\)\( \nu^{7} + \)\(14\!\cdots\!13\)\( \nu^{6} + \)\(33\!\cdots\!60\)\( \nu^{5} - \)\(57\!\cdots\!76\)\( \nu^{4} + \)\(31\!\cdots\!85\)\( \nu^{3} - \)\(40\!\cdots\!19\)\( \nu^{2} + \)\(11\!\cdots\!00\)\( \nu - \)\(79\!\cdots\!00\)\(\)\()/ \)\(50\!\cdots\!56\)\( \)
\(\beta_{10}\)\(=\)\((\)\(\)\(17\!\cdots\!71\)\( \nu^{11} + \)\(84\!\cdots\!72\)\( \nu^{10} + \)\(24\!\cdots\!56\)\( \nu^{9} + \)\(92\!\cdots\!56\)\( \nu^{8} + \)\(39\!\cdots\!67\)\( \nu^{7} + \)\(76\!\cdots\!04\)\( \nu^{6} + \)\(11\!\cdots\!92\)\( \nu^{5} + \)\(10\!\cdots\!88\)\( \nu^{4} + \)\(85\!\cdots\!79\)\( \nu^{3} + \)\(82\!\cdots\!64\)\( \nu^{2} + \)\(49\!\cdots\!36\)\( \nu + \)\(25\!\cdots\!72\)\(\)\()/ \)\(20\!\cdots\!24\)\( \)
\(\beta_{11}\)\(=\)\((\)\(\)\(25\!\cdots\!43\)\( \nu^{11} - \)\(24\!\cdots\!56\)\( \nu^{10} + \)\(37\!\cdots\!88\)\( \nu^{9} + \)\(81\!\cdots\!48\)\( \nu^{8} + \)\(43\!\cdots\!47\)\( \nu^{7} + \)\(40\!\cdots\!52\)\( \nu^{6} + \)\(71\!\cdots\!04\)\( \nu^{5} + \)\(64\!\cdots\!84\)\( \nu^{4} + \)\(56\!\cdots\!23\)\( \nu^{3} + \)\(62\!\cdots\!24\)\( \nu^{2} + \)\(20\!\cdots\!76\)\( \nu - \)\(99\!\cdots\!36\)\(\)\()/ \)\(20\!\cdots\!24\)\( \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{9} + 2 \beta_{8} + 11 \beta_{5} - 2 \beta_{4} - 13 \beta_{3} + 5 \beta_{2} + 89 \beta_{1} - 4\)\()/168\)
\(\nu^{2}\)\(=\)\((\)\(-49 \beta_{11} - 98 \beta_{10} + 379 \beta_{9} + \beta_{8} - 357 \beta_{6} + 460 \beta_{5} - 3002 \beta_{4} - 3851 \beta_{3} + 6992 \beta_{2} + 8294560 \beta_{1} - 8295551\)\()/168\)
\(\nu^{3}\)\(=\)\((\)\(35084 \beta_{11} - 35084 \beta_{10} + 789666 \beta_{9} - 376181 \beta_{8} - 275352 \beta_{7} - 5422393 \beta_{5} - 4661151 \beta_{4} + 5080849 \beta_{3} + 6316864 \beta_{2} - 1577112 \beta_{1} - 5863038373\)\()/504\)
\(\nu^{4}\)\(=\)\((\)\(53732714 \beta_{11} + 26866357 \beta_{10} + 42409788 \beta_{9} - 238180922 \beta_{8} - 173747049 \beta_{7} + 173747049 \beta_{6} - 2066402749 \beta_{5} - 33838617 \beta_{4} + 4692219244 \beta_{3} - 2102267237 \beta_{2} - 3614068160130 \beta_{1} + 602856833\)\()/504\)
\(\nu^{5}\)\(=\)\((\)\(8924207908 \beta_{11} + 17848415816 \beta_{10} - 91153716975 \beta_{9} - 55734876919 \beta_{8} + 65807686308 \beta_{6} + 94177321174 \beta_{5} + 1002318143439 \beta_{4} + 1210261948916 \beta_{3} - 2191405794871 \beta_{2} - 1370554196910783 \beta_{1} + 1370856620314903\)\()/504\)
\(\nu^{6}\)\(=\)\((\)\(-4764138914563 \beta_{11} + 4764138914563 \beta_{10} - 56310552509697 \beta_{9} + 33032234588515 \beta_{8} + 31905883209375 \beta_{7} + 422083627352531 \beta_{5} + 414091380503085 \beta_{4} - 424790094382343 \beta_{3} - 523661159309681 \beta_{2} + 127139160601290 \beta_{1} + 662497632731591534\)\()/504\)
\(\nu^{7}\)\(=\)\((\)\(-1274799945134296 \beta_{11} - 637399972567148 \beta_{10} - 2616524333882439 \beta_{9} + 8096770470173170 \beta_{8} + 4510915272315424 \beta_{7} - 4510915272315424 \beta_{6} + 59380301078836581 \beta_{5} - 3967404870918330 \beta_{4} - 142373657159854427 \beta_{3} + 63760920304128115 \beta_{2} + 93756818996606666983 \beta_{1} - 18419862770187484\)\()/168\)
\(\nu^{8}\)\(=\)\((\)\(-299961991155128967 \beta_{11} - 599923982310257934 \beta_{10} + 2761901930293169945 \beta_{9} + 1318099722270022371 \beta_{8} - 2053490526212980771 \beta_{6} - 1548366975424523396 \beta_{5} - 28339508650667420450 \beta_{4} - 34636588569638199789 \beta_{3} + 62731235547575166284 \beta_{2} + 42654693205291567086156 \beta_{1} - 42663397124831251231461\)\()/168\)
\(\nu^{9}\)\(=\)\((\)\(386927738491689098956 \beta_{11} - 386927738491689098956 \beta_{10} + 5106521524739302481418 \beta_{9} - 2870639556898517562943 \beta_{8} - 2698426008365629430364 \beta_{7} - 37616807779741072724195 \beta_{5} - 35962269976141724572005 \beta_{4} + 37577453901333862646939 \beta_{3} + 46328470459955060889212 \beta_{2} - 11234728377028026706260 \beta_{1} - 56060198450193432047925767\)\()/504\)
\(\nu^{10}\)\(=\)\((\)\(116599898223201223155010 \beta_{11} + 58299949111600611577505 \beta_{10} + 207707048764039563694464 \beta_{9} - 691597561928202070173914 \beta_{8} - 402328591279221355789845 \beta_{7} + 402328591279221355789845 \beta_{6} - 5215740975238483537968789 \beta_{5} + 271146812509037522861491 \beta_{4} + 12389252477810540374275648 \beta_{3} - 5548582252247487287233637 \beta_{2} - 8359417814642448384326770846 \beta_{1} + 1601078639144926471555309\)\()/168\)
\(\nu^{11}\)\(=\)\((\)\(76888622884619494428173372 \beta_{11} + 153777245769238988856346744 \beta_{10} - 720087653429857536714139773 \beta_{9} - 359918693937678787472782481 \beta_{8} + 533709909997056195659524968 \beta_{6} + 460831206198717043031890610 \beta_{5} + 7478895624047354471311168581 \beta_{4} + 9122968496657117312610538480 \beta_{3} - 16522731615401460258748188305 \beta_{2} - 11087334140948660911575610655853 \beta_{1} + 11089623656734234304489941337537\)\()/504\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(1 - \beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
−41.5970 + 72.0480i
221.993 384.503i
−122.377 + 211.963i
−28.8366 + 49.9465i
−72.3408 + 125.298i
44.6586 77.3509i
−41.5970 72.0480i
221.993 + 384.503i
−122.377 211.963i
−28.8366 49.9465i
−72.3408 125.298i
44.6586 + 77.3509i
0 0 0 −1011.88 + 584.207i 0 −1829.74 + 1554.62i 0 0 0
73.2 0 0 0 −632.551 + 365.204i 0 984.437 2189.91i 0 0 0
73.3 0 0 0 133.903 77.3091i 0 −2234.88 877.558i 0 0 0
73.4 0 0 0 203.366 117.413i 0 1130.34 + 2118.29i 0 0 0
73.5 0 0 0 225.043 129.928i 0 597.275 + 2325.52i 0 0 0
73.6 0 0 0 939.615 542.487i 0 1451.57 1912.52i 0 0 0
145.1 0 0 0 −1011.88 584.207i 0 −1829.74 1554.62i 0 0 0
145.2 0 0 0 −632.551 365.204i 0 984.437 + 2189.91i 0 0 0
145.3 0 0 0 133.903 + 77.3091i 0 −2234.88 + 877.558i 0 0 0
145.4 0 0 0 203.366 + 117.413i 0 1130.34 2118.29i 0 0 0
145.5 0 0 0 225.043 + 129.928i 0 597.275 2325.52i 0 0 0
145.6 0 0 0 939.615 + 542.487i 0 1451.57 + 1912.52i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 145.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.9.z.d 12
3.b odd 2 1 84.9.m.b 12
7.d odd 6 1 inner 252.9.z.d 12
21.g even 6 1 84.9.m.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.9.m.b 12 3.b odd 2 1
84.9.m.b 12 21.g even 6 1
252.9.z.d 12 1.a even 1 1 trivial
252.9.z.d 12 7.d odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(21\!\cdots\!34\)\( T_{5}^{8} + \)\(31\!\cdots\!83\)\( T_{5}^{7} - \)\(67\!\cdots\!83\)\( T_{5}^{6} - \)\(32\!\cdots\!10\)\( T_{5}^{5} + \)\(20\!\cdots\!00\)\( T_{5}^{4} - \)\(85\!\cdots\!00\)\( T_{5}^{3} + \)\(17\!\cdots\!00\)\( T_{5}^{2} - \)\(17\!\cdots\!00\)\( T_{5} + \)\(76\!\cdots\!00\)\( \)">\(T_{5}^{12} + \cdots\) acting on \(S_{9}^{\mathrm{new}}(252, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \)
$3$ \( T^{12} \)
$5$ \( \)\(76\!\cdots\!00\)\( - \)\(17\!\cdots\!00\)\( T + \)\(17\!\cdots\!00\)\( T^{2} - \)\(85\!\cdots\!00\)\( T^{3} + \)\(20\!\cdots\!00\)\( T^{4} - 32049897802747435710 T^{5} - 679960365860892483 T^{6} + 311260236586983 T^{7} + 2118409775334 T^{8} - 455337945 T^{9} - 1570602 T^{10} + 285 T^{11} + T^{12} \)
$7$ \( \)\(36\!\cdots\!01\)\( - \)\(12\!\cdots\!98\)\( T + \)\(93\!\cdots\!49\)\( T^{2} + \)\(58\!\cdots\!98\)\( T^{3} + \)\(19\!\cdots\!38\)\( T^{4} + \)\(84\!\cdots\!86\)\( T^{5} + \)\(73\!\cdots\!77\)\( T^{6} + 146629745246641986 T^{7} + 57901709320938 T^{8} + 30443535598 T^{9} + 8501949 T^{10} - 198 T^{11} + T^{12} \)
$11$ \( \)\(16\!\cdots\!00\)\( + \)\(15\!\cdots\!00\)\( T + \)\(35\!\cdots\!40\)\( T^{2} + \)\(53\!\cdots\!40\)\( T^{3} + \)\(29\!\cdots\!76\)\( T^{4} + \)\(97\!\cdots\!10\)\( T^{5} + \)\(17\!\cdots\!75\)\( T^{6} - \)\(24\!\cdots\!97\)\( T^{7} + 551021544776781324 T^{8} - 6277714424145 T^{9} + 1057716756 T^{10} - 17919 T^{11} + T^{12} \)
$13$ \( \)\(21\!\cdots\!64\)\( + \)\(15\!\cdots\!24\)\( T^{2} + \)\(19\!\cdots\!60\)\( T^{4} + \)\(66\!\cdots\!15\)\( T^{6} + 9052853898338449947 T^{8} + 5107913481 T^{10} + T^{12} \)
$17$ \( \)\(10\!\cdots\!00\)\( - \)\(10\!\cdots\!80\)\( T + \)\(38\!\cdots\!52\)\( T^{2} - \)\(32\!\cdots\!08\)\( T^{3} - \)\(39\!\cdots\!60\)\( T^{4} + \)\(61\!\cdots\!56\)\( T^{5} + \)\(42\!\cdots\!08\)\( T^{6} - \)\(94\!\cdots\!28\)\( T^{7} + 94176297436197260448 T^{8} + 4882203625831704 T^{9} - 9609714264 T^{10} - 205782 T^{11} + T^{12} \)
$19$ \( \)\(83\!\cdots\!96\)\( - \)\(98\!\cdots\!20\)\( T + \)\(46\!\cdots\!36\)\( T^{2} - \)\(91\!\cdots\!20\)\( T^{3} + \)\(54\!\cdots\!00\)\( T^{4} + \)\(54\!\cdots\!22\)\( T^{5} - \)\(42\!\cdots\!39\)\( T^{6} - \)\(27\!\cdots\!31\)\( T^{7} + \)\(27\!\cdots\!26\)\( T^{8} + 4528382876267697 T^{9} - 59095810446 T^{10} - 74313 T^{11} + T^{12} \)
$23$ \( \)\(63\!\cdots\!64\)\( - \)\(26\!\cdots\!92\)\( T + \)\(91\!\cdots\!48\)\( T^{2} - \)\(10\!\cdots\!48\)\( T^{3} + \)\(98\!\cdots\!40\)\( T^{4} - \)\(29\!\cdots\!20\)\( T^{5} + \)\(19\!\cdots\!40\)\( T^{6} - \)\(29\!\cdots\!44\)\( T^{7} + \)\(31\!\cdots\!08\)\( T^{8} - 17273214136659456 T^{9} + 202735409760 T^{10} - 62832 T^{11} + T^{12} \)
$29$ \( ( \)\(23\!\cdots\!00\)\( + \)\(48\!\cdots\!00\)\( T + \)\(25\!\cdots\!00\)\( T^{2} - 55337485683990069 T^{3} - 1129194137997 T^{4} - 287727 T^{5} + T^{6} )^{2} \)
$31$ \( \)\(15\!\cdots\!81\)\( + \)\(45\!\cdots\!68\)\( T + \)\(44\!\cdots\!99\)\( T^{2} + \)\(76\!\cdots\!68\)\( T^{3} - \)\(56\!\cdots\!42\)\( T^{4} - \)\(10\!\cdots\!44\)\( T^{5} + \)\(87\!\cdots\!19\)\( T^{6} - \)\(14\!\cdots\!24\)\( T^{7} + \)\(71\!\cdots\!94\)\( T^{8} + 4411658625554488392 T^{9} - 2363347360953 T^{10} - 1442952 T^{11} + T^{12} \)
$37$ \( \)\(40\!\cdots\!84\)\( - \)\(57\!\cdots\!36\)\( T + \)\(19\!\cdots\!84\)\( T^{2} - \)\(10\!\cdots\!40\)\( T^{3} + \)\(40\!\cdots\!20\)\( T^{4} - \)\(16\!\cdots\!98\)\( T^{5} + \)\(53\!\cdots\!67\)\( T^{6} + \)\(58\!\cdots\!27\)\( T^{7} + \)\(23\!\cdots\!20\)\( T^{8} + 4623250969555980215 T^{9} + 8223725397576 T^{10} + 2058621 T^{11} + T^{12} \)
$41$ \( \)\(15\!\cdots\!64\)\( + \)\(47\!\cdots\!12\)\( T^{2} + \)\(13\!\cdots\!56\)\( T^{4} + \)\(13\!\cdots\!60\)\( T^{6} + \)\(46\!\cdots\!08\)\( T^{8} + 44050323101928 T^{10} + T^{12} \)
$43$ \( ( \)\(51\!\cdots\!00\)\( + \)\(67\!\cdots\!20\)\( T + \)\(21\!\cdots\!90\)\( T^{2} + 66060179371490808637 T^{3} - 28688639889699 T^{4} - 3860661 T^{5} + T^{6} )^{2} \)
$47$ \( \)\(18\!\cdots\!00\)\( - \)\(13\!\cdots\!00\)\( T - \)\(32\!\cdots\!20\)\( T^{2} + \)\(27\!\cdots\!60\)\( T^{3} + \)\(34\!\cdots\!04\)\( T^{4} - \)\(20\!\cdots\!68\)\( T^{5} - \)\(51\!\cdots\!44\)\( T^{6} + \)\(65\!\cdots\!72\)\( T^{7} + \)\(27\!\cdots\!28\)\( T^{8} - \)\(11\!\cdots\!88\)\( T^{9} - 44822205254640 T^{10} + 12088194 T^{11} + T^{12} \)
$53$ \( \)\(11\!\cdots\!56\)\( + \)\(57\!\cdots\!88\)\( T + \)\(54\!\cdots\!04\)\( T^{2} - \)\(95\!\cdots\!20\)\( T^{3} + \)\(63\!\cdots\!84\)\( T^{4} - \)\(19\!\cdots\!28\)\( T^{5} + \)\(15\!\cdots\!49\)\( T^{6} - \)\(28\!\cdots\!23\)\( T^{7} + \)\(29\!\cdots\!86\)\( T^{8} - 30645411150217665987 T^{9} + 216103066924230 T^{10} - 5506743 T^{11} + T^{12} \)
$59$ \( \)\(26\!\cdots\!24\)\( - \)\(21\!\cdots\!72\)\( T - \)\(49\!\cdots\!40\)\( T^{2} + \)\(45\!\cdots\!36\)\( T^{3} + \)\(72\!\cdots\!24\)\( T^{4} - \)\(47\!\cdots\!00\)\( T^{5} - \)\(55\!\cdots\!09\)\( T^{6} + \)\(28\!\cdots\!77\)\( T^{7} + \)\(34\!\cdots\!76\)\( T^{8} - \)\(51\!\cdots\!99\)\( T^{9} - 661561622457132 T^{10} + 7511901 T^{11} + T^{12} \)
$61$ \( \)\(93\!\cdots\!00\)\( + \)\(47\!\cdots\!20\)\( T + \)\(91\!\cdots\!32\)\( T^{2} + \)\(49\!\cdots\!00\)\( T^{3} - \)\(33\!\cdots\!24\)\( T^{4} - \)\(35\!\cdots\!80\)\( T^{5} + \)\(16\!\cdots\!40\)\( T^{6} + \)\(20\!\cdots\!64\)\( T^{7} + \)\(16\!\cdots\!20\)\( T^{8} - \)\(30\!\cdots\!16\)\( T^{9} - 348892366584624 T^{10} + 37215576 T^{11} + T^{12} \)
$67$ \( \)\(65\!\cdots\!44\)\( + \)\(62\!\cdots\!56\)\( T + \)\(95\!\cdots\!12\)\( T^{2} + \)\(70\!\cdots\!20\)\( T^{3} + \)\(79\!\cdots\!44\)\( T^{4} + \)\(51\!\cdots\!60\)\( T^{5} + \)\(34\!\cdots\!61\)\( T^{6} + \)\(12\!\cdots\!93\)\( T^{7} + \)\(45\!\cdots\!62\)\( T^{8} + \)\(80\!\cdots\!65\)\( T^{9} + 2671447791162786 T^{10} + 36824553 T^{11} + T^{12} \)
$71$ \( ( -\)\(52\!\cdots\!20\)\( - \)\(24\!\cdots\!24\)\( T + \)\(77\!\cdots\!36\)\( T^{2} + \)\(30\!\cdots\!64\)\( T^{3} - 2133160405822764 T^{4} - 15005778 T^{5} + T^{6} )^{2} \)
$73$ \( \)\(94\!\cdots\!00\)\( - \)\(22\!\cdots\!00\)\( T + \)\(11\!\cdots\!20\)\( T^{2} + \)\(15\!\cdots\!20\)\( T^{3} - \)\(10\!\cdots\!84\)\( T^{4} - \)\(99\!\cdots\!68\)\( T^{5} + \)\(97\!\cdots\!99\)\( T^{6} + \)\(33\!\cdots\!67\)\( T^{7} - \)\(17\!\cdots\!20\)\( T^{8} + \)\(60\!\cdots\!15\)\( T^{9} + 2949383153409456 T^{10} - 95080185 T^{11} + T^{12} \)
$79$ \( \)\(47\!\cdots\!25\)\( + \)\(21\!\cdots\!40\)\( T + \)\(86\!\cdots\!91\)\( T^{2} + \)\(74\!\cdots\!60\)\( T^{3} + \)\(57\!\cdots\!34\)\( T^{4} + \)\(18\!\cdots\!36\)\( T^{5} + \)\(74\!\cdots\!95\)\( T^{6} + \)\(86\!\cdots\!36\)\( T^{7} + \)\(69\!\cdots\!18\)\( T^{8} + \)\(35\!\cdots\!24\)\( T^{9} + 3118285003434843 T^{10} - 8514456 T^{11} + T^{12} \)
$83$ \( \)\(78\!\cdots\!04\)\( + \)\(88\!\cdots\!56\)\( T^{2} + \)\(31\!\cdots\!56\)\( T^{4} + \)\(30\!\cdots\!71\)\( T^{6} + \)\(10\!\cdots\!83\)\( T^{8} + 17102803239551805 T^{10} + T^{12} \)
$89$ \( \)\(11\!\cdots\!96\)\( - \)\(13\!\cdots\!08\)\( T + \)\(33\!\cdots\!76\)\( T^{2} + \)\(22\!\cdots\!96\)\( T^{3} - \)\(16\!\cdots\!72\)\( T^{4} - \)\(14\!\cdots\!40\)\( T^{5} + \)\(70\!\cdots\!08\)\( T^{6} + \)\(75\!\cdots\!00\)\( T^{7} + \)\(56\!\cdots\!88\)\( T^{8} - \)\(82\!\cdots\!76\)\( T^{9} - 7665223344778872 T^{10} + 83038554 T^{11} + T^{12} \)
$97$ \( \)\(53\!\cdots\!00\)\( + \)\(16\!\cdots\!00\)\( T^{2} + \)\(64\!\cdots\!00\)\( T^{4} + \)\(99\!\cdots\!75\)\( T^{6} + \)\(66\!\cdots\!19\)\( T^{8} + 17993651605183569 T^{10} + T^{12} \)
show more
show less