Properties

Label 252.9.bk
Level $252$
Weight $9$
Character orbit 252.bk
Rep. character $\chi_{252}(53,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $44$
Newform subspaces $1$
Sturm bound $432$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 252.bk (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(432\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(252, [\chi])\).

Total New Old
Modular forms 792 44 748
Cusp forms 744 44 700
Eisenstein series 48 0 48

Trace form

\( 44 q + 1230 q^{7} + O(q^{10}) \) \( 44 q + 1230 q^{7} - 101380 q^{13} + 62770 q^{19} + 2247666 q^{25} + 1389254 q^{31} - 2136026 q^{37} + 11510140 q^{43} - 3824398 q^{49} - 42646528 q^{55} + 27346232 q^{61} + 14239194 q^{67} - 64344138 q^{73} + 7061786 q^{79} - 54198208 q^{85} - 45697066 q^{91} + 476543496 q^{97} + O(q^{100}) \)

Decomposition of \(S_{9}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
252.9.bk.a \(44\) \(102.659\) None \(0\) \(0\) \(0\) \(1230\)

Decomposition of \(S_{9}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(252, [\chi]) \cong \) \(S_{9}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)